pipewire/spa/plugins/audioconvert/channelmix-ops-sse.c

267 lines
8.5 KiB
C

/* Spa
* Copyright (C) 2018 Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <xmmintrin.h>
static void
channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
__m128 vol = _mm_set1_ps(v);
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
for (i = 0; i < n_dst; i++)
memcpy(d[i], s[i], n_bytes);
}
else {
unrolled = n_samples / 4;
remain = n_samples & 3;
for (i = 0; i < n_dst; i++) {
float *di = d[i], *si = s[i];
for(n = 0; unrolled--; n += 4)
_mm_storeu_ps(&di[n], _mm_mul_ps(_mm_loadu_ps(&si[n]), vol));
for(; remain--; n++)
_mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol));
}
}
}
static void
channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
float **d = (float **)dst;
float **s = (float **)src;
float *m = matrix;
float v = m[0];
__m128 vol = _mm_set1_ps(v);
__m128 in;
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
float *sFL = s[0], *sFR = s[1];
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
unrolled = n_samples / 4;
remain = n_samples & 3;
for(n = 0; unrolled--; n += 4) {
in = _mm_loadu_ps(&sFL[n]);
_mm_storeu_ps(&dFL[n], in);
_mm_storeu_ps(&dRL[n], in);
in = _mm_loadu_ps(&sFR[n]);
_mm_storeu_ps(&dFR[n], in);
_mm_storeu_ps(&dRR[n], in);
}
for(; remain--; n++) {
in = _mm_load_ss(&sFL[n]);
_mm_store_ss(&dFL[n], in);
_mm_store_ss(&dRL[n], in);
in = _mm_load_ss(&sFR[n]);
_mm_store_ss(&dFR[n], in);
_mm_store_ss(&dRR[n], in);
}
}
else {
unrolled = n_samples / 4;
remain = n_samples & 3;
for(n = 0; unrolled--; n += 4) {
in = _mm_mul_ps(_mm_loadu_ps(&sFL[n]), vol);
_mm_storeu_ps(&dFL[n], in);
_mm_storeu_ps(&dRL[n], in);
in = _mm_mul_ps(_mm_loadu_ps(&sFR[n]), vol);
_mm_storeu_ps(&dFR[n], in);
_mm_storeu_ps(&dRR[n], in);
}
for(; remain--; n++) {
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol);
_mm_store_ss(&dFL[n], in);
_mm_store_ss(&dRL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol);
_mm_store_ss(&dFR[n], in);
_mm_store_ss(&dRR[n], in);
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
static void
channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int n, n_samples = n_bytes / sizeof(float), unrolled, remain;
float **d = (float **) dst;
float **s = (float **) src;
float *m = matrix;
float v = m[0];
__m128 clev = _mm_set1_ps(m[2]);
__m128 llev = _mm_set1_ps(m[3]);
__m128 slev = _mm_set1_ps(m[4]);
__m128 vol = _mm_set1_ps(v);
__m128 in, ctr;
float *dFL = d[0], *dFR = d[1];
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
if (v <= VOLUME_MIN) {
memset(dFL, 0, n_bytes);
memset(dFR, 0, n_bytes);
}
else if (v == VOLUME_NORM) {
unrolled = n_samples / 4;
remain = n_samples & 3;
for(n = 0; unrolled--; n += 4) {
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
in = _mm_mul_ps(_mm_loadu_ps(&sSL[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_loadu_ps(&sFL[n]));
_mm_storeu_ps(&dFL[n], in);
in = _mm_mul_ps(_mm_loadu_ps(&sSR[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_loadu_ps(&sFR[n]));
_mm_storeu_ps(&dFR[n], in);
}
for(; remain--; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
_mm_store_ss(&dFL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
_mm_store_ss(&dFR[n], in);
}
}
else {
unrolled = n_samples / 4;
remain = n_samples & 3;
for(n = 0; unrolled--; n += 4) {
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
in = _mm_mul_ps(_mm_loadu_ps(&sSL[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_loadu_ps(&sFL[n]));
in = _mm_mul_ps(in, vol);
_mm_storeu_ps(&dFL[n], in);
in = _mm_mul_ps(_mm_loadu_ps(&sSR[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_loadu_ps(&sFR[n]));
in = _mm_mul_ps(in, vol);
_mm_storeu_ps(&dFR[n], in);
}
for(; remain--; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
in = _mm_mul_ss(in, vol);
_mm_store_ss(&dFL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
in = _mm_mul_ss(in, vol);
_mm_store_ss(&dFR[n], in);
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
static void
channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], void *matrix, int n_bytes)
{
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
float **d = (float **) dst;
float **s = (float **) src;
float *m = matrix;
float v = m[0];
__m128 clev = _mm_set1_ps(m[2]);
__m128 llev = _mm_set1_ps(m[3]);
__m128 vol = _mm_set1_ps(v);
__m128 ctr;
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_bytes);
}
else if (v == VOLUME_NORM) {
unrolled = n_samples / 4;
remain = n_samples & 3;
for(n = 0; unrolled--; n += 4) {
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
_mm_storeu_ps(&dFL[n], _mm_add_ps(_mm_loadu_ps(&sFL[n]), ctr));
_mm_storeu_ps(&dFR[n], _mm_add_ps(_mm_loadu_ps(&sFR[n]), ctr));
_mm_storeu_ps(&dRL[n], _mm_loadu_ps(&sSL[n]));
_mm_storeu_ps(&dRR[n], _mm_loadu_ps(&sSR[n]));
}
for(; remain--; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
_mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr));
_mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr));
_mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n]));
_mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n]));
}
}
else {
unrolled = n_samples / 4;
remain = n_samples & 3;
for(n = 0; unrolled--; n += 4) {
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
_mm_storeu_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&sFL[n]), ctr), vol));
_mm_storeu_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&sFR[n]), ctr), vol));
_mm_storeu_ps(&dRL[n], _mm_mul_ps(_mm_loadu_ps(&sSL[n]), vol));
_mm_storeu_ps(&dRR[n], _mm_mul_ps(_mm_loadu_ps(&sSR[n]), vol));
}
for(; remain--; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol));
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol));
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol));
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol));
}
}
}