mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-11-01 22:58:50 -04:00
267 lines
8.5 KiB
C
267 lines
8.5 KiB
C
/* Spa
|
|
* Copyright (C) 2018 Wim Taymans <wim.taymans@gmail.com>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
static void
|
|
channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **)dst;
|
|
float **s = (float **)src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 vol = _mm_set1_ps(v);
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memcpy(d[i], s[i], n_bytes);
|
|
}
|
|
else {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for (i = 0; i < n_dst; i++) {
|
|
float *di = d[i], *si = s[i];
|
|
for(n = 0; unrolled--; n += 4)
|
|
_mm_storeu_ps(&di[n], _mm_mul_ps(_mm_loadu_ps(&si[n]), vol));
|
|
for(; remain--; n++)
|
|
_mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **)dst;
|
|
float **s = (float **)src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 in;
|
|
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
|
|
float *sFL = s[0], *sFR = s[1];
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_loadu_ps(&sFL[n]);
|
|
_mm_storeu_ps(&dFL[n], in);
|
|
_mm_storeu_ps(&dRL[n], in);
|
|
in = _mm_loadu_ps(&sFR[n]);
|
|
_mm_storeu_ps(&dFR[n], in);
|
|
_mm_storeu_ps(&dRR[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
in = _mm_load_ss(&sFL[n]);
|
|
_mm_store_ss(&dFL[n], in);
|
|
_mm_store_ss(&dRL[n], in);
|
|
in = _mm_load_ss(&sFR[n]);
|
|
_mm_store_ss(&dFR[n], in);
|
|
_mm_store_ss(&dRR[n], in);
|
|
}
|
|
}
|
|
else {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_mul_ps(_mm_loadu_ps(&sFL[n]), vol);
|
|
_mm_storeu_ps(&dFL[n], in);
|
|
_mm_storeu_ps(&dRL[n], in);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&sFR[n]), vol);
|
|
_mm_storeu_ps(&dFR[n], in);
|
|
_mm_storeu_ps(&dRR[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol);
|
|
_mm_store_ss(&dFL[n], in);
|
|
_mm_store_ss(&dRL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol);
|
|
_mm_store_ss(&dFR[n], in);
|
|
_mm_store_ss(&dRR[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
|
|
static void
|
|
channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 clev = _mm_set1_ps(m[2]);
|
|
__m128 llev = _mm_set1_ps(m[3]);
|
|
__m128 slev = _mm_set1_ps(m[4]);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 in, ctr;
|
|
float *dFL = d[0], *dFR = d[1];
|
|
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
memset(dFL, 0, n_bytes);
|
|
memset(dFR, 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ps(_mm_loadu_ps(&sSL[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&sFL[n]));
|
|
_mm_storeu_ps(&dFL[n], in);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&sSR[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&sFR[n]));
|
|
_mm_storeu_ps(&dFR[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
|
|
_mm_store_ss(&dFL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
|
|
_mm_store_ss(&dFR[n], in);
|
|
}
|
|
}
|
|
else {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ps(_mm_loadu_ps(&sSL[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&sFL[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_storeu_ps(&dFL[n], in);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&sSR[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&sFR[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_storeu_ps(&dFR[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&dFL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&dFR[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
|
|
static void
|
|
channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 clev = _mm_set1_ps(m[2]);
|
|
__m128 llev = _mm_set1_ps(m[3]);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 ctr;
|
|
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
|
|
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
_mm_storeu_ps(&dFL[n], _mm_add_ps(_mm_loadu_ps(&sFL[n]), ctr));
|
|
_mm_storeu_ps(&dFR[n], _mm_add_ps(_mm_loadu_ps(&sFR[n]), ctr));
|
|
_mm_storeu_ps(&dRL[n], _mm_loadu_ps(&sSL[n]));
|
|
_mm_storeu_ps(&dRR[n], _mm_loadu_ps(&sSR[n]));
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
_mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr));
|
|
_mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr));
|
|
_mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n]));
|
|
}
|
|
}
|
|
else {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
_mm_storeu_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&sFL[n]), ctr), vol));
|
|
_mm_storeu_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&sFR[n]), ctr), vol));
|
|
_mm_storeu_ps(&dRL[n], _mm_mul_ps(_mm_loadu_ps(&sSL[n]), vol));
|
|
_mm_storeu_ps(&dRR[n], _mm_mul_ps(_mm_loadu_ps(&sSR[n]), vol));
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol));
|
|
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol));
|
|
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol));
|
|
}
|
|
}
|
|
}
|