pipewire/spa/plugins/audioconvert/fmt-ops-ssse3.c
Barnabás Pőcze 934ab3036e treewide: use SPDX tags to specify copyright information
SPDX tags make the licensing information easy to understand and clear,
and they are machine parseable.

See https://spdx.dev for more information.
2023-02-16 10:54:48 +00:00

91 lines
3 KiB
C

/* Spa */
/* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include "fmt-ops.h"
#include <tmmintrin.h>
static void
conv_s24_to_f32d_4s_ssse3(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const int24_t *s = src;
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
uint32_t n, unrolled;
__m128i in[4];
__m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE);
const __m128i mask = _mm_setr_epi8(-1, 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11);
//const __m128i mask = _mm_set_epi8(15, 14, 13, -1, 12, 11, 10, -1, 9, 8, 7, -1, 6, 5, 4, -1);
if (SPA_IS_ALIGNED(d0, 16) &&
SPA_IS_ALIGNED(d1, 16) &&
SPA_IS_ALIGNED(d2, 16) &&
SPA_IS_ALIGNED(d3, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
in[0] = _mm_loadu_si128((__m128i*)(s + 0*n_channels));
in[1] = _mm_loadu_si128((__m128i*)(s + 1*n_channels));
in[2] = _mm_loadu_si128((__m128i*)(s + 2*n_channels));
in[3] = _mm_loadu_si128((__m128i*)(s + 3*n_channels));
in[0] = _mm_shuffle_epi8(in[0], mask);
in[1] = _mm_shuffle_epi8(in[1], mask);
in[2] = _mm_shuffle_epi8(in[2], mask);
in[3] = _mm_shuffle_epi8(in[3], mask);
in[0] = _mm_srai_epi32(in[0], 8);
in[1] = _mm_srai_epi32(in[1], 8);
in[2] = _mm_srai_epi32(in[2], 8);
in[3] = _mm_srai_epi32(in[3], 8);
out[0] = _mm_cvtepi32_ps(in[0]);
out[1] = _mm_cvtepi32_ps(in[1]);
out[2] = _mm_cvtepi32_ps(in[2]);
out[3] = _mm_cvtepi32_ps(in[3]);
out[0] = _mm_mul_ps(out[0], factor);
out[1] = _mm_mul_ps(out[1], factor);
out[2] = _mm_mul_ps(out[2], factor);
out[3] = _mm_mul_ps(out[3], factor);
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
_mm_store_ps(&d0[n], out[0]);
_mm_store_ps(&d1[n], out[1]);
_mm_store_ps(&d2[n], out[2]);
_mm_store_ps(&d3[n], out[3]);
s += 4 * n_channels;
}
for(; n < n_samples; n++) {
out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
out[2] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+2)));
out[3] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+3)));
out[0] = _mm_mul_ss(out[0], factor);
out[1] = _mm_mul_ss(out[1], factor);
out[2] = _mm_mul_ss(out[2], factor);
out[3] = _mm_mul_ss(out[3], factor);
_mm_store_ss(&d0[n], out[0]);
_mm_store_ss(&d1[n], out[1]);
_mm_store_ss(&d2[n], out[2]);
_mm_store_ss(&d3[n], out[3]);
s += n_channels;
}
}
void
conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples);
void
conv_s24_to_f32d_ssse3(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const int8_t *s = src[0];
uint32_t i = 0, n_channels = conv->n_channels;
for(; i + 3 < n_channels; i += 4)
conv_s24_to_f32d_4s_ssse3(conv, &dst[i], &s[3*i], n_channels, n_samples);
for(; i < n_channels; i++)
conv_s24_to_f32d_1s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
}