pulseaudio/src/modules/module-combine.c

1236 lines
34 KiB
C
Raw Normal View History

/* $Id$ */
/***
This file is part of PulseAudio.
Copyright 2004-2006 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <pulse/timeval.h>
#include <pulse/xmalloc.h>
#include <pulsecore/macro.h>
#include <pulsecore/module.h>
#include <pulsecore/llist.h>
#include <pulsecore/sink.h>
#include <pulsecore/sink-input.h>
#include <pulsecore/memblockq.h>
#include <pulsecore/log.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/namereg.h>
#include <pulsecore/mutex.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/rtclock.h>
#include <pulsecore/core-error.h>
#include "module-combine-symdef.h"
PA_MODULE_AUTHOR("Lennart Poettering")
PA_MODULE_DESCRIPTION("Combine multiple sinks to one")
PA_MODULE_VERSION(PACKAGE_VERSION)
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"master=<master sink> "
"slaves=<slave sinks> "
"adjust_time=<seconds> "
"resample_method=<method> "
"format=<sample format> "
"channels=<number of channels> "
"rate=<sample rate> "
"channel_map=<channel map>")
#define DEFAULT_SINK_NAME "combined"
#define MEMBLOCKQ_MAXLENGTH (1024*170)
#define DEFAULT_ADJUST_TIME 10
static const char* const valid_modargs[] = {
"sink_name",
"master",
"slaves",
"adjust_time",
"resample_method",
"format",
"channels",
"rate",
"channel_map",
NULL
};
struct output {
struct userdata *userdata;
pa_sink *sink;
pa_sink_input *sink_input;
pa_asyncmsgq *asyncmsgq;
pa_rtpoll_item *rtpoll_item;
pa_memblockq *memblockq;
pa_usec_t total_latency;
PA_LLIST_FIELDS(struct output);
};
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_mutex *mutex;
struct output *master;
pa_time_event *time_event;
uint32_t adjust_time;
int automatic;
size_t block_size;
struct timespec timestamp;
pa_hook_slot *sink_new_slot, *sink_unlink_slot, *sink_state_changed_slot;
pa_resample_method_t resample_method;
struct timespec adjust_timestamp;
pa_idxset* outputs; /* managed in main context */
struct {
PA_LLIST_HEAD(struct output, outputs); /* managed in IO thread context */
struct output *master;
} thread_info;
};
enum {
SINK_MESSAGE_DETACH = PA_SINK_MESSAGE_MAX,
SINK_MESSAGE_ATTACH,
SINK_MESSAGE_ADD_OUTPUT,
SINK_MESSAGE_REMOVE_OUTPUT
};
static void output_free(struct output *o);
static int output_create_sink_input(struct userdata *u, struct output *o);
static int update_master(struct userdata *u, struct output *o);
static int pick_master(struct userdata *u);
static void adjust_rates(struct userdata *u) {
struct output *o;
pa_usec_t max_sink_latency = 0, min_total_latency = (pa_usec_t) -1, target_latency;
uint32_t base_rate;
uint32_t idx;
pa_assert(u);
pa_sink_assert_ref(u->sink);
if (pa_idxset_size(u->outputs) <= 0)
return;
if (!PA_SINK_OPENED(pa_sink_get_state(u->sink)))
return;
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) {
uint32_t sink_latency;
if (!o->sink_input || !PA_SINK_OPENED(pa_sink_get_state(o->sink)))
continue;
sink_latency = o->sink_input->sink ? pa_sink_get_latency(o->sink_input->sink) : 0;
o->total_latency = sink_latency + pa_sink_input_get_latency(o->sink_input);
if (sink_latency > max_sink_latency)
max_sink_latency = sink_latency;
if (o->total_latency < min_total_latency)
min_total_latency = o->total_latency;
}
if (min_total_latency == (pa_usec_t) -1)
return;
target_latency = max_sink_latency > min_total_latency ? max_sink_latency : min_total_latency;
pa_log_info("[%s] target latency is %0.0f usec.", u->sink->name, (float) target_latency);
pa_log_info("[%s] master is %s", u->sink->name, u->master->sink->description);
base_rate = u->sink->sample_spec.rate;
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) {
uint32_t r = base_rate;
if (!o->sink_input || !PA_SINK_OPENED(pa_sink_get_state(o->sink)))
continue;
if (o->total_latency < target_latency)
r -= (uint32_t) (((((double) target_latency - o->total_latency))/u->adjust_time)*r/ 1000000);
else if (o->total_latency > target_latency)
r += (uint32_t) (((((double) o->total_latency - target_latency))/u->adjust_time)*r/ 1000000);
if (r < (uint32_t) (base_rate*0.9) || r > (uint32_t) (base_rate*1.1)) {
pa_log_warn("[%s] sample rates too different, not adjusting (%u vs. %u).", o->sink_input->name, base_rate, r);
pa_sink_input_set_rate(o->sink_input, base_rate);
} else {
pa_log_info("[%s] new rate is %u Hz; ratio is %0.3f; latency is %0.0f usec.", o->sink_input->name, r, (double) r / base_rate, (float) o->total_latency);
pa_sink_input_set_rate(o->sink_input, r);
}
}
}
static void time_callback(pa_mainloop_api*a, pa_time_event* e, const struct timeval *tv, void *userdata) {
struct userdata *u = userdata;
struct timeval n;
pa_assert(u);
pa_assert(a);
pa_assert(u->time_event == e);
adjust_rates(u);
pa_gettimeofday(&n);
n.tv_sec += u->adjust_time;
u->sink->core->mainloop->time_restart(e, &n);
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_log_debug("Thread starting up");
pa_thread_mq_install(&u->thread_mq);
pa_rtpoll_install(u->rtpoll);
pa_rtclock_get(&u->timestamp);
/* This is only run when were are in NULL mode, to make sure that
* playback doesn't stop. In all other cases we hook our stuff
* into the master sink. */
for (;;) {
int ret;
/* Render some data and drop it immediately */
if (u->sink->thread_info.state == PA_SINK_RUNNING) {
struct timespec now;
pa_rtclock_get(&now);
if (pa_timespec_cmp(&u->timestamp, &now) <= 0) {
pa_sink_skip(u->sink, u->block_size);
pa_timespec_add(&u->timestamp, pa_bytes_to_usec(u->block_size, &u->sink->sample_spec));
}
pa_rtpoll_set_timer_absolute(u->rtpoll, &u->timestamp);
} else
pa_rtpoll_set_timer_disabled(u->rtpoll);
/* Now give the sink inputs some to time to process their data */
if ((ret = pa_sink_process_inputs(u->sink)) < 0)
goto fail;
if (ret > 0)
continue;
/* Check whether there is a message for us to process */
if ((ret = pa_thread_mq_process(&u->thread_mq) < 0))
goto finish;
if (ret > 0)
continue;
/* Hmm, nothing to do. Let's sleep */
if (pa_rtpoll_run(u->rtpoll, 1) < 0) {
pa_log("poll() failed: %s", pa_cstrerror(errno));
goto fail;
}
}
fail:
/* We have to continue processing messages until we receive the
* SHUTDOWN message */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
static void request_memblock(struct output *o) {
pa_memchunk chunk;
pa_assert(o);
pa_sink_input_assert_ref(o->sink_input);
pa_sink_assert_ref(o->userdata->sink);
/* If another thread already prepared some data we received
* the data over the asyncmsgq, hence let's first process
* it. */
while (pa_asyncmsgq_get(o->asyncmsgq, NULL, NULL, NULL, NULL, &chunk, 0) == 0) {
pa_memblockq_push_align(o->memblockq, &chunk);
pa_asyncmsgq_done(o->asyncmsgq, 0);
}
/* Check whether we're now readable */
if (pa_memblockq_is_readable(o->memblockq))
return;
/* OK, we need to prepare new data */
pa_mutex_lock(o->userdata->mutex);
if (PA_SINK_OPENED(o->userdata->sink->thread_info.state)) {
/* Maybe there's some data now? */
while (pa_asyncmsgq_get(o->asyncmsgq, NULL, NULL, NULL, NULL, &chunk, 0) == 0) {
pa_memblockq_push_align(o->memblockq, &chunk);
pa_asyncmsgq_done(o->asyncmsgq, 0);
}
/* Ok, now let's prepare some data if we really have to */
while (!pa_memblockq_is_readable(o->memblockq)) {
struct output *j;
/* Do it! */
pa_sink_render(o->userdata->sink, o->userdata->block_size, &chunk);
/* OK, let's send this data to the other threads */
for (j = o->userdata->thread_info.outputs; j; j = j->next)
if (j != o && j->sink_input)
pa_asyncmsgq_post(j->asyncmsgq, NULL, 0, NULL, 0, &chunk, NULL);
/* And push it into our own queue */
pa_memblockq_push_align(o->memblockq, &chunk);
pa_memblock_unref(chunk.memblock);
}
}
pa_mutex_unlock(o->userdata->mutex);
}
/* Called from I/O trhead context */
static int sink_input_peek_cb(pa_sink_input *i, pa_memchunk *chunk) {
struct output *o;
pa_sink_input_assert_ref(i);
o = i->userdata;
pa_assert(o);
/* If necessary, get some new data */
request_memblock(o);
return pa_memblockq_peek(o->memblockq, chunk);
}
/* Called from I/O thread context */
static void sink_input_drop_cb(pa_sink_input *i, size_t length) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert(length > 0);
o = i->userdata;
pa_assert(o);
pa_memblockq_drop(o->memblockq, length);
}
/* Called from I/O thread context */
static int sink_input_process_cb(pa_sink_input *i) {
struct output *o;
pa_memchunk chunk;
int r = 0;
pa_sink_input_assert_ref(i);
o = i->userdata;
pa_assert(o);
/* Move all data in the asyncmsgq into our memblockq */
while (pa_asyncmsgq_get(o->asyncmsgq, NULL, NULL, NULL, NULL, &chunk, 0) == 0) {
if (PA_SINK_OPENED(i->sink->thread_info.state))
pa_memblockq_push_align(o->memblockq, &chunk);
pa_asyncmsgq_done(o->asyncmsgq, 0);
}
/* If the sink is suspended, flush our queue */
if (!PA_SINK_OPENED(i->sink->thread_info.state))
pa_memblockq_flush(o->memblockq);
if (o == o->userdata->thread_info.master) {
pa_mutex_lock(o->userdata->mutex);
r = pa_sink_process_inputs(o->userdata->sink);
pa_mutex_unlock(o->userdata->mutex);
}
return r;
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
o = i->userdata;
pa_assert(o);
pa_assert(!o->rtpoll_item);
o->rtpoll_item = pa_rtpoll_item_new_asyncmsgq(i->sink->rtpoll, o->asyncmsgq);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
o = i->userdata;
pa_assert(o);
pa_assert(o->rtpoll_item);
pa_rtpoll_item_free(o->rtpoll_item);
o->rtpoll_item = NULL;
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
o = i->userdata;
pa_assert(o);
pa_sink_input_unlink(o->sink_input);
pa_sink_input_unref(o->sink_input);
o->sink_input = NULL;
pa_module_unload_request(o->userdata->module);
}
/* Called from thread context */
static int sink_input_process_msg(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct output *o = PA_SINK_INPUT(obj)->userdata;
switch (code) {
case PA_SINK_INPUT_MESSAGE_GET_LATENCY: {
pa_usec_t *r = data;
*r = pa_bytes_to_usec(pa_memblockq_get_length(o->memblockq), &o->sink_input->sample_spec);
/* Fall through, the default handler will add in the extra
* latency added by the resampler */
break;
}
}
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
}
static int suspend(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
/* Let's suspend by unlinking all streams */
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) {
if (o->sink_input) {
pa_sink_input_unlink(o->sink_input);
pa_sink_input_unref(o->sink_input);
o->sink_input = NULL;
}
}
if (pick_master(u) < 0)
pa_module_unload_request(u->module);
pa_log_info("Device suspended...");
return 0;
}
static int unsuspend(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
/* Let's resume */
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) {
pa_sink_suspend(o->sink, 0);
if (PA_SINK_OPENED(pa_sink_get_state(o->sink))) {
if (output_create_sink_input(u, o) < 0)
output_free(o);
else
pa_sink_input_put(o->sink_input);
}
}
if (pick_master(u) < 0)
pa_module_unload_request(u->module);
pa_log_info("Resumed successfully...");
return 0;
}
static int sink_set_state(pa_sink *sink, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(sink);
u = sink->userdata;
pa_assert(u);
/* Please note that in contrast to the ALSA modules we call
* suspend/unsuspend from main context here! */
switch (state) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_OPENED(pa_sink_get_state(u->sink)));
if (suspend(u) < 0)
return -1;
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (pa_sink_get_state(u->sink) == PA_SINK_SUSPENDED) {
if (unsuspend(u) < 0)
return -1;
}
break;
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
;
}
return 0;
}
/* Called from thread context of the master */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_SET_STATE:
if ((pa_sink_state_t) PA_PTR_TO_UINT(data) == PA_SINK_RUNNING) {
/* Only useful when running in NULL mode, i.e. when no
* master sink is attached */
pa_rtclock_get(&u->timestamp);
}
break;
case PA_SINK_MESSAGE_GET_LATENCY: {
struct timespec now;
/* This code will only be called when running in NULL
* mode, i.e. when no master sink is attached. See
* sink_get_latency_cb() below */
pa_rtclock_get(&now);
if (pa_timespec_cmp(&u->timestamp, &now) > 0)
*((pa_usec_t*) data) = 0;
else
*((pa_usec_t*) data) = pa_timespec_diff(&u->timestamp, &now);
break;
}
case SINK_MESSAGE_DETACH: {
pa_sink_input *i;
void *state = NULL;
/* We're detaching all our input streams artificially, so
* that we can driver our sink from a different sink */
while ((i = pa_hashmap_iterate(u->sink->thread_info.inputs, &state, NULL)))
if (i->detach)
i->detach(i);
u->thread_info.master = NULL;
break;
}
case SINK_MESSAGE_ATTACH: {
pa_sink_input *i;
void *state = NULL;
/* We're attached all our input streams artificially again */
while ((i = pa_hashmap_iterate(u->sink->thread_info.inputs, &state, NULL)))
if (i->attach)
i->attach(i);
u->thread_info.master = data;
break;
}
case SINK_MESSAGE_ADD_OUTPUT:
PA_LLIST_PREPEND(struct output, u->thread_info.outputs, (struct output*) data);
break;
case SINK_MESSAGE_REMOVE_OUTPUT:
PA_LLIST_REMOVE(struct output, u->thread_info.outputs, (struct output*) data);
break;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static pa_usec_t sink_get_latency_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
u = s->userdata;
pa_assert(u);
if (u->master) {
/* If we have a master sink, we just return the latency of it
* and add our own buffering on top */
if (!u->master->sink_input)
return 0;
return
pa_sink_input_get_latency(u->master->sink_input) +
pa_sink_get_latency(u->master->sink_input->sink);
} else {
pa_usec_t usec;
/* We have no master, hence let's ask our own thread which
* implements the NULL sink */
if (pa_asyncmsgq_send(s->asyncmsgq, PA_MSGOBJECT(s), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
return 0;
return usec;
}
}
static void update_description(struct userdata *u) {
int first = 1;
char *t;
struct output *o;
uint32_t idx;
pa_assert(u);
if (pa_idxset_isempty(u->outputs)) {
pa_sink_set_description(u->sink, "Simultaneous output");
return;
}
t = pa_xstrdup("Simultaneous output to");
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx)) {
char *e;
if (first) {
e = pa_sprintf_malloc("%s %s", t, o->sink->description);
first = 0;
} else
e = pa_sprintf_malloc("%s, %s", t, o->sink->description);
pa_xfree(t);
t = e;
}
pa_sink_set_description(u->sink, t);
pa_xfree(t);
}
static int update_master(struct userdata *u, struct output *o) {
pa_assert(u);
/* Make sure everything is detached from the old thread before we move our stuff to a new thread */
if (u->sink && PA_SINK_LINKED(pa_sink_get_state(u->sink)))
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_DETACH, NULL, 0, NULL);
if (o) {
/* If we have a master sink we run our own sink in its thread */
pa_assert(o->sink_input);
pa_assert(PA_SINK_OPENED(pa_sink_get_state(o->sink)));
if (u->thread) {
/* If we previously were in NULL mode, let's kill the thread */
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
u->thread = NULL;
pa_assert(u->rtpoll);
pa_rtpoll_free(u->rtpoll);
u->rtpoll = NULL;
}
pa_sink_set_asyncmsgq(u->sink, o->sink->asyncmsgq);
pa_sink_set_rtpoll(u->sink, o->sink->rtpoll);
u->master = o;
pa_log_info("Master sink is now '%s'", o->sink_input->sink->name);
} else {
/* We have no master sink, let's create our own thread */
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
u->master = NULL;
if (!u->thread) {
pa_assert(!u->rtpoll);
u->rtpoll = pa_rtpoll_new();
pa_rtpoll_item_new_asyncmsgq(u->rtpoll, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
if (!(u->thread = pa_thread_new(thread_func, u))) {
pa_log("Failed to create thread.");
return -1;
}
}
pa_log_info("No suitable master sink found, going to NULL mode\n");
}
/* Now attach everything again */
if (u->sink && PA_SINK_LINKED(pa_sink_get_state(u->sink)))
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_ATTACH, u->master, 0, NULL);
return 0;
}
static int pick_master(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
if (u->master && u->master->sink_input && PA_SINK_OPENED(pa_sink_get_state(u->master->sink)))
return update_master(u, u->master);
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx))
if (o->sink_input && PA_SINK_OPENED(pa_sink_get_state(o->sink)))
return update_master(u, o);
return update_master(u, NULL);
}
static int output_create_sink_input(struct userdata *u, struct output *o) {
pa_sink_input_new_data data;
char *t;
pa_assert(u);
pa_assert(!o->sink_input);
t = pa_sprintf_malloc("Simultaneous output on %s", o->sink->description);
pa_sink_input_new_data_init(&data);
data.sink = o->sink;
data.driver = __FILE__;
data.name = t;
pa_sink_input_new_data_set_sample_spec(&data, &u->sink->sample_spec);
pa_sink_input_new_data_set_channel_map(&data, &u->sink->channel_map);
data.module = u->module;
data.resample_method = u->resample_method;
o->sink_input = pa_sink_input_new(u->core, &data, PA_SINK_INPUT_VARIABLE_RATE|PA_SINK_INPUT_DONT_MOVE);
pa_xfree(t);
if (!o->sink_input)
return -1;
o->sink_input->parent.process_msg = sink_input_process_msg;
o->sink_input->peek = sink_input_peek_cb;
o->sink_input->drop = sink_input_drop_cb;
o->sink_input->process = sink_input_process_cb;
o->sink_input->attach = sink_input_attach_cb;
o->sink_input->detach = sink_input_detach_cb;
o->sink_input->kill = sink_input_kill_cb;
o->sink_input->userdata = o;
return 0;
}
static struct output *output_new(struct userdata *u, pa_sink *sink) {
struct output *o;
pa_assert(u);
pa_assert(sink);
pa_assert(u->sink);
o = pa_xnew(struct output, 1);
o->userdata = u;
o->asyncmsgq = pa_asyncmsgq_new(0);
o->rtpoll_item = NULL;
o->sink = sink;
o->sink_input = NULL;
o->memblockq = pa_memblockq_new(
0,
MEMBLOCKQ_MAXLENGTH,
MEMBLOCKQ_MAXLENGTH,
pa_frame_size(&u->sink->sample_spec),
1,
0,
NULL);
pa_assert_se(pa_idxset_put(u->outputs, o, NULL) == 0);
update_description(u);
if (u->sink && PA_SINK_LINKED(pa_sink_get_state(u->sink)))
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_ADD_OUTPUT, o, 0, NULL);
else
PA_LLIST_PREPEND(struct output, u->thread_info.outputs, o);
if (PA_SINK_OPENED(pa_sink_get_state(u->sink)) || pa_sink_get_state(u->sink) == PA_SINK_INIT) {
pa_sink_suspend(sink, 0);
if (PA_SINK_OPENED(pa_sink_get_state(sink)))
if (output_create_sink_input(u, o) < 0)
goto fail;
}
return o;
fail:
if (o) {
if (o->sink_input) {
pa_sink_input_unlink(o->sink_input);
pa_sink_input_unref(o->sink_input);
}
if (o->memblockq)
pa_memblockq_free(o->memblockq);
if (o->asyncmsgq)
pa_asyncmsgq_unref(o->asyncmsgq);
pa_xfree(o);
}
return NULL;
}
static pa_hook_result_t sink_new_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
pa_core_assert_ref(c);
pa_sink_assert_ref(s);
pa_assert(u);
pa_assert(u->automatic);
if (!(s->flags & PA_SINK_HARDWARE) || s == u->sink)
return PA_HOOK_OK;
pa_log_info("Configuring new sink: %s", s->name);
if (!(o = output_new(u, s))) {
pa_log("Failed to create sink input on sink '%s'.", s->name);
return PA_HOOK_OK;
}
if (pick_master(u) < 0)
pa_module_unload_request(u->module);
if (o->sink_input)
pa_sink_input_put(o->sink_input);
return PA_HOOK_OK;
}
static pa_hook_result_t sink_unlink_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
uint32_t idx;
pa_assert(c);
pa_sink_assert_ref(s);
pa_assert(u);
if (s == u->sink)
return PA_HOOK_OK;
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx))
if (o->sink == s)
break;
if (!o)
return PA_HOOK_OK;
pa_log_info("Unconfiguring sink: %s", s->name);
output_free(o);
if (pick_master(u) < 0)
pa_module_unload_request(u->module);
return PA_HOOK_OK;
}
static pa_hook_result_t sink_state_changed_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
uint32_t idx;
pa_sink_state_t state;
if (s == u->sink)
return PA_HOOK_OK;
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx))
if (o->sink == s)
break;
if (!o)
return PA_HOOK_OK;
state = pa_sink_get_state(s);
if (PA_SINK_OPENED(state) && PA_SINK_OPENED(pa_sink_get_state(u->sink)) && !o->sink_input) {
output_create_sink_input(u, o);
if (pick_master(u) < 0)
pa_module_unload_request(u->module);
if (o->sink_input)
pa_sink_input_put(o->sink_input);
}
if (state == PA_SINK_SUSPENDED && o->sink_input) {
pa_sink_input_unlink(o->sink_input);
pa_sink_input_unref(o->sink_input);
o->sink_input = NULL;
pa_memblockq_flush(o->memblockq);
if (pick_master(u) < 0)
pa_module_unload_request(u->module);
}
return PA_HOOK_OK;
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_modargs *ma = NULL;
const char *master_name, *slaves, *rm;
pa_sink *master_sink = NULL;
int resample_method = PA_RESAMPLER_TRIVIAL;
pa_sample_spec ss;
pa_channel_map map;
struct output *o;
uint32_t idx;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments");
goto fail;
}
if ((rm = pa_modargs_get_value(ma, "resample_method", NULL))) {
if ((resample_method = pa_parse_resample_method(rm)) < 0) {
pa_log("invalid resample method '%s'", rm);
goto fail;
}
}
u = pa_xnew(struct userdata, 1);
u->core = m->core;
u->module = m;
m->userdata = u;
u->sink = NULL;
u->thread_info.master = u->master = NULL;
u->time_event = NULL;
u->adjust_time = DEFAULT_ADJUST_TIME;
u->mutex = pa_mutex_new(0);
pa_thread_mq_init(&u->thread_mq, m->core->mainloop);
u->rtpoll = NULL;
u->thread = NULL;
PA_LLIST_HEAD_INIT(struct output, u->thread_info.outputs);
u->resample_method = resample_method;
u->outputs = pa_idxset_new(NULL, NULL);
pa_timespec_reset(&u->adjust_timestamp);
if (pa_modargs_get_value_u32(ma, "adjust_time", &u->adjust_time) < 0) {
pa_log("Failed to parse adjust_time value");
goto fail;
}
master_name = pa_modargs_get_value(ma, "master", NULL);
slaves = pa_modargs_get_value(ma, "slaves", NULL);
if (!master_name != !slaves) {
pa_log("No master or slave sinks specified");
goto fail;
}
if (master_name) {
if (!(master_sink = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK, 1))) {
pa_log("Invalid master sink '%s'", master_name);
goto fail;
}
ss = master_sink->sample_spec;
u->automatic = 0;
} else {
master_sink = NULL;
ss = m->core->default_sample_spec;
u->automatic = 1;
}
if ((pa_modargs_get_sample_spec(ma, &ss) < 0)) {
pa_log("Invalid sample specification.");
goto fail;
}
if (master_sink && ss.channels == master_sink->sample_spec.channels)
map = master_sink->channel_map;
else
pa_channel_map_init_auto(&map, ss.channels, PA_CHANNEL_MAP_DEFAULT);
if ((pa_modargs_get_channel_map(ma, &map) < 0)) {
pa_log("Invalid channel map.");
goto fail;
}
if (ss.channels != map.channels) {
pa_log("Channel map and sample specification don't match.");
goto fail;
}
if (!(u->sink = pa_sink_new(m->core, __FILE__, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME), 0, &ss, &map))) {
pa_log("Failed to create sink");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->get_latency = sink_get_latency_cb;
u->sink->set_state = sink_set_state;
u->sink->userdata = u;
u->sink->flags = PA_SINK_CAN_SUSPEND|PA_SINK_LATENCY;
pa_sink_set_module(u->sink, m);
pa_sink_set_description(u->sink, "Simultaneous output");
u->block_size = pa_bytes_per_second(&ss) / 20; /* 50 ms */
if (u->block_size <= 0)
u->block_size = pa_frame_size(&ss);
if (!u->automatic) {
const char*split_state;
char *n = NULL;
pa_assert(slaves);
/* The master and slaves have been specified manually */
if (!(u->master = output_new(u, master_sink))) {
pa_log("Failed to create master sink input on sink '%s'.", master_sink->name);
goto fail;
}
split_state = NULL;
while ((n = pa_split(slaves, ",", &split_state))) {
pa_sink *slave_sink;
if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK, 1)) || slave_sink == u->sink) {
pa_log("Invalid slave sink '%s'", n);
pa_xfree(n);
goto fail;
}
pa_xfree(n);
if (!output_new(u, slave_sink)) {
pa_log("Failed to create slave sink input on sink '%s'.", slave_sink->name);
goto fail;
}
}
if (pa_idxset_size(u->outputs) <= 1)
pa_log_warn("WARNING: No slave sinks specified.");
u->sink_new_slot = NULL;
} else {
pa_sink *s;
/* We're in automatic mode, we elect one hw sink to the master
* and attach all other hw sinks as slaves to it */
for (s = pa_idxset_first(m->core->sinks, &idx); s; s = pa_idxset_next(m->core->sinks, &idx)) {
if (!(s->flags & PA_SINK_HARDWARE) || s == u->sink)
continue;
if (!output_new(u, s)) {
pa_log("Failed to create sink input on sink '%s'.", s->name);
goto fail;
}
}
u->sink_new_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_NEW_POST], (pa_hook_cb_t) sink_new_hook_cb, u);
}
u->sink_unlink_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_UNLINK], (pa_hook_cb_t) sink_unlink_hook_cb, u);
u->sink_state_changed_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], (pa_hook_cb_t) sink_state_changed_hook_cb, u);
if (pick_master(u) < 0)
goto fail;
/* Activate the sink and the sink inputs */
pa_sink_put(u->sink);
for (o = pa_idxset_first(u->outputs, &idx); o; o = pa_idxset_next(u->outputs, &idx))
if (o->sink_input)
pa_sink_input_put(o->sink_input);
if (u->adjust_time > 0) {
struct timeval tv;
pa_gettimeofday(&tv);
tv.tv_sec += u->adjust_time;
u->time_event = m->core->mainloop->time_new(m->core->mainloop, &tv, time_callback, u);
}
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
static void output_free(struct output *o) {
pa_assert(o);
if (o->userdata) {
if (o->userdata->sink && PA_SINK_LINKED(pa_sink_get_state(o->userdata->sink)))
pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_REMOVE_OUTPUT, o, 0, NULL);
else
PA_LLIST_REMOVE(struct output, o->userdata->thread_info.outputs, o);
}
pa_assert_se(pa_idxset_remove_by_data(o->userdata->outputs, o, NULL));
if (o->userdata->master == o) {
/* Make sure the master points to a different output */
o->userdata->master = NULL;
pick_master(o->userdata);
}
update_description(o->userdata);
if (o->sink_input) {
pa_sink_input_unlink(o->sink_input);
pa_sink_input_unref(o->sink_input);
}
if (o->rtpoll_item)
pa_rtpoll_item_free(o->rtpoll_item);
if (o->memblockq)
pa_memblockq_free(o->memblockq);
if (o->asyncmsgq)
pa_asyncmsgq_unref(o->asyncmsgq);
pa_xfree(o);
}
void pa__done(pa_module*m) {
struct userdata *u;
struct output *o;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sink_new_slot)
pa_hook_slot_free(u->sink_new_slot);
if (u->sink_unlink_slot)
pa_hook_slot_free(u->sink_unlink_slot);
if (u->sink_state_changed_slot)
pa_hook_slot_free(u->sink_state_changed_slot);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->outputs) {
while ((o = pa_idxset_first(u->outputs, NULL)))
output_free(o);
pa_idxset_free(u->outputs, NULL, NULL);
}
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->time_event)
u->core->mainloop->time_free(u->time_event);
pa_mutex_free(u->mutex);
pa_xfree(u);
}