pipewire/spa/plugins/bluez5/decode-buffer.h

436 lines
12 KiB
C

/* Spa Bluez5 decode buffer */
/* SPDX-FileCopyrightText: Copyright © 2022 Pauli Virtanen */
/* SPDX-License-Identifier: MIT */
/**
* \file decode-buffer.h Buffering for Bluetooth sources
*
* A linear buffer, which is compacted when it gets half full.
*
* Also contains buffering logic, which calculates a rate correction
* factor to maintain the buffer level at the target value.
*
* Consider typical packet intervals with nominal frame duration
* of 10ms:
*
* ... 5ms | 5ms | 20ms | 5ms | 5ms | 20ms ...
*
* ... 3ms | 3ms | 4ms | 30ms | 3ms | 3ms | 4ms | 30ms ...
*
* plus random jitter; 10ms nominal may occasionally have 20+ms interval.
* The regular timer cycle cannot be aligned with this, so process()
* may occur at any time.
*
* The buffer level is the position of last received sample, relative to the current
* playback position. If it is larger than duration, there is no underrun.
*
* The rate correction aims to maintain the average level at a safety margin.
*/
#ifndef SPA_BLUEZ5_DECODE_BUFFER_H
#define SPA_BLUEZ5_DECODE_BUFFER_H
#include <stdlib.h>
#include <time.h>
#include <sys/socket.h>
#include <linux/net_tstamp.h>
#include <linux/errqueue.h>
#include <spa/utils/defs.h>
#include <spa/support/log.h>
#include "rate-control.h"
#define BUFFERING_LONG_MSEC (2*60000)
#define BUFFERING_SHORT_MSEC 1000
#define BUFFERING_RATE_DIFF_MAX 0.005
struct spa_bt_decode_buffer
{
struct spa_log *log;
uint32_t frame_size;
uint32_t rate;
uint8_t *buffer_decoded;
uint32_t buffer_size;
uint32_t buffer_reserve;
uint32_t write_index;
uint32_t read_index;
struct spa_bt_ptp spike; /**< spikes (long window) */
struct spa_bt_ptp packet_size; /**< packet size (short window) */
struct spa_bt_rate_control ctl;
double corr;
uint32_t duration;
uint32_t pos;
int32_t target; /**< target buffer (0: automatic) */
int32_t max_extra;
int32_t level;
uint64_t next_nsec;
double rate_diff;
uint8_t buffering:1;
};
static inline int spa_bt_decode_buffer_init(struct spa_bt_decode_buffer *this, struct spa_log *log,
uint32_t frame_size, uint32_t rate, uint32_t quantum_limit, uint32_t reserve)
{
spa_zero(*this);
this->frame_size = frame_size;
this->rate = rate;
this->log = log;
this->buffer_reserve = this->frame_size * reserve;
this->buffer_size = this->frame_size * quantum_limit * 2;
this->buffer_size += this->buffer_reserve;
this->corr = 1.0;
this->target = 0;
this->buffering = true;
this->max_extra = INT32_MAX;
spa_bt_rate_control_init(&this->ctl, 0);
spa_bt_ptp_init(&this->spike, (uint64_t)this->rate * BUFFERING_LONG_MSEC / 1000, 0);
spa_bt_ptp_init(&this->packet_size, (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000, 0);
if ((this->buffer_decoded = malloc(this->buffer_size)) == NULL) {
this->buffer_size = 0;
return -ENOMEM;
}
return 0;
}
static inline void spa_bt_decode_buffer_clear(struct spa_bt_decode_buffer *this)
{
free(this->buffer_decoded);
spa_zero(*this);
}
static inline void spa_bt_decode_buffer_compact(struct spa_bt_decode_buffer *this)
{
uint32_t avail;
spa_assert(this->read_index <= this->write_index);
if (this->read_index == this->write_index) {
this->read_index = 0;
this->write_index = 0;
goto done;
}
if (this->write_index > this->read_index + this->buffer_size - this->buffer_reserve) {
/* Drop data to keep buffer reserve free */
spa_log_info(this->log, "%p buffer overrun: dropping data", this);
this->read_index = this->write_index + this->buffer_reserve - this->buffer_size;
}
if (this->write_index < (this->buffer_size - this->buffer_reserve) / 2
|| this->read_index == 0)
goto done;
avail = this->write_index - this->read_index;
spa_memmove(this->buffer_decoded,
SPA_PTROFF(this->buffer_decoded, this->read_index, void),
avail);
this->read_index = 0;
this->write_index = avail;
done:
spa_assert(this->buffer_size - this->write_index >= this->buffer_reserve);
}
static inline void *spa_bt_decode_buffer_get_read(struct spa_bt_decode_buffer *this, uint32_t *avail)
{
spa_assert(this->write_index >= this->read_index);
if (!this->buffering)
*avail = this->write_index - this->read_index;
else
*avail = 0;
return SPA_PTROFF(this->buffer_decoded, this->read_index, void);
}
static inline void spa_bt_decode_buffer_read(struct spa_bt_decode_buffer *this, uint32_t size)
{
spa_assert(size % this->frame_size == 0);
this->read_index += size;
}
static inline void *spa_bt_decode_buffer_get_write(struct spa_bt_decode_buffer *this, uint32_t *avail)
{
spa_bt_decode_buffer_compact(this);
spa_assert(this->buffer_size >= this->write_index);
*avail = this->buffer_size - this->write_index;
return SPA_PTROFF(this->buffer_decoded, this->write_index, void);
}
static inline void spa_bt_decode_buffer_write_packet(struct spa_bt_decode_buffer *this, uint32_t size, uint64_t nsec)
{
int32_t remain;
uint32_t avail;
spa_assert(size % this->frame_size == 0);
this->write_index += size;
spa_bt_ptp_update(&this->packet_size, size / this->frame_size, size / this->frame_size);
if (nsec && this->next_nsec && this->rate_diff != 0.0) {
int64_t dt = (this->next_nsec >= nsec) ?
(int64_t)(this->next_nsec - nsec) : -(int64_t)(nsec - this->next_nsec);
remain = (int32_t)SPA_CLAMP(dt * this->rate_diff * this->rate / SPA_NSEC_PER_SEC,
-(int32_t)this->duration, this->duration);
} else {
remain = 0;
}
spa_bt_decode_buffer_get_read(this, &avail);
this->level = avail / this->frame_size + remain;
}
static inline void spa_bt_decode_buffer_recover(struct spa_bt_decode_buffer *this)
{
int32_t size = (this->write_index - this->read_index) / this->frame_size;
this->level = size;
this->corr = 1.0;
spa_bt_rate_control_init(&this->ctl, size);
}
static inline void spa_bt_decode_buffer_set_target_latency(struct spa_bt_decode_buffer *this, int32_t samples)
{
this->target = samples;
}
static inline void spa_bt_decode_buffer_set_max_extra_latency(struct spa_bt_decode_buffer *this, int32_t samples)
{
this->max_extra = samples;
}
static inline int32_t spa_bt_decode_buffer_get_target_latency(struct spa_bt_decode_buffer *this)
{
const int32_t duration = this->duration;
const int32_t packet_size = SPA_CLAMP(this->packet_size.max, 0, INT32_MAX/8);
const int32_t max_buf = (this->buffer_size - this->buffer_reserve) / this->frame_size;
const int32_t spike = SPA_CLAMP(this->spike.max, 0, max_buf);
int32_t target;
if (this->target)
target = this->target;
else
target = SPA_CLAMP(SPA_ROUND_UP(SPA_MAX(spike * 3/2, duration),
SPA_CLAMP((int)this->rate / 50, 1, INT32_MAX)),
duration, max_buf - 2*packet_size);
return SPA_MIN(target, duration + SPA_CLAMP(this->max_extra, 0, INT32_MAX - duration));
}
static inline void spa_bt_decode_buffer_process(struct spa_bt_decode_buffer *this, uint32_t samples, uint32_t duration,
double rate_diff, uint64_t next_nsec)
{
const uint32_t data_size = samples * this->frame_size;
const int32_t packet_size = SPA_CLAMP(this->packet_size.max, 0, INT32_MAX/8);
const int32_t max_level = SPA_MAX(8 * packet_size, (int32_t)duration);
const uint32_t avg_period = (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000;
int32_t target;
uint32_t avail;
this->rate_diff = rate_diff;
this->next_nsec = next_nsec;
if (SPA_UNLIKELY(duration != this->duration)) {
this->duration = duration;
spa_bt_decode_buffer_recover(this);
}
target = spa_bt_decode_buffer_get_target_latency(this);
if (SPA_UNLIKELY(this->buffering)) {
int32_t size = (this->write_index - this->read_index) / this->frame_size;
this->corr = 1.0;
spa_log_trace(this->log, "%p buffering size:%d", this, (int)size);
if (size >= SPA_MAX((int)duration, target))
this->buffering = false;
else
return;
spa_bt_ptp_update(&this->spike, packet_size, duration);
spa_bt_decode_buffer_recover(this);
}
spa_bt_decode_buffer_get_read(this, &avail);
/* Track buffer level */
this->level = SPA_MAX(this->level, -max_level);
spa_bt_ptp_update(&this->spike, (int32_t)this->ctl.avg - this->level, duration);
if (this->level > SPA_MAX(4 * target, 3*(int32_t)duration) &&
avail > data_size) {
/* Lagging too much: drop data */
uint32_t size = SPA_MIN(avail - data_size,
(this->level - target) * this->frame_size);
spa_bt_decode_buffer_read(this, size);
spa_log_trace(this->log, "%p overrun samples:%d level:%d target:%d",
this, (int)size/this->frame_size,
(int)this->level, (int)target);
spa_bt_decode_buffer_recover(this);
}
this->pos += duration;
if (this->pos > this->rate) {
spa_log_debug(this->log,
"%p avg:%d target:%d level:%d buffer:%d spike:%d corr:%f",
this,
(int)this->ctl.avg,
(int)target,
(int)this->level,
(int)(avail / this->frame_size),
(int)this->spike.max,
(double)this->corr);
this->pos = 0;
}
this->corr = spa_bt_rate_control_update(&this->ctl,
this->level, target, duration, avg_period,
BUFFERING_RATE_DIFF_MAX);
this->level -= duration;
spa_bt_decode_buffer_get_read(this, &avail);
if (avail < data_size) {
spa_log_trace(this->log, "%p underrun samples:%d", this,
(data_size - avail) / this->frame_size);
this->buffering = true;
spa_bt_ptp_update(&this->spike, (int32_t)this->ctl.avg - this->level, duration);
}
}
struct spa_bt_recvmsg_data {
struct spa_log *log;
struct spa_system *data_system;
int fd;
int64_t offset;
int64_t err;
};
static inline void spa_bt_recvmsg_update_clock(struct spa_bt_recvmsg_data *data, uint64_t *now)
{
const int64_t max_resync = (50 * SPA_NSEC_PER_USEC);
const int64_t n_avg = 10;
struct timespec ts1, ts2, ts3;
int64_t t1, t2, t3, offset, err;
spa_system_clock_gettime(data->data_system, CLOCK_MONOTONIC, &ts1);
spa_system_clock_gettime(data->data_system, CLOCK_REALTIME, &ts2);
spa_system_clock_gettime(data->data_system, CLOCK_MONOTONIC, &ts3);
t1 = SPA_TIMESPEC_TO_NSEC(&ts1);
t2 = SPA_TIMESPEC_TO_NSEC(&ts2);
t3 = SPA_TIMESPEC_TO_NSEC(&ts3);
if (now)
*now = t1;
offset = t1 + (t3 - t1) / 2 - t2;
/* Moving average smoothing, discarding outliers */
err = offset - data->offset;
if (SPA_ABS(err) > max_resync) {
/* Clock jump */
spa_log_debug(data->log, "%p: nsec err %"PRIi64" > max_resync %"PRIi64", resetting",
data, err, max_resync);
data->offset = offset;
data->err = 0;
err = 0;
} else if (SPA_ABS(err) / 2 <= data->err) {
data->offset += err / n_avg;
}
data->err += (SPA_ABS(err) - data->err) / n_avg;
}
static inline ssize_t spa_bt_recvmsg(struct spa_bt_recvmsg_data *r, void *buf, size_t max_size, uint64_t *rx_time)
{
union {
char buf[CMSG_SPACE(sizeof(struct scm_timestamping))];
struct cmsghdr align;
} control;
struct iovec data = {
.iov_base = buf,
.iov_len = max_size
};
struct msghdr msg = {
.msg_iov = &data,
.msg_iovlen = 1,
.msg_control = control.buf,
.msg_controllen = sizeof(control.buf),
};
struct cmsghdr *cmsg;
uint64_t t = 0, now;
ssize_t res;
res = recvmsg(r->fd, &msg, MSG_DONTWAIT);
if (res < 0 || !rx_time)
return res;
spa_bt_recvmsg_update_clock(r, &now);
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
struct scm_timestamping *tss;
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_TIMESTAMPING)
continue;
tss = (struct scm_timestamping *)CMSG_DATA(cmsg);
t = SPA_TIMESPEC_TO_NSEC(&tss->ts[0]);
break;
}
if (!t) {
*rx_time = now;
return res;
}
*rx_time = t + r->offset;
/* CLOCK_REALTIME may jump, so sanity check */
if (*rx_time > now || *rx_time + 20 * SPA_NSEC_PER_MSEC < now)
*rx_time = now;
spa_log_trace(r->log, "%p: rx:%" PRIu64 " now:%" PRIu64 " d:%"PRIu64" off:%"PRIi64,
r, *rx_time, now, now - *rx_time, r->offset);
return res;
}
static inline void spa_bt_recvmsg_init(struct spa_bt_recvmsg_data *data, int fd,
struct spa_system *data_system, struct spa_log *log)
{
int flags = 0;
socklen_t len = sizeof(flags);
data->log = log;
data->data_system = data_system;
data->fd = fd;
data->offset = 0;
data->err = 0;
if (getsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &flags, &len) < 0)
spa_log_info(log, "failed to get SO_TIMESTAMPING");
flags |= SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE;
if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &flags, sizeof(flags)) < 0)
spa_log_info(log, "failed to set SO_TIMESTAMPING");
}
#endif