pipewire/spa/plugins/audioconvert/channelmix-ops.c
Wim Taymans 5196f7f053 audio: remove layout from audio
Make special format types for planar and interleaved instead of
having a field.
Add enum for audio channel positions
Add some default audio channel layouts
Place the channel layout in the audio format when possible
alsa: place audio channel positions in format
Add sse optimized channel mixing for some common cases
Remove name from port info, it's not mandatory and in the properties
Add direction to port info
2018-09-13 17:03:56 +02:00

369 lines
9 KiB
C

/* Spa
* Copyright (C) 2018 Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <stdio.h>
#include <spa/utils/defs.h>
#define VOLUME_MIN 0.0f
#define VOLUME_NORM 1.0f
#if defined (__SSE__)
#include "channelmix-ops-sse.c"
#endif
static void
channelmix_copy(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float);
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (i = 0; i < n_dst; i++)
memcpy(d[i], s[i], n_bytes);
}
else {
for (i = 0; i < n_dst; i++)
for (n = 0; n < n_samples; n++)
d[i][n] = s[i][n] * v;
}
}
static void
channelmix_f32_n_m(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, j, n, n_samples = n_bytes / sizeof(float);
float **d = (float **) dst;
float **s = (float **) src;
float *m = matrix;
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_dst; i++) {
float sum = 0.0f;
for (j = 0; j < n_src; j++)
sum += s[j][n] * m[i * n_src + j];
d[i][n] = sum;
}
}
}
static void
channelmix_f32_1_2(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int n, n_samples = n_bytes / sizeof(float);
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
if (v <= VOLUME_MIN) {
memset(d[0], 0, n_bytes);
memset(d[1], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (n = 0; n < n_samples; n++)
d[0][n] = d[1][n] = s[0][n];
}
else {
for (n = 0; n < n_samples; n++)
d[0][n] = d[1][n] = s[0][n] * v;
}
}
static void
channelmix_f32_2_1(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int n, n_samples = n_bytes / sizeof(float);
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
if (v <= VOLUME_MIN) {
memset(d[0], 0, n_bytes);
}
else {
const float f = v * 0.5f;
for (n = 0; n < n_samples; n++)
d[0][n] = (s[0][n] + s[1][n]) * f;
}
}
static void
channelmix_f32_2_4(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float);
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (n = 0; n < n_samples; n++) {
d[0][n] = d[2][n] = s[0][n];
d[1][n] = d[3][n] = s[1][n];
}
}
else {
for (n = 0; n < n_samples; n++) {
d[0][n] = d[2][n] = s[0][n] * v;
d[1][n] = d[3][n] = s[1][n] * v;
}
}
}
static void
channelmix_f32_2_3p1(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float);
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (n = 0; n < n_samples; n++) {
d[0][n] = s[0][n];
d[1][n] = s[1][n];
d[2][n] = (s[0][n] + s[1][n]) * 0.5f;
d[3][n] = 0.0f;
}
}
else {
const float f = 0.5f * v;
for (n = 0; n < n_samples; n++) {
d[0][n] = s[0][n] * v;
d[1][n] = s[1][n] * v;
d[2][n] = (s[0][n] + s[1][n]) * f;
d[3][n] = 0.0f;
}
}
}
static void
channelmix_f32_2_5p1(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float);
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (n = 0; n < n_samples; n++) {
d[0][n] = d[2][n] = s[0][n];
d[1][n] = d[3][n] = s[1][n];
d[4][n] = (s[0][n] + s[1][n]) * 0.5f;
d[5][n] = 0.0f;
}
}
else {
const float f = 0.5f * v;
for (n = 0; n < n_samples; n++) {
d[0][n] = d[2][n] = s[0][n] * v;
d[1][n] = d[3][n] = s[1][n] * v;
d[4][n] = (s[0][n] + s[1][n]) * f;
d[5][n] = 0.0f;
}
}
}
/* FL+FR+RL+RR+FC+LFE -> FL+FR */
static void
channelmix_f32_5p1_2(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int n, n_samples = n_bytes / sizeof(float);
float **d = (float **) dst;
float **s = (float **) src;
float *m = matrix;
float v = m[0];
const float clev = 0.7071f;
const float slev = 0.7071f;
if (v <= VOLUME_MIN) {
memset(d[0], 0, n_bytes);
memset(d[1], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (n = 0; n < n_samples; n++) {
const float ctr = clev * s[4][n];
d[0][n] = s[0][n] + ctr + (slev * s[2][n]);
d[1][n] = s[1][n] + ctr + (slev * s[3][n]);
}
}
else {
for (n = 0; n < n_samples; n++) {
const float ctr = clev * s[4][n];
d[0][n] = (s[0][n] + ctr + (slev * s[2][n])) * v;
d[1][n] = (s[1][n] + ctr + (slev * s[3][n])) * v;
}
}
}
/* FL+FR+RL+RR+FC+LFE -> FL+FR+FC+LFE*/
static void
channelmix_f32_5p1_3p1(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples;
float **d = (float **) dst;
float **s = (float **) src;
float *m = matrix;
float v = m[0];
n_samples = n_bytes / sizeof(float);
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else {
const float f1 = 0.5f * v;
for (n = 0; n < n_samples; n++) {
d[0][n] = (s[0][n] + s[2][n]) * f1;
d[1][n] = (s[1][n] + s[3][n]) * f1;
d[2][n] = s[4][n] * v;
d[3][n] = s[5][n] * v;
}
}
}
/* FL+FR+RL+RR+FC+LFE -> FL+FR+RL+RR*/
static void
channelmix_f32_5p1_4(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples;
float **d = (float **) dst;
float **s = (float **) src;
float *m = matrix;
float v = m[0];
n_samples = n_bytes / sizeof(float);
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (n = 0; n < n_samples; n++) {
float ctr = s[4][n] * 0.7071f;
d[0][n] = s[0][n] + ctr;
d[1][n] = s[1][n] + ctr;
d[2][n] = s[2][n];
d[3][n] = s[3][n];
}
}
else {
for (n = 0; n < n_samples; n++) {
float ctr = s[4][n] * 0.7071f;
d[0][n] = (s[0][n] + ctr) * v;
d[1][n] = (s[1][n] + ctr) * v;
d[2][n] = s[2][n] * v;
d[3][n] = s[3][n] * v;
}
}
}
typedef void (*channelmix_func_t) (void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src],
void *matrix, int n_bytes);
static const struct channelmix_info {
uint32_t src_chan;
uint64_t src_mask;
uint32_t dst_chan;
uint64_t dst_mask;
channelmix_func_t func;
#define FEATURE_SSE (1<<0)
uint32_t features;
} channelmix_table[] =
{
#if defined (__SSE2__)
{ -2, 0, -2, 0, channelmix_copy_sse, 0 },
#endif
{ -2, 0, -2, 0, channelmix_copy, 0 },
{ 1, 0, 2, 0, channelmix_f32_1_2, 0 },
{ 2, 0, 1, 0, channelmix_f32_2_1, 0 },
#if defined (__SSE2__)
{ 2, 0, 4, 0, channelmix_f32_2_4_sse, FEATURE_SSE },
#endif
{ 2, 0, 4, 0, channelmix_f32_2_4, 0 },
{ 2, 0, 4, 0, channelmix_f32_2_3p1, 0 },
{ 2, 0, 6, 0, channelmix_f32_2_5p1, 0 },
#if defined (__SSE2__)
{ 6, 0, 2, 0, channelmix_f32_5p1_2_sse, FEATURE_SSE },
#endif
{ 6, 0, 2, 0, channelmix_f32_5p1_2, 0 },
#if defined (__SSE2__)
{ 6, 0, 4, 0, channelmix_f32_5p1_4_sse, FEATURE_SSE },
#endif
{ 6, 0, 4, 0, channelmix_f32_5p1_4, 0 },
{ 6, 0, 4, 0, channelmix_f32_5p1_3p1, 0 },
{ -1, 0, -1, 0, channelmix_f32_n_m, 0 },
};
#define MATCH_CHAN(a,b) ((a) == -1 || (a) == (b))
static const struct channelmix_info *find_channelmix_info(uint32_t src_chan, uint64_t src_mask,
uint32_t dst_chan, uint64_t dst_mask, uint32_t features)
{
int i;
if (src_chan == dst_chan && src_mask == dst_mask)
return &channelmix_table[0];
for (i = 1; i < SPA_N_ELEMENTS(channelmix_table); i++) {
if (MATCH_CHAN(channelmix_table[i].src_chan, src_chan) &&
MATCH_CHAN(channelmix_table[i].dst_chan, dst_chan) &&
(channelmix_table[i].features == 0 || (channelmix_table[i].features & features) != 0))
return &channelmix_table[i];
}
return NULL;
}