pulseaudio/src/modules/module-combine-sink.c

1720 lines
52 KiB
C
Raw Normal View History

/***
This file is part of PulseAudio.
Copyright 2004-2008 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <pulse/rtclock.h>
#include <pulse/timeval.h>
#include <pulse/util.h>
#include <pulse/xmalloc.h>
#include <pulsecore/macro.h>
#include <pulsecore/module.h>
#include <pulsecore/llist.h>
#include <pulsecore/sink.h>
#include <pulsecore/sink-input.h>
#include <pulsecore/memblockq.h>
#include <pulsecore/log.h>
#include <pulsecore/core-rtclock.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/namereg.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/time-smoother.h>
#include <pulsecore/strlist.h>
PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION("Combine multiple sinks to one");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"slaves=<slave sinks> "
"adjust_time=<how often to readjust rates in s> "
"resample_method=<method> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map>");
#define DEFAULT_SINK_NAME "combined"
#define MEMBLOCKQ_MAXLENGTH (1024*1024*16)
#define DEFAULT_ADJUST_TIME_USEC (10*PA_USEC_PER_SEC)
#define BLOCK_USEC (PA_USEC_PER_MSEC * 200)
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"slaves",
"adjust_time",
"resample_method",
"format",
"rate",
"channels",
"channel_map",
NULL
};
struct output {
struct userdata *userdata;
pa_sink *sink;
pa_sink_input *sink_input;
bool ignore_state_change;
/* This message queue is only for POST messages, i.e. the messages that
* carry audio data from the sink thread to the output thread. The POST
* messages need to be handled in a separate queue, because the queue is
* processed not only in the output thread mainloop, but also inside the
* sink input pop() callback. Processing other messages (such as
* SET_REQUESTED_LATENCY) is not safe inside the pop() callback; at least
* one reason why it's not safe is that messages that generate rewind
* requests (such as SET_REQUESTED_LATENCY) cause crashes when processed
* in the pop() callback. */
pa_asyncmsgq *audio_inq;
/* This message queue is for all other messages than POST from the sink
* thread to the output thread (currently "all other messages" means just
* the SET_REQUESTED_LATENCY message). */
pa_asyncmsgq *control_inq;
/* Message queue from the output thread to the sink thread. */
pa_asyncmsgq *outq;
pa_rtpoll_item *audio_inq_rtpoll_item_read, *audio_inq_rtpoll_item_write;
pa_rtpoll_item *control_inq_rtpoll_item_read, *control_inq_rtpoll_item_write;
pa_rtpoll_item *outq_rtpoll_item_read, *outq_rtpoll_item_write;
pa_memblockq *memblockq;
/* For communication of the stream latencies to the main thread */
pa_usec_t total_latency;
struct {
pa_usec_t timestamp;
pa_usec_t sink_latency;
size_t output_memblockq_size;
uint64_t receive_counter;
} latency_snapshot;
uint64_t receive_counter;
2011-08-24 18:24:46 +02:00
/* For communication of the stream parameters to the sink thread */
pa_atomic_t max_request;
pa_atomic_t max_latency;
pa_atomic_t min_latency;
PA_LLIST_FIELDS(struct output);
};
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_time_event *time_event;
pa_usec_t adjust_time;
bool automatic;
bool auto_desc;
pa_strlist *unlinked_slaves;
pa_hook_slot *sink_put_slot, *sink_unlink_slot, *sink_state_changed_slot;
pa_resample_method_t resample_method;
pa_usec_t block_usec;
pa_usec_t default_min_latency;
pa_usec_t default_max_latency;
pa_idxset* outputs; /* managed in main context */
struct {
PA_LLIST_HEAD(struct output, active_outputs); /* managed in IO thread context */
pa_atomic_t running; /* we cache that value here, so that every thread can query it cheaply */
pa_usec_t timestamp;
bool in_null_mode;
pa_smoother *smoother;
uint64_t counter;
uint64_t snapshot_counter;
pa_usec_t snapshot_time;
pa_usec_t render_timestamp;
} thread_info;
};
struct sink_snapshot {
pa_usec_t timestamp;
uint64_t send_counter;
};
enum {
SINK_MESSAGE_ADD_OUTPUT = PA_SINK_MESSAGE_MAX,
SINK_MESSAGE_REMOVE_OUTPUT,
SINK_MESSAGE_NEED,
SINK_MESSAGE_UPDATE_LATENCY,
SINK_MESSAGE_UPDATE_MAX_REQUEST,
SINK_MESSAGE_UPDATE_LATENCY_RANGE,
SINK_MESSAGE_GET_SNAPSHOT
};
enum {
SINK_INPUT_MESSAGE_POST = PA_SINK_INPUT_MESSAGE_MAX,
SINK_INPUT_MESSAGE_SET_REQUESTED_LATENCY,
SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT
};
static void output_disable(struct output *o);
static void output_enable(struct output *o);
static void output_free(struct output *o);
static int output_create_sink_input(struct output *o);
/* rate controller, called from main context
* - maximum deviation from base rate is less than 1%
* - controller step size is limited to 2.01
* - exhibits hunting with USB or Bluetooth devices
*/
static uint32_t rate_controller(
struct output *o,
uint32_t base_rate, uint32_t old_rate,
int32_t latency_difference_usec) {
double new_rate, new_rate_1, new_rate_2;
double min_cycles_1, min_cycles_2;
/* Calculate next rate that is not more than 2‰ away from the last rate */
min_cycles_1 = (double)abs(latency_difference_usec) / o->userdata->adjust_time / 0.002 + 1;
new_rate_1 = old_rate + base_rate * (double)latency_difference_usec / min_cycles_1 / o->userdata->adjust_time;
/* Calculate best rate to correct the current latency offset, limit at
* 1% difference from base_rate */
min_cycles_2 = (double)abs(latency_difference_usec) / o->userdata->adjust_time / 0.01 + 1;
new_rate_2 = (double)base_rate * (1.0 + (double)latency_difference_usec / min_cycles_2 / o->userdata->adjust_time);
/* Choose the rate that is nearer to base_rate */
new_rate = new_rate_2;
if (abs(new_rate_1 - base_rate) < abs(new_rate_2 - base_rate))
new_rate = new_rate_1;
return (uint32_t)(new_rate + 0.5);
}
static void adjust_rates(struct userdata *u) {
struct output *o;
struct sink_snapshot rdata;
pa_usec_t avg_total_latency = 0;
pa_usec_t target_latency = 0;
pa_usec_t max_sink_latency = 0;
pa_usec_t min_total_latency = (pa_usec_t)-1;
uint32_t base_rate;
uint32_t idx;
unsigned n = 0;
pa_usec_t now;
struct output *o_max;
pa_assert(u);
pa_sink_assert_ref(u->sink);
if (pa_idxset_size(u->outputs) <= 0)
return;
if (u->sink->state != PA_SINK_RUNNING)
return;
/* Get sink snapshot */
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_GET_SNAPSHOT, &rdata, 0, NULL);
/* The sink snapshot time is the time when the last data was rendered.
* Latency is calculated for that point in time. */
now = rdata.timestamp;
/* Sink snapshot is not yet valid. */
if (!now)
return;
PA_IDXSET_FOREACH(o, u->outputs, idx) {
pa_usec_t snapshot_latency;
int64_t time_difference;
if (!o->sink_input || !PA_SINK_IS_OPENED(o->sink->state))
continue;
/* The difference may become negative, because it is probable, that the last
* render time was before the sink input snapshot. In this case, the sink
* had some more latency at the render time, so subtracting the value still
* gives the right result. */
time_difference = (int64_t)now - (int64_t)o->latency_snapshot.timestamp;
/* Latency at sink snapshot time is sink input snapshot latency minus time
* passed between the two snapshots. */
snapshot_latency = o->latency_snapshot.sink_latency
+ pa_bytes_to_usec(o->latency_snapshot.output_memblockq_size, &o->sink_input->sample_spec)
- time_difference;
/* Add the data that was sent between taking the sink input snapshot
* and the sink snapshot. */
snapshot_latency += pa_bytes_to_usec(rdata.send_counter - o->latency_snapshot.receive_counter, &o->sink_input->sample_spec);
/* This is the current combined latency of the slave sink and the related
* memblockq at the time of the sink snapshot. */
o->total_latency = snapshot_latency;
avg_total_latency += snapshot_latency;
/* Get max_sink_latency and min_total_latency for target selection. */
if (min_total_latency == (pa_usec_t)-1 || o->total_latency < min_total_latency)
min_total_latency = o->total_latency;
if (o->latency_snapshot.sink_latency > max_sink_latency) {
max_sink_latency = o->latency_snapshot.sink_latency;
o_max = o;
}
/* Debug output */
pa_log_debug("[%s] Snapshot sink latency = %0.2fms, total snapshot latency = %0.2fms", o->sink->name, (double) o->latency_snapshot.sink_latency / PA_USEC_PER_MSEC, (double) snapshot_latency / PA_USEC_PER_MSEC);
if (o->total_latency > 10*PA_USEC_PER_SEC)
pa_log_warn("[%s] Total latency of output is very high (%0.2fms), most likely the audio timing in one of your drivers is broken.", o->sink->name, (double) o->total_latency / PA_USEC_PER_MSEC);
n++;
}
/* If there is no valid output there is nothing to do. */
if (min_total_latency == (pa_usec_t) -1)
return;
avg_total_latency /= n;
/* The target selection ensures, that at least one of the
* sinks will use the base rate and all other sinks are set
* relative to it. */
if (max_sink_latency > min_total_latency)
target_latency = o_max->total_latency;
else
target_latency = min_total_latency;
pa_log_info("[%s] avg total latency is %0.2f msec.", u->sink->name, (double) avg_total_latency / PA_USEC_PER_MSEC);
pa_log_info("[%s] target latency for all slaves is %0.2f msec.", u->sink->name, (double) target_latency / PA_USEC_PER_MSEC);
base_rate = u->sink->sample_spec.rate;
/* Calculate and set rates for the sink inputs. */
PA_IDXSET_FOREACH(o, u->outputs, idx) {
uint32_t new_rate;
int32_t latency_difference;
if (!o->sink_input || !PA_SINK_IS_OPENED(o->sink->state))
continue;
latency_difference = (int64_t)o->total_latency - (int64_t)target_latency;
new_rate = rate_controller(o, base_rate, o->sink_input->sample_spec.rate, latency_difference);
pa_log_info("[%s] new rate is %u Hz; ratio is %0.3f.", o->sink_input->sink->name, new_rate, (double) new_rate / base_rate);
pa_sink_input_set_rate(o->sink_input, new_rate);
}
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_UPDATE_LATENCY, NULL, (int64_t) avg_total_latency, NULL);
}
static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_assert(a);
pa_assert(u->time_event == e);
if (u->sink->state == PA_SINK_SUSPENDED) {
u->core->mainloop->time_free(e);
u->time_event = NULL;
} else {
struct output *o;
uint32_t idx;
pa_core_rttime_restart(u->core, e, pa_rtclock_now() + u->adjust_time);
/* Get latency snapshots */
PA_IDXSET_FOREACH(o, u->outputs, idx) {
pa_asyncmsgq_send(o->control_inq, PA_MSGOBJECT(o->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
}
}
adjust_rates(u);
}
static void process_render_null(struct userdata *u, pa_usec_t now) {
size_t ate = 0;
pa_assert(u);
pa_assert(u->sink->thread_info.state == PA_SINK_RUNNING);
if (u->thread_info.in_null_mode)
u->thread_info.timestamp = now;
while (u->thread_info.timestamp < now + u->block_usec) {
pa_memchunk chunk;
pa_sink_render(u->sink, u->sink->thread_info.max_request, &chunk);
pa_memblock_unref(chunk.memblock);
u->thread_info.counter += chunk.length;
/* pa_log_debug("Ate %lu bytes.", (unsigned long) chunk.length); */
u->thread_info.timestamp += pa_bytes_to_usec(chunk.length, &u->sink->sample_spec);
ate += chunk.length;
if (ate >= u->sink->thread_info.max_request)
break;
}
/* pa_log_debug("Ate in sum %lu bytes (of %lu)", (unsigned long) ate, (unsigned long) nbytes); */
pa_smoother_put(u->thread_info.smoother, now,
pa_bytes_to_usec(u->thread_info.counter, &u->sink->sample_spec) - (u->thread_info.timestamp - now));
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_log_debug("Thread starting up");
if (u->core->realtime_scheduling)
pa_thread_make_realtime(u->core->realtime_priority+1);
pa_thread_mq_install(&u->thread_mq);
u->thread_info.timestamp = pa_rtclock_now();
u->thread_info.in_null_mode = false;
for (;;) {
int ret;
if (PA_UNLIKELY(u->sink->thread_info.rewind_requested))
pa_sink_process_rewind(u->sink, 0);
/* If no outputs are connected, render some data and drop it immediately. */
if (u->sink->thread_info.state == PA_SINK_RUNNING && !u->thread_info.active_outputs) {
pa_usec_t now;
now = pa_rtclock_now();
if (!u->thread_info.in_null_mode || u->thread_info.timestamp <= now)
process_render_null(u, now);
pa_rtpoll_set_timer_absolute(u->rtpoll, u->thread_info.timestamp);
u->thread_info.in_null_mode = true;
} else {
pa_rtpoll_set_timer_disabled(u->rtpoll);
u->thread_info.in_null_mode = false;
}
/* Hmm, nothing to do. Let's sleep */
if ((ret = pa_rtpoll_run(u->rtpoll)) < 0) {
pa_log_info("pa_rtpoll_run() = %i", ret);
goto fail;
}
if (ret == 0)
goto finish;
}
fail:
/* If this was no regular exit from the loop we have to continue
* processing messages until we received PA_MESSAGE_SHUTDOWN */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
/* Called from combine sink I/O thread context */
static void render_memblock(struct userdata *u, struct output *o, size_t length) {
pa_assert(u);
pa_assert(o);
/* We are run by the sink thread, on behalf of an output (o). The
* output is waiting for us, hence it is safe to access its
* mainblockq and asyncmsgq directly. */
/* If we are not running, we cannot produce any data */
if (!pa_atomic_load(&u->thread_info.running))
return;
/* Maybe there's some data in the requesting output's queue
* now? */
while (pa_asyncmsgq_process_one(o->audio_inq) > 0)
;
/* Ok, now let's prepare some data if we really have to. Save the
* the time for latency calculations. */
u->thread_info.render_timestamp = pa_rtclock_now();
while (!pa_memblockq_is_readable(o->memblockq)) {
struct output *j;
pa_memchunk chunk;
/* Render data! */
pa_sink_render(u->sink, length, &chunk);
u->thread_info.counter += chunk.length;
o->receive_counter += chunk.length;
/* OK, let's send this data to the other threads */
PA_LLIST_FOREACH(j, u->thread_info.active_outputs) {
if (j == o)
continue;
pa_asyncmsgq_post(j->audio_inq, PA_MSGOBJECT(j->sink_input), SINK_INPUT_MESSAGE_POST, NULL, 0, &chunk, NULL);
}
/* And place it directly into the requesting output's queue */
pa_memblockq_push_align(o->memblockq, &chunk);
pa_memblock_unref(chunk.memblock);
}
}
/* Called from I/O thread context */
static void request_memblock(struct output *o, size_t length) {
pa_assert(o);
pa_sink_input_assert_ref(o->sink_input);
pa_sink_assert_ref(o->userdata->sink);
/* If another thread already prepared some data we received
* the data over the asyncmsgq, hence let's first process
* it. */
while (pa_asyncmsgq_process_one(o->audio_inq) > 0)
;
/* Check whether we're now readable */
if (pa_memblockq_is_readable(o->memblockq))
return;
/* OK, we need to prepare new data, but only if the sink is actually running */
if (pa_atomic_load(&o->userdata->thread_info.running))
pa_asyncmsgq_send(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_NEED, o, (int64_t) length, NULL);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
/* If necessary, get some new data */
request_memblock(o, nbytes);
/* pa_log("%s q size is %u + %u (%u/%u)", */
/* i->sink->name, */
/* pa_memblockq_get_nblocks(o->memblockq), */
/* pa_memblockq_get_nblocks(i->thread_info.render_memblockq), */
/* pa_memblockq_get_maxrewind(o->memblockq), */
/* pa_memblockq_get_maxrewind(i->thread_info.render_memblockq)); */
if (pa_memblockq_peek(o->memblockq, chunk) < 0)
return -1;
pa_memblockq_drop(o->memblockq, chunk->length);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
pa_memblockq_rewind(o->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
pa_memblockq_set_maxrewind(o->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
if (pa_atomic_load(&o->max_request) == (int) nbytes)
return;
pa_atomic_store(&o->max_request, (int) nbytes);
pa_log_debug("Sink input update max request %lu", (unsigned long) nbytes);
pa_asyncmsgq_post(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_UPDATE_MAX_REQUEST, NULL, 0, NULL, NULL);
}
/* Called from thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct output *o;
pa_usec_t min, max, fix;
pa_assert(i);
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
fix = i->sink->thread_info.fixed_latency;
if (fix > 0) {
min = fix;
max = fix;
} else {
min = i->sink->thread_info.min_latency;
max = i->sink->thread_info.max_latency;
}
if ((pa_atomic_load(&o->min_latency) == (int) min) &&
(pa_atomic_load(&o->max_latency) == (int) max))
return;
pa_atomic_store(&o->min_latency, (int) min);
pa_atomic_store(&o->max_latency, (int) max);
pa_log_debug("Sink input update latency range %lu %lu", (unsigned long) min, (unsigned long) max);
pa_asyncmsgq_post(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_UPDATE_LATENCY_RANGE, NULL, 0, NULL, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct output *o;
pa_usec_t fix, min, max;
size_t nbytes;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
/* Set up the queue from the sink thread to us */
pa_assert(!o->audio_inq_rtpoll_item_read);
pa_assert(!o->control_inq_rtpoll_item_read);
pa_assert(!o->outq_rtpoll_item_write);
o->audio_inq_rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
i->sink->thread_info.rtpoll,
PA_RTPOLL_LATE, /* This one is not that important, since we check for data in _peek() anyway. */
o->audio_inq);
o->control_inq_rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
i->sink->thread_info.rtpoll,
PA_RTPOLL_NORMAL,
o->control_inq);
o->outq_rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
i->sink->thread_info.rtpoll,
PA_RTPOLL_EARLY,
o->outq);
pa_sink_input_request_rewind(i, 0, false, true, true);
nbytes = pa_sink_input_get_max_request(i);
pa_atomic_store(&o->max_request, (int) nbytes);
pa_log_debug("attach max request %lu", (unsigned long) nbytes);
fix = i->sink->thread_info.fixed_latency;
if (fix > 0) {
min = max = fix;
} else {
min = i->sink->thread_info.min_latency;
max = i->sink->thread_info.max_latency;
}
pa_atomic_store(&o->min_latency, (int) min);
pa_atomic_store(&o->max_latency, (int) max);
pa_log_debug("attach latency range %lu %lu", (unsigned long) min, (unsigned long) max);
/* We register the output. That means that the sink will start to pass data to
* this output. */
pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_ADD_OUTPUT, o, 0, NULL);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
/* We unregister the output. That means that the sink doesn't
* pass any further data to this output */
pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_REMOVE_OUTPUT, o, 0, NULL);
if (o->audio_inq_rtpoll_item_read) {
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_read);
o->audio_inq_rtpoll_item_read = NULL;
}
if (o->control_inq_rtpoll_item_read) {
pa_rtpoll_item_free(o->control_inq_rtpoll_item_read);
o->control_inq_rtpoll_item_read = NULL;
}
if (o->outq_rtpoll_item_write) {
pa_rtpoll_item_free(o->outq_rtpoll_item_write);
o->outq_rtpoll_item_write = NULL;
}
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
pa_module_unload_request(o->userdata->module, true);
pa_idxset_remove_by_data(o->userdata->outputs, o, NULL);
output_free(o);
}
/* Called from thread context */
static int sink_input_process_msg(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct output *o = PA_SINK_INPUT(obj)->userdata;
switch (code) {
case PA_SINK_INPUT_MESSAGE_GET_LATENCY: {
pa_usec_t *r = data;
*r = pa_bytes_to_usec(pa_memblockq_get_length(o->memblockq), &o->sink_input->sample_spec);
/* Fall through, the default handler will add in the extra
* latency added by the resampler */
break;
}
case SINK_INPUT_MESSAGE_POST:
if (o->sink_input->sink->thread_info.state == PA_SINK_RUNNING) {
pa_memblockq_push_align(o->memblockq, chunk);
o->receive_counter += chunk->length;
} else
pa_memblockq_flush_write(o->memblockq, true);
return 0;
case SINK_INPUT_MESSAGE_SET_REQUESTED_LATENCY: {
pa_usec_t latency = (pa_usec_t) offset;
pa_sink_input_set_requested_latency_within_thread(o->sink_input, latency);
return 0;
}
case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: {
size_t length;
length = pa_memblockq_get_length(o->sink_input->thread_info.render_memblockq);
o->latency_snapshot.output_memblockq_size = pa_memblockq_get_length(o->memblockq);
/* Add content of memblockq's to sink latency */
o->latency_snapshot.sink_latency = pa_sink_get_latency_within_thread(o->sink, true) +
pa_bytes_to_usec(length, &o->sink->sample_spec);
o->latency_snapshot.timestamp = pa_rtclock_now();
o->latency_snapshot.receive_counter = o->receive_counter;
return 0;
}
}
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
}
/* Called from main context */
static void suspend(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
/* Let's suspend by unlinking all streams */
PA_IDXSET_FOREACH(o, u->outputs, idx)
output_disable(o);
pa_log_info("Device suspended...");
}
/* Called from main context */
static void unsuspend(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
/* Let's resume */
PA_IDXSET_FOREACH(o, u->outputs, idx)
output_enable(o);
pa_log_info("Resumed successfully...");
}
/* Called from main context */
static int sink_set_state_in_main_thread_cb(pa_sink *sink, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) {
struct userdata *u;
pa_sink_assert_ref(sink);
pa_assert_se(u = sink->userdata);
/* It may be that only the suspend cause is changing, in which
* case there's nothing to do. */
if (state == u->sink->state)
return 0;
/* Please note that in contrast to the ALSA modules we call
* suspend/unsuspend from main context here! */
switch (state) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_IS_OPENED(u->sink->state));
suspend(u);
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (u->sink->state == PA_SINK_SUSPENDED)
unsuspend(u);
/* The first smoother update should be done early, otherwise the smoother will
* not be aware of the slave sink latencies and report far too small values.
* This is especially important if after an unsuspend the sink runs on a different
* latency than before. */
if (state == PA_SINK_RUNNING && !u->time_event && u->adjust_time > 0)
u->time_event = pa_core_rttime_new(u->core, pa_rtclock_now() + pa_sink_get_requested_latency(u->sink), time_callback, u);
break;
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
case PA_SINK_INVALID_STATE:
;
}
return 0;
}
/* Called from the IO thread. */
static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
struct userdata *u;
bool running;
pa_assert(s);
pa_assert_se(u = s->userdata);
/* It may be that only the suspend cause is changing, in which case there's
* nothing to do. */
if (new_state == s->thread_info.state)
return 0;
running = new_state == PA_SINK_RUNNING;
pa_atomic_store(&u->thread_info.running, running);
if (running) {
u->thread_info.render_timestamp = 0;
pa_smoother_resume(u->thread_info.smoother, pa_rtclock_now(), true);
} else
pa_smoother_pause(u->thread_info.smoother, pa_rtclock_now());
return 0;
}
/* Called from IO context */
static void update_max_request(struct userdata *u) {
size_t max_request = 0;
struct output *o;
pa_assert(u);
pa_sink_assert_io_context(u->sink);
/* Collects the max_request values of all streams and sets the
* largest one locally */
PA_LLIST_FOREACH(o, u->thread_info.active_outputs) {
size_t mr = (size_t) pa_atomic_load(&o->max_request);
if (mr > max_request)
max_request = mr;
}
if (max_request <= 0)
max_request = pa_usec_to_bytes(u->block_usec, &u->sink->sample_spec);
pa_log_debug("Sink update max request %lu", (unsigned long) max_request);
pa_sink_set_max_request_within_thread(u->sink, max_request);
}
/* Called from IO context */
static void update_latency_range(struct userdata *u) {
pa_usec_t min_latency = 0, max_latency = (pa_usec_t) -1;
struct output *o;
pa_assert(u);
pa_sink_assert_io_context(u->sink);
/* Collects the latency_range values of all streams and sets
* the max of min and min of max locally */
PA_LLIST_FOREACH(o, u->thread_info.active_outputs) {
pa_usec_t min = (size_t) pa_atomic_load(&o->min_latency);
pa_usec_t max = (size_t) pa_atomic_load(&o->max_latency);
if (min > min_latency)
min_latency = min;
if (max_latency == (pa_usec_t) -1 || max < max_latency)
max_latency = max;
}
if (max_latency == (pa_usec_t) -1) {
/* No outputs, use default limits. */
min_latency = u->default_min_latency;
max_latency = u->default_max_latency;
}
/* As long as we don't support rewinding, we should limit the max latency
* to a conservative value. */
if (max_latency > u->default_max_latency)
max_latency = u->default_max_latency;
/* Never ever try to set lower max latency than min latency, it just
* doesn't make sense. */
if (max_latency < min_latency)
max_latency = min_latency;
pa_log_debug("Sink update latency range %" PRIu64 " %" PRIu64, min_latency, max_latency);
pa_sink_set_latency_range_within_thread(u->sink, min_latency, max_latency);
}
/* Called from thread context of the io thread */
static void output_add_within_thread(struct output *o) {
pa_assert(o);
pa_sink_assert_io_context(o->sink);
PA_LLIST_PREPEND(struct output, o->userdata->thread_info.active_outputs, o);
pa_assert(!o->outq_rtpoll_item_read);
pa_assert(!o->audio_inq_rtpoll_item_write);
pa_assert(!o->control_inq_rtpoll_item_write);
o->outq_rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
o->userdata->rtpoll,
PA_RTPOLL_EARLY-1, /* This item is very important */
o->outq);
o->audio_inq_rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
o->userdata->rtpoll,
PA_RTPOLL_EARLY,
o->audio_inq);
o->control_inq_rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
o->userdata->rtpoll,
PA_RTPOLL_NORMAL,
o->control_inq);
o->receive_counter = o->userdata->thread_info.counter;
}
/* Called from thread context of the io thread */
static void output_remove_within_thread(struct output *o) {
pa_assert(o);
pa_sink_assert_io_context(o->sink);
PA_LLIST_REMOVE(struct output, o->userdata->thread_info.active_outputs, o);
if (o->outq_rtpoll_item_read) {
pa_rtpoll_item_free(o->outq_rtpoll_item_read);
o->outq_rtpoll_item_read = NULL;
}
if (o->audio_inq_rtpoll_item_write) {
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_write);
o->audio_inq_rtpoll_item_write = NULL;
}
if (o->control_inq_rtpoll_item_write) {
pa_rtpoll_item_free(o->control_inq_rtpoll_item_write);
o->control_inq_rtpoll_item_write = NULL;
}
}
/* Called from sink I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
struct userdata *u;
struct output *o;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
u->block_usec = pa_sink_get_requested_latency_within_thread(s);
if (u->block_usec == (pa_usec_t) -1)
u->block_usec = s->thread_info.max_latency;
pa_log_debug("Sink update requested latency %0.2f", (double) u->block_usec / PA_USEC_PER_MSEC);
/* Just hand this one over to all sink_inputs */
PA_LLIST_FOREACH(o, u->thread_info.active_outputs) {
pa_asyncmsgq_post(o->control_inq, PA_MSGOBJECT(o->sink_input), SINK_INPUT_MESSAGE_SET_REQUESTED_LATENCY, NULL,
u->block_usec, NULL, NULL);
}
}
/* Called from thread context of the io thread */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
pa_usec_t x, y, c;
int64_t *delay = data;
x = pa_rtclock_now();
y = pa_smoother_get(u->thread_info.smoother, x);
c = pa_bytes_to_usec(u->thread_info.counter, &u->sink->sample_spec);
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
*delay = (int64_t)c - y;
return 0;
}
case SINK_MESSAGE_ADD_OUTPUT:
output_add_within_thread(data);
update_max_request(u);
update_latency_range(u);
return 0;
case SINK_MESSAGE_REMOVE_OUTPUT:
output_remove_within_thread(data);
update_max_request(u);
update_latency_range(u);
return 0;
case SINK_MESSAGE_NEED:
render_memblock(u, (struct output*) data, (size_t) offset);
return 0;
case SINK_MESSAGE_UPDATE_LATENCY: {
pa_usec_t x, y, latency = (pa_usec_t) offset;
/* It may be possible that thread_info.counter has been increased
* since we took the snapshot. Therefore we have to use the snapshot
* time and counter instead of the current values. */
x = u->thread_info.snapshot_time;
y = pa_bytes_to_usec(u->thread_info.snapshot_counter, &u->sink->sample_spec);
if (y > latency)
y -= latency;
else
y = 0;
pa_smoother_put(u->thread_info.smoother, x, y);
return 0;
}
case SINK_MESSAGE_GET_SNAPSHOT: {
struct sink_snapshot *rdata = data;
rdata->timestamp = u->thread_info.render_timestamp;
rdata->send_counter = u->thread_info.counter;
u->thread_info.snapshot_counter = u->thread_info.counter;
u->thread_info.snapshot_time = u->thread_info.render_timestamp;
return 0;
}
case SINK_MESSAGE_UPDATE_MAX_REQUEST:
update_max_request(u);
break;
case SINK_MESSAGE_UPDATE_LATENCY_RANGE:
update_latency_range(u);
break;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
static void update_description(struct userdata *u) {
bool first = true;
char *t;
struct output *o;
uint32_t idx;
pa_assert(u);
if (!u->auto_desc)
return;
if (pa_idxset_isempty(u->outputs)) {
pa_sink_set_description(u->sink, "Simultaneous output");
return;
}
t = pa_xstrdup("Simultaneous output to");
PA_IDXSET_FOREACH(o, u->outputs, idx) {
char *e;
if (first) {
e = pa_sprintf_malloc("%s %s", t, pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
first = false;
} else
e = pa_sprintf_malloc("%s, %s", t, pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
pa_xfree(t);
t = e;
}
pa_sink_set_description(u->sink, t);
pa_xfree(t);
}
static int output_create_sink_input(struct output *o) {
struct userdata *u;
pa_sink_input_new_data data;
pa_assert(o);
if (o->sink_input)
return 0;
u = o->userdata;
pa_sink_input_new_data_init(&data);
pa_sink_input_new_data_set_sink(&data, o->sink, false, true);
data.driver = __FILE__;
pa_proplist_setf(data.proplist, PA_PROP_MEDIA_NAME, "Simultaneous output on %s", pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
pa_proplist_sets(data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&data, &u->sink->sample_spec);
pa_sink_input_new_data_set_channel_map(&data, &u->sink->channel_map);
data.module = u->module;
data.resample_method = u->resample_method;
data.flags = PA_SINK_INPUT_VARIABLE_RATE|PA_SINK_INPUT_DONT_MOVE|PA_SINK_INPUT_NO_CREATE_ON_SUSPEND;
data.origin_sink = u->sink;
pa_sink_input_new(&o->sink_input, u->core, &data);
pa_sink_input_new_data_done(&data);
if (!o->sink_input)
return -1;
o->sink_input->parent.process_msg = sink_input_process_msg;
o->sink_input->pop = sink_input_pop_cb;
o->sink_input->process_rewind = sink_input_process_rewind_cb;
o->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
o->sink_input->update_max_request = sink_input_update_max_request_cb;
o->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
o->sink_input->attach = sink_input_attach_cb;
o->sink_input->detach = sink_input_detach_cb;
o->sink_input->kill = sink_input_kill_cb;
o->sink_input->userdata = o;
pa_sink_input_set_requested_latency(o->sink_input, pa_sink_get_requested_latency(u->sink));
return 0;
}
/* Called from main context */
static struct output *output_new(struct userdata *u, pa_sink *sink) {
struct output *o;
pa_assert(u);
pa_assert(sink);
pa_assert(u->sink);
o = pa_xnew0(struct output, 1);
o->userdata = u;
o->audio_inq = pa_asyncmsgq_new(0);
if (!o->audio_inq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
o->control_inq = pa_asyncmsgq_new(0);
if (!o->control_inq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
o->outq = pa_asyncmsgq_new(0);
if (!o->outq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
o->sink = sink;
o->memblockq = pa_memblockq_new(
"module-combine-sink output memblockq",
0,
MEMBLOCKQ_MAXLENGTH,
MEMBLOCKQ_MAXLENGTH,
&u->sink->sample_spec,
1,
0,
0,
&u->sink->silence);
pa_assert_se(pa_idxset_put(u->outputs, o, NULL) == 0);
update_description(u);
return o;
fail:
output_free(o);
return NULL;
}
/* Called from main context */
static void output_free(struct output *o) {
pa_assert(o);
output_disable(o);
update_description(o->userdata);
if (o->audio_inq_rtpoll_item_read)
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_read);
if (o->audio_inq_rtpoll_item_write)
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_write);
if (o->control_inq_rtpoll_item_read)
pa_rtpoll_item_free(o->control_inq_rtpoll_item_read);
if (o->control_inq_rtpoll_item_write)
pa_rtpoll_item_free(o->control_inq_rtpoll_item_write);
if (o->outq_rtpoll_item_read)
pa_rtpoll_item_free(o->outq_rtpoll_item_read);
if (o->outq_rtpoll_item_write)
pa_rtpoll_item_free(o->outq_rtpoll_item_write);
if (o->audio_inq)
pa_asyncmsgq_unref(o->audio_inq);
if (o->control_inq)
pa_asyncmsgq_unref(o->control_inq);
if (o->outq)
pa_asyncmsgq_unref(o->outq);
if (o->memblockq)
pa_memblockq_free(o->memblockq);
pa_xfree(o);
}
/* Called from main context */
static void output_enable(struct output *o) {
pa_assert(o);
if (o->sink_input)
return;
/* This might cause the sink to be resumed. The state change hook
* of the sink might hence be called from here, which might then
* cause us to be called in a loop. Make sure that state changes
* for this output don't cause this loop by setting a flag here */
o->ignore_state_change = true;
if (output_create_sink_input(o) >= 0) {
if (o->sink->state != PA_SINK_INIT) {
/* Enable the sink input. That means that the sink
* is now asked for new data. */
pa_sink_input_put(o->sink_input);
}
}
o->ignore_state_change = false;
}
/* Called from main context */
static void output_disable(struct output *o) {
pa_assert(o);
if (!o->sink_input)
return;
/* We disable the sink input. That means that the sink is
* not asked for new data anymore */
pa_sink_input_unlink(o->sink_input);
2011-08-24 18:24:46 +02:00
/* Now deallocate the stream */
pa_sink_input_unref(o->sink_input);
o->sink_input = NULL;
/* Finally, drop all queued data */
pa_memblockq_flush_write(o->memblockq, true);
pa_asyncmsgq_flush(o->audio_inq, false);
pa_asyncmsgq_flush(o->control_inq, false);
pa_asyncmsgq_flush(o->outq, false);
}
/* Called from main context */
static void output_verify(struct output *o) {
pa_assert(o);
if (PA_SINK_IS_OPENED(o->userdata->sink->state))
output_enable(o);
else
output_disable(o);
}
/* Called from main context */
static bool is_suitable_sink(struct userdata *u, pa_sink *s) {
const char *t;
pa_sink_assert_ref(s);
if (s == u->sink)
return false;
if (!(s->flags & PA_SINK_HARDWARE))
return false;
if (!(s->flags & PA_SINK_LATENCY))
return false;
if ((t = pa_proplist_gets(s->proplist, PA_PROP_DEVICE_CLASS)))
if (!pa_streq(t, "sound"))
return false;
return true;
}
/* Called from main context */
static pa_hook_result_t sink_put_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
pa_core_assert_ref(c);
pa_sink_assert_ref(s);
pa_assert(u);
if (u->automatic) {
if (!is_suitable_sink(u, s))
return PA_HOOK_OK;
} else {
/* Check if the sink is a previously unlinked slave (non-automatic mode) */
pa_strlist *l = u->unlinked_slaves;
while (l && !pa_streq(pa_strlist_data(l), s->name))
l = pa_strlist_next(l);
if (!l)
return PA_HOOK_OK;
u->unlinked_slaves = pa_strlist_remove(u->unlinked_slaves, s->name);
}
pa_log_info("Configuring new sink: %s", s->name);
if (!(o = output_new(u, s))) {
pa_log("Failed to create sink input on sink '%s'.", s->name);
return PA_HOOK_OK;
}
output_verify(o);
return PA_HOOK_OK;
}
/* Called from main context */
static struct output* find_output(struct userdata *u, pa_sink *s) {
struct output *o;
uint32_t idx;
pa_assert(u);
pa_assert(s);
if (u->sink == s)
return NULL;
PA_IDXSET_FOREACH(o, u->outputs, idx)
if (o->sink == s)
return o;
return NULL;
}
/* Called from main context */
static pa_hook_result_t sink_unlink_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
pa_assert(c);
pa_sink_assert_ref(s);
pa_assert(u);
if (!(o = find_output(u, s)))
return PA_HOOK_OK;
pa_log_info("Unconfiguring sink: %s", s->name);
if (!u->automatic)
u->unlinked_slaves = pa_strlist_prepend(u->unlinked_slaves, s->name);
pa_idxset_remove_by_data(u->outputs, o, NULL);
output_free(o);
return PA_HOOK_OK;
}
/* Called from main context */
static pa_hook_result_t sink_state_changed_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
if (!(o = find_output(u, s)))
return PA_HOOK_OK;
/* This state change might be triggered because we are creating a
* stream here, in that case we don't want to create it a second
* time here and enter a loop */
if (o->ignore_state_change)
return PA_HOOK_OK;
output_verify(o);
return PA_HOOK_OK;
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_modargs *ma = NULL;
const char *slaves, *rm;
int resample_method = PA_RESAMPLER_TRIVIAL;
pa_sample_spec ss;
pa_channel_map map;
struct output *o;
uint32_t idx;
pa_sink_new_data data;
uint32_t adjust_time_sec;
size_t nbytes;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments");
goto fail;
}
if ((rm = pa_modargs_get_value(ma, "resample_method", NULL))) {
if ((resample_method = pa_parse_resample_method(rm)) < 0) {
pa_log("invalid resample method '%s'", rm);
goto fail;
}
}
m->userdata = u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
u->rtpoll = pa_rtpoll_new();
if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) {
pa_log("pa_thread_mq_init() failed.");
goto fail;
}
u->resample_method = resample_method;
u->outputs = pa_idxset_new(NULL, NULL);
u->thread_info.smoother = pa_smoother_new(
PA_USEC_PER_SEC,
PA_USEC_PER_SEC*2,
true,
true,
10,
pa_rtclock_now(),
true);
adjust_time_sec = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC;
if (pa_modargs_get_value_u32(ma, "adjust_time", &adjust_time_sec) < 0) {
pa_log("Failed to parse adjust_time value");
goto fail;
}
if (adjust_time_sec != DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC)
u->adjust_time = adjust_time_sec * PA_USEC_PER_SEC;
else
u->adjust_time = DEFAULT_ADJUST_TIME_USEC;
slaves = pa_modargs_get_value(ma, "slaves", NULL);
u->automatic = !slaves;
ss = m->core->default_sample_spec;
map = m->core->default_channel_map;
/* Check the specified slave sinks for sample_spec and channel_map to use for the combined sink */
if (!u->automatic) {
const char*split_state = NULL;
char *n = NULL;
pa_sample_spec slaves_spec;
pa_channel_map slaves_map;
bool is_first_slave = true;
pa_sample_spec_init(&slaves_spec);
while ((n = pa_split(slaves, ",", &split_state))) {
pa_sink *slave_sink;
if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK))) {
pa_log("Invalid slave sink '%s'", n);
pa_xfree(n);
goto fail;
}
pa_xfree(n);
if (is_first_slave) {
slaves_spec = slave_sink->sample_spec;
slaves_map = slave_sink->channel_map;
is_first_slave = false;
} else {
if (slaves_spec.format != slave_sink->sample_spec.format)
slaves_spec.format = PA_SAMPLE_INVALID;
if (slaves_spec.rate < slave_sink->sample_spec.rate)
slaves_spec.rate = slave_sink->sample_spec.rate;
if (!pa_channel_map_equal(&slaves_map, &slave_sink->channel_map))
slaves_spec.channels = 0;
}
}
if (!is_first_slave) {
if (slaves_spec.format != PA_SAMPLE_INVALID)
ss.format = slaves_spec.format;
ss.rate = slaves_spec.rate;
if (slaves_spec.channels > 0) {
map = slaves_map;
ss.channels = slaves_map.channels;
}
}
}
if ((pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0)) {
pa_log("Invalid sample specification.");
goto fail;
}
pa_sink_new_data_init(&data);
data.namereg_fail = false;
data.driver = __FILE__;
data.module = m;
pa_sink_new_data_set_name(&data, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME));
pa_sink_new_data_set_sample_spec(&data, &ss);
pa_sink_new_data_set_channel_map(&data, &map);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (slaves)
pa_proplist_sets(data.proplist, "combine.slaves", slaves);
if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&data);
goto fail;
}
/* Check proplist for a description & fill in a default value if not */
u->auto_desc = false;
if (NULL == pa_proplist_gets(data.proplist, PA_PROP_DEVICE_DESCRIPTION)) {
u->auto_desc = true;
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Simultaneous Output");
}
u->sink = pa_sink_new(m->core, &data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
pa_sink_new_data_done(&data);
if (!u->sink) {
pa_log("Failed to create sink");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb;
u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb;
u->sink->update_requested_latency = sink_update_requested_latency;
u->sink->userdata = u;
pa_sink_set_rtpoll(u->sink, u->rtpoll);
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
nbytes = pa_usec_to_bytes(BLOCK_USEC, &u->sink->sample_spec);
pa_sink_set_max_request(u->sink, nbytes);
pa_sink_set_latency_range(u->sink, 0, BLOCK_USEC);
/* pulse clamps the range, get the real values */
u->default_min_latency = u->sink->thread_info.min_latency;
u->default_max_latency = u->sink->thread_info.max_latency;
u->block_usec = u->sink->thread_info.max_latency;
if (!u->automatic) {
const char*split_state;
char *n = NULL;
pa_assert(slaves);
/* The slaves have been specified manually */
split_state = NULL;
while ((n = pa_split(slaves, ",", &split_state))) {
pa_sink *slave_sink;
if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK)) || slave_sink == u->sink) {
pa_log("Invalid slave sink '%s'", n);
pa_xfree(n);
goto fail;
}
pa_xfree(n);
if (!output_new(u, slave_sink)) {
pa_log("Failed to create slave sink input on sink '%s'.", slave_sink->name);
goto fail;
}
}
if (pa_idxset_size(u->outputs) <= 1)
pa_log_warn("No slave sinks specified.");
u->sink_put_slot = NULL;
} else {
pa_sink *s;
/* We're in automatic mode, we add every sink that matches our needs */
PA_IDXSET_FOREACH(s, m->core->sinks, idx) {
if (!is_suitable_sink(u, s))
continue;
if (!output_new(u, s)) {
pa_log("Failed to create sink input on sink '%s'.", s->name);
goto fail;
}
}
}
u->sink_put_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_PUT], PA_HOOK_LATE, (pa_hook_cb_t) sink_put_hook_cb, u);
u->sink_unlink_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_UNLINK], PA_HOOK_EARLY, (pa_hook_cb_t) sink_unlink_hook_cb, u);
u->sink_state_changed_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], PA_HOOK_NORMAL, (pa_hook_cb_t) sink_state_changed_hook_cb, u);
u->thread_info.render_timestamp = 0;
if (!(u->thread = pa_thread_new("combine", thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
/* Activate the sink and the sink inputs */
pa_sink_put(u->sink);
PA_IDXSET_FOREACH(o, u->outputs, idx)
output_verify(o);
if (u->adjust_time > 0)
u->time_event = pa_core_rttime_new(m->core, pa_rtclock_now() + u->adjust_time, time_callback, u);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
pa_strlist_free(u->unlinked_slaves);
if (u->sink_put_slot)
pa_hook_slot_free(u->sink_put_slot);
if (u->sink_unlink_slot)
pa_hook_slot_free(u->sink_unlink_slot);
if (u->sink_state_changed_slot)
pa_hook_slot_free(u->sink_state_changed_slot);
if (u->outputs)
pa_idxset_free(u->outputs, (pa_free_cb_t) output_free);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->time_event)
u->core->mainloop->time_free(u->time_event);
if (u->thread_info.smoother)
pa_smoother_free(u->thread_info.smoother);
pa_xfree(u);
}