pulseaudio/src/tests/lo-latency-test.c

452 lines
12 KiB
C
Raw Normal View History

/***
This file is part of PulseAudio.
Copyright 2013 Collabora Ltd.
Author: Arun Raghavan <arun.raghavan@collabora.co.uk>
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <check.h>
#include <pulse/pulseaudio.h>
#include <pulse/mainloop.h>
/* for pa_make_realtime */
#include <pulsecore/core-util.h>
#define SAMPLE_HZ 44100
#define CHANNELS 2
#define N_OUT (SAMPLE_HZ * 1)
#define TONE_HZ (SAMPLE_HZ / 100)
#define PLAYBACK_LATENCY 25 /* ms */
#define CAPTURE_LATENCY 5 /* ms */
static pa_context *context = NULL;
static pa_stream *pstream, *rstream;
static pa_mainloop_api *mainloop_api = NULL;
static const char *context_name = NULL;
static float out[N_OUT][CHANNELS];
static int ppos = 0;
static int n_underflow = 0;
static int n_overflow = 0;
static struct timeval tv_out, tv_in;
static const pa_sample_spec sample_spec = {
.format = PA_SAMPLE_FLOAT32,
.rate = SAMPLE_HZ,
.channels = CHANNELS,
};
static int ss, fs;
static void nop_free_cb(void *p) {}
static void underflow_cb(struct pa_stream *s, void *userdata) {
fprintf(stderr, "Underflow\n");
n_underflow++;
}
static void overflow_cb(struct pa_stream *s, void *userdata) {
fprintf(stderr, "Overlow\n");
n_overflow++;
}
static void write_cb(pa_stream *s, size_t nbytes, void *userdata) {
int r, nsamp = nbytes / fs;
if (ppos + nsamp > N_OUT) {
r = pa_stream_write(s, &out[ppos][0], (N_OUT - ppos) * fs, nop_free_cb, 0, PA_SEEK_RELATIVE);
nbytes -= (N_OUT - ppos) * fs;
ppos = 0;
}
if (ppos == 0)
pa_gettimeofday(&tv_out);
r = pa_stream_write(s, &out[ppos][0], nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE);
fail_unless(r == 0);
ppos = (ppos + nbytes / fs) % N_OUT;
}
static inline float rms(const float *s, int n) {
float sq = 0;
int i;
for (i = 0; i < n; i++)
sq += s[i] * s[i];
return sqrtf(sq / n);
}
#define WINDOW (2 * CHANNELS)
static void read_cb(pa_stream *s, size_t nbytes, void *userdata) {
static float last = 0.0f;
const float *in;
float cur;
int r;
unsigned int i = 0;
size_t l;
r = pa_stream_peek(s, (const void **)&in, &l);
fail_unless(r == 0);
if (l == 0)
return;
#if 0
{
static int fd = -1;
if (fd == -1) {
fd = open("loopback.raw", O_CREAT | O_TRUNC | O_RDWR, S_IRUSR | S_IWUSR);
fail_if(fd < 0);
}
r = write(fd, in, l);
}
#endif
do {
#if 0
{
int j;
fprintf(stderr, "%g (", rms(in, WINDOW));
for (j = 0; j < WINDOW; j++)
fprintf(stderr, "%g ", in[j]);
fprintf(stderr, ")\n");
}
#endif
if (i + (ss * WINDOW) < l)
cur = rms(in, WINDOW);
else
cur = rms(in, (l - i)/ss);
/* We leave the definition of 0 generous since the window might
* straddle the 0->1 transition, raising the average power. We keep the
* definition of 1 tight in this case and detect the transition in the
* next round. */
if (last < 0.5f && cur > 0.8f) {
pa_gettimeofday(&tv_in);
fprintf(stderr, "Latency %llu\n", (unsigned long long) pa_timeval_diff(&tv_in, &tv_out));
}
last = cur;
in += WINDOW;
i += ss * WINDOW;
} while (i + (ss * WINDOW) <= l);
pa_stream_drop(s);
}
/*
* We run a simple volume calibration so that we know we can detect the signal
* being played back. We start with the playback stream at 100% volume, and
* capture at 0.
*
* First, we then play a sine wave and increase the capture volume till the
* signal is clearly received.
*
* Next, we play back silence and make sure that the level is low enough to
* distinguish from when playback is happening.
*
* Finally, we hand off to the real read/write callbacks to run the actual
* test.
*/
enum {
CALIBRATION_ONE,
CALIBRATION_ZERO,
CALIBRATION_DONE,
};
static int cal_state = CALIBRATION_ONE;
static void calibrate_write_cb(pa_stream *s, size_t nbytes, void *userdata) {
int i, r, nsamp = nbytes / fs;
float tmp[nsamp][2];
static int count = 0;
/* Write out a sine tone */
for (i = 0; i < nsamp; i++)
tmp[i][0] = tmp[i][1] = cal_state == CALIBRATION_ONE ? sinf(count++ * TONE_HZ * 2 * M_PI / SAMPLE_HZ) : 0.0f;
r = pa_stream_write(s, &tmp, nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE);
fail_unless(r == 0);
if (cal_state == CALIBRATION_DONE)
pa_stream_set_write_callback(s, write_cb, NULL);
}
static void calibrate_read_cb(pa_stream *s, size_t nbytes, void *userdata) {
static double v = 0;
static int skip = 0, confirm;
pa_cvolume vol;
pa_operation *o;
int r, nsamp;
float *in;
size_t l;
r = pa_stream_peek(s, (const void **)&in, &l);
fail_unless(r == 0);
nsamp = l / fs;
/* For each state or volume step change, throw out a few samples so we know
* we're seeing the changed samples. */
if (skip++ < 100)
goto out;
else
skip = 0;
switch (cal_state) {
case CALIBRATION_ONE:
/* Try to detect the sine wave */
if (rms(in, nsamp) < 0.8f) {
confirm = 0;
v += 0.02f;
if (v > 1.0) {
fprintf(stderr, "Capture signal too weak at 100%% volume (%g). Giving up.\n", rms(in, nsamp));
fail();
}
pa_cvolume_set(&vol, CHANNELS, v * PA_VOLUME_NORM);
o = pa_context_set_source_output_volume(context, pa_stream_get_index(s), &vol, NULL, NULL);
fail_if(o == NULL);
pa_operation_unref(o);
} else {
/* Make sure the signal strength is steadily above our threshold */
if (++confirm > 5) {
#if 0
fprintf(stderr, "Capture volume = %g (%g)\n", v, rms(in, nsamp));
#endif
cal_state = CALIBRATION_ZERO;
}
}
break;
case CALIBRATION_ZERO:
/* Now make sure silence doesn't trigger a false positive because
* of noise. */
if (rms(in, nsamp) > 0.1f) {
fprintf(stderr, "Too much noise on capture (%g). Giving up.\n", rms(in, nsamp));
fail();
}
cal_state = CALIBRATION_DONE;
pa_stream_set_read_callback(s, read_cb, NULL);
break;
default:
break;
}
out:
pa_stream_drop(s);
}
/* This routine is called whenever the stream state changes */
static void stream_state_callback(pa_stream *s, void *userdata) {
switch (pa_stream_get_state(s)) {
case PA_STREAM_UNCONNECTED:
case PA_STREAM_CREATING:
case PA_STREAM_TERMINATED:
break;
case PA_STREAM_READY: {
pa_cvolume vol;
pa_operation *o;
/* Set volumes for calibration */
if (!userdata) {
pa_cvolume_set(&vol, CHANNELS, PA_VOLUME_NORM);
o = pa_context_set_sink_input_volume(context, pa_stream_get_index(s), &vol, NULL, NULL);
} else {
pa_cvolume_set(&vol, CHANNELS, pa_sw_volume_from_linear(0.0));
o = pa_context_set_source_output_volume(context, pa_stream_get_index(s), &vol, NULL, NULL);
}
if (!o) {
fprintf(stderr, "Could not set stream volume: %s\n", pa_strerror(pa_context_errno(context)));
fail();
} else
pa_operation_unref(o);
break;
}
case PA_STREAM_FAILED:
default:
fprintf(stderr, "Stream error: %s\n", pa_strerror(pa_context_errno(pa_stream_get_context(s))));
fail();
}
}
/* This is called whenever the context status changes */
static void context_state_callback(pa_context *c, void *userdata) {
fail_unless(c != NULL);
switch (pa_context_get_state(c)) {
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
break;
case PA_CONTEXT_READY: {
pa_buffer_attr buffer_attr;
pa_make_realtime(4);
/* Create playback stream */
buffer_attr.maxlength = -1;
buffer_attr.tlength = SAMPLE_HZ * fs * PLAYBACK_LATENCY / 1000;
buffer_attr.prebuf = 0; /* Setting prebuf to 0 guarantees us the stream will run synchronously, no matter what */
buffer_attr.minreq = -1;
buffer_attr.fragsize = -1;
pstream = pa_stream_new(c, "loopback: play", &sample_spec, NULL);
fail_unless(pstream != NULL);
pa_stream_set_state_callback(pstream, stream_state_callback, (void *) 0);
pa_stream_set_write_callback(pstream, calibrate_write_cb, NULL);
pa_stream_set_underflow_callback(pstream, underflow_cb, userdata);
pa_stream_connect_playback(pstream, getenv("TEST_SINK"), &buffer_attr,
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE, NULL, NULL);
/* Create capture stream */
buffer_attr.maxlength = -1;
buffer_attr.tlength = (uint32_t) -1;
buffer_attr.prebuf = 0;
buffer_attr.minreq = (uint32_t) -1;
buffer_attr.fragsize = SAMPLE_HZ * fs * CAPTURE_LATENCY / 1000;
rstream = pa_stream_new(c, "loopback: rec", &sample_spec, NULL);
fail_unless(rstream != NULL);
pa_stream_set_state_callback(rstream, stream_state_callback, (void *) 1);
pa_stream_set_read_callback(rstream, calibrate_read_cb, NULL);
pa_stream_set_overflow_callback(rstream, overflow_cb, userdata);
pa_stream_connect_record(rstream, getenv("TEST_SOURCE"), &buffer_attr,
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE);
break;
}
case PA_CONTEXT_TERMINATED:
mainloop_api->quit(mainloop_api, 0);
break;
case PA_CONTEXT_FAILED:
default:
fprintf(stderr, "Context error: %s\n", pa_strerror(pa_context_errno(c)));
fail();
}
}
START_TEST (loopback_test) {
pa_mainloop* m = NULL;
int i, ret = 0, pulse_hz = SAMPLE_HZ / 1000;
/* Generate a square pulse */
for (i = 0; i < N_OUT; i++)
if (i < pulse_hz)
out[i][0] = out[i][1] = 1.0f;
else
out[i][0] = out[i][1] = 0.0f;
ss = pa_sample_size(&sample_spec);
fs = pa_frame_size(&sample_spec);
pstream = NULL;
/* Set up a new main loop */
m = pa_mainloop_new();
fail_unless(m != NULL);
mainloop_api = pa_mainloop_get_api(m);
context = pa_context_new(mainloop_api, context_name);
fail_unless(context != NULL);
pa_context_set_state_callback(context, context_state_callback, NULL);
/* Connect the context */
if (pa_context_connect(context, NULL, 0, NULL) < 0) {
fprintf(stderr, "pa_context_connect() failed.\n");
goto quit;
}
if (pa_mainloop_run(m, &ret) < 0)
fprintf(stderr, "pa_mainloop_run() failed.\n");
quit:
pa_context_unref(context);
if (pstream)
pa_stream_unref(pstream);
pa_mainloop_free(m);
fail_unless(ret == 0);
}
END_TEST
int main(int argc, char *argv[]) {
int failed = 0;
Suite *s;
TCase *tc;
SRunner *sr;
context_name = argv[0];
s = suite_create("Loopback");
tc = tcase_create("loopback");
tcase_add_test(tc, loopback_test);
tcase_set_timeout(tc, 5 * 60);
suite_add_tcase(s, tc);
sr = srunner_create(s);
srunner_set_fork_status(sr, CK_NOFORK);
srunner_run_all(sr, CK_NORMAL);
failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}