mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-31 22:25:38 -04:00
522 lines
16 KiB
C
522 lines
16 KiB
C
/* Spa
|
|
*
|
|
* Copyright © 2018 Wim Taymans
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "channelmix-ops.h"
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
static inline void clear_sse(float *d, uint32_t n_samples)
|
|
{
|
|
memset(d, 0, n_samples * sizeof(float));
|
|
}
|
|
|
|
static inline void copy_sse(float *d, const float *s, uint32_t n_samples)
|
|
{
|
|
spa_memcpy(d, s, n_samples * sizeof(float));
|
|
}
|
|
|
|
static inline void vol_sse(float *d, const float *s, float vol, uint32_t n_samples)
|
|
{
|
|
uint32_t n, unrolled;
|
|
if (vol == 0.0f) {
|
|
clear_sse(d, n_samples);
|
|
} else if (vol == 1.0f) {
|
|
copy_sse(d, s, n_samples);
|
|
} else {
|
|
__m128 t[4];
|
|
const __m128 v = _mm_set1_ps(vol);
|
|
|
|
if (SPA_IS_ALIGNED(d, 16) &&
|
|
SPA_IS_ALIGNED(s, 16))
|
|
unrolled = n_samples & ~15;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 16) {
|
|
t[0] = _mm_load_ps(&s[n]);
|
|
t[1] = _mm_load_ps(&s[n+4]);
|
|
t[2] = _mm_load_ps(&s[n+8]);
|
|
t[3] = _mm_load_ps(&s[n+12]);
|
|
_mm_store_ps(&d[n], _mm_mul_ps(t[0], v));
|
|
_mm_store_ps(&d[n+4], _mm_mul_ps(t[1], v));
|
|
_mm_store_ps(&d[n+8], _mm_mul_ps(t[2], v));
|
|
_mm_store_ps(&d[n+12], _mm_mul_ps(t[3], v));
|
|
}
|
|
for(; n < n_samples; n++)
|
|
_mm_store_ss(&d[n], _mm_mul_ss(_mm_load_ss(&s[n]), v));
|
|
}
|
|
}
|
|
|
|
static inline void conv_sse(float *d, const float **s, float *c, uint32_t n_c, uint32_t n_samples)
|
|
{
|
|
__m128 mi[n_c], sum[2];
|
|
uint32_t n, j, unrolled;
|
|
bool aligned = true;
|
|
|
|
for (j = 0; j < n_c; j++) {
|
|
mi[j] = _mm_set1_ps(c[j]);
|
|
aligned &= SPA_IS_ALIGNED(s[j], 16);
|
|
}
|
|
|
|
if (aligned && SPA_IS_ALIGNED(d, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for (n = 0; n < unrolled; n += 8) {
|
|
sum[0] = sum[1] = _mm_setzero_ps();
|
|
for (j = 0; j < n_c; j++) {
|
|
sum[0] = _mm_add_ps(sum[0], _mm_mul_ps(_mm_load_ps(&s[j][n + 0]), mi[j]));
|
|
sum[1] = _mm_add_ps(sum[1], _mm_mul_ps(_mm_load_ps(&s[j][n + 4]), mi[j]));
|
|
}
|
|
_mm_store_ps(&d[n + 0], sum[0]);
|
|
_mm_store_ps(&d[n + 4], sum[1]);
|
|
}
|
|
for (; n < n_samples; n++) {
|
|
sum[0] = _mm_setzero_ps();
|
|
for (j = 0; j < n_c; j++)
|
|
sum[0] = _mm_add_ss(sum[0], _mm_mul_ss(_mm_load_ss(&s[j][n]), mi[j]));
|
|
_mm_store_ss(&d[n], sum[0]);
|
|
}
|
|
}
|
|
|
|
static inline void avg_sse(float *d, const float *s0, const float *s1, uint32_t n_samples)
|
|
{
|
|
uint32_t n, unrolled;
|
|
__m128 half = _mm_set1_ps(0.5f);
|
|
|
|
if (SPA_IS_ALIGNED(d, 16) &&
|
|
SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for (n = 0; n < unrolled; n += 8) {
|
|
_mm_store_ps(&d[n + 0],
|
|
_mm_mul_ps(
|
|
_mm_add_ps(
|
|
_mm_load_ps(&s0[n + 0]),
|
|
_mm_load_ps(&s1[n + 0])),
|
|
half));
|
|
_mm_store_ps(&d[n + 4],
|
|
_mm_mul_ps(
|
|
_mm_add_ps(
|
|
_mm_load_ps(&s0[n + 4]),
|
|
_mm_load_ps(&s1[n + 4])),
|
|
half));
|
|
}
|
|
|
|
for (; n < n_samples; n++)
|
|
_mm_store_ss(&d[n],
|
|
_mm_mul_ss(
|
|
_mm_add_ss(
|
|
_mm_load_ss(&s0[n]),
|
|
_mm_load_ss(&s1[n])),
|
|
half));
|
|
}
|
|
|
|
static inline void sub_sse(float *d, const float *s0, const float *s1, uint32_t n_samples)
|
|
{
|
|
uint32_t n, unrolled;
|
|
|
|
if (SPA_IS_ALIGNED(d, 16) &&
|
|
SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for (n = 0; n < unrolled; n += 8) {
|
|
_mm_store_ps(&d[n + 0],
|
|
_mm_sub_ps(_mm_load_ps(&s0[n + 0]), _mm_load_ps(&s1[n + 0])));
|
|
_mm_store_ps(&d[n + 4],
|
|
_mm_sub_ps(_mm_load_ps(&s0[n + 4]), _mm_load_ps(&s1[n + 4])));
|
|
}
|
|
for (; n < n_samples; n++)
|
|
_mm_store_ss(&d[n],
|
|
_mm_sub_ss(_mm_load_ss(&s0[n]), _mm_load_ss(&s1[n])));
|
|
}
|
|
|
|
void channelmix_copy_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n_dst = mix->dst_chan;
|
|
float **d = (float **)dst;
|
|
const float **s = (const float **)src;
|
|
for (i = 0; i < n_dst; i++)
|
|
vol_sse(d[i], s[i], mix->matrix[i][i], n_samples);
|
|
}
|
|
|
|
void
|
|
channelmix_f32_n_m_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
uint32_t i, j, n_dst = mix->dst_chan, n_src = mix->src_chan;
|
|
|
|
for (i = 0; i < n_dst; i++) {
|
|
float *di = d[i];
|
|
float mj[n_src];
|
|
const float *sj[n_src];
|
|
uint32_t n_j = 0;
|
|
|
|
for (j = 0; j < n_src; j++) {
|
|
if (mix->matrix[i][j] == 0.0f)
|
|
continue;
|
|
mj[n_j] = mix->matrix[i][j];
|
|
sj[n_j++] = s[j];
|
|
}
|
|
if (n_j == 0) {
|
|
clear_sse(di, n_samples);
|
|
} else if (n_j == 1) {
|
|
if (mix->lr4[i].active)
|
|
lr4_process(&mix->lr4[i], di, sj[0], mj[0], n_samples);
|
|
else
|
|
vol_sse(di, sj[0], mj[0], n_samples);
|
|
} else {
|
|
conv_sse(di, sj, mj, n_j, n_samples);
|
|
lr4_process(&mix->lr4[i], di, di, 1.0f, n_samples);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
channelmix_f32_2_3p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n, unrolled, n_dst = mix->dst_chan;
|
|
float **d = (float **)dst;
|
|
const float **s = (const float **)src;
|
|
const float v0 = mix->matrix[0][0];
|
|
const float v1 = mix->matrix[1][1];
|
|
const float v2 = (mix->matrix[2][0] + mix->matrix[2][1]) * 0.5f;
|
|
const float v3 = (mix->matrix[3][0] + mix->matrix[3][1]) * 0.5f;
|
|
|
|
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
|
|
for (i = 0; i < n_dst; i++)
|
|
clear_sse(d[i], n_samples);
|
|
}
|
|
else {
|
|
if (mix->widen == 0.0f) {
|
|
vol_sse(d[0], s[0], v0, n_samples);
|
|
vol_sse(d[1], s[1], v1, n_samples);
|
|
avg_sse(d[2], s[0], s[1], n_samples);
|
|
} else {
|
|
const __m128 mv0 = _mm_set1_ps(mix->matrix[0][0]);
|
|
const __m128 mv1 = _mm_set1_ps(mix->matrix[1][1]);
|
|
const __m128 mw = _mm_set1_ps(mix->widen);
|
|
const __m128 mh = _mm_set1_ps(0.5f);
|
|
__m128 t0[1], t1[1], w[1], c[1];
|
|
|
|
if (SPA_IS_ALIGNED(s[0], 16) &&
|
|
SPA_IS_ALIGNED(s[1], 16) &&
|
|
SPA_IS_ALIGNED(d[0], 16) &&
|
|
SPA_IS_ALIGNED(d[1], 16) &&
|
|
SPA_IS_ALIGNED(d[2], 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
t0[0] = _mm_load_ps(&s[0][n]);
|
|
t1[0] = _mm_load_ps(&s[1][n]);
|
|
c[0] = _mm_add_ps(t0[0], t1[0]);
|
|
w[0] = _mm_mul_ps(c[0], mw);
|
|
_mm_store_ps(&d[0][n], _mm_mul_ps(_mm_sub_ps(t0[0], w[0]), mv0));
|
|
_mm_store_ps(&d[1][n], _mm_mul_ps(_mm_sub_ps(t1[0], w[0]), mv1));
|
|
_mm_store_ps(&d[2][n], _mm_mul_ps(c[0], mh));
|
|
}
|
|
for (; n < n_samples; n++) {
|
|
t0[0] = _mm_load_ss(&s[0][n]);
|
|
t1[0] = _mm_load_ss(&s[1][n]);
|
|
c[0] = _mm_add_ss(t0[0], t1[0]);
|
|
w[0] = _mm_mul_ss(c[0], mw);
|
|
_mm_store_ss(&d[0][n], _mm_mul_ss(_mm_sub_ss(t0[0], w[0]), mv0));
|
|
_mm_store_ss(&d[1][n], _mm_mul_ss(_mm_sub_ss(t1[0], w[0]), mv1));
|
|
_mm_store_ss(&d[2][n], _mm_mul_ss(c[0], mh));
|
|
}
|
|
}
|
|
lr4_process(&mix->lr4[3], d[3], d[2], v3, n_samples);
|
|
lr4_process(&mix->lr4[2], d[2], d[2], v2, n_samples);
|
|
}
|
|
}
|
|
|
|
void
|
|
channelmix_f32_2_5p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n_dst = mix->dst_chan;
|
|
float **d = (float **)dst;
|
|
const float **s = (const float **)src;
|
|
const float v4 = mix->matrix[4][0];
|
|
const float v5 = mix->matrix[5][1];
|
|
|
|
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
|
|
for (i = 0; i < n_dst; i++)
|
|
clear_sse(d[i], n_samples);
|
|
}
|
|
else {
|
|
channelmix_f32_2_3p1_sse(mix, dst, src, n_samples);
|
|
|
|
if (mix->upmix != CHANNELMIX_UPMIX_PSD) {
|
|
vol_sse(d[4], s[0], v4, n_samples);
|
|
vol_sse(d[5], s[1], v5, n_samples);
|
|
} else {
|
|
sub_sse(d[4], s[0], s[1], n_samples);
|
|
|
|
delay_convolve_run(mix->buffer[1], &mix->pos[1], BUFFER_SIZE, mix->delay,
|
|
mix->taps, mix->n_taps, d[5], d[4], -v5, n_samples);
|
|
delay_convolve_run(mix->buffer[0], &mix->pos[0], BUFFER_SIZE, mix->delay,
|
|
mix->taps, mix->n_taps, d[4], d[4], v4, n_samples);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
channelmix_f32_2_7p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n_dst = mix->dst_chan;
|
|
float **d = (float **)dst;
|
|
const float **s = (const float **)src;
|
|
const float v4 = mix->matrix[4][0];
|
|
const float v5 = mix->matrix[5][1];
|
|
const float v6 = mix->matrix[6][0];
|
|
const float v7 = mix->matrix[7][1];
|
|
|
|
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
|
|
for (i = 0; i < n_dst; i++)
|
|
clear_sse(d[i], n_samples);
|
|
}
|
|
else {
|
|
channelmix_f32_2_3p1_sse(mix, dst, src, n_samples);
|
|
|
|
vol_sse(d[4], s[0], v4, n_samples);
|
|
vol_sse(d[5], s[1], v5, n_samples);
|
|
|
|
if (mix->upmix != CHANNELMIX_UPMIX_PSD) {
|
|
vol_sse(d[6], s[0], v6, n_samples);
|
|
vol_sse(d[7], s[1], v7, n_samples);
|
|
} else {
|
|
sub_sse(d[6], s[0], s[1], n_samples);
|
|
|
|
delay_convolve_run(mix->buffer[1], &mix->pos[1], BUFFER_SIZE, mix->delay,
|
|
mix->taps, mix->n_taps, d[7], d[6], -v7, n_samples);
|
|
delay_convolve_run(mix->buffer[0], &mix->pos[0], BUFFER_SIZE, mix->delay,
|
|
mix->taps, mix->n_taps, d[6], d[6], v6, n_samples);
|
|
}
|
|
}
|
|
}
|
|
/* FL+FR+FC+LFE -> FL+FR */
|
|
void
|
|
channelmix_f32_3p1_2_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
const float m0 = mix->matrix[0][0];
|
|
const float m1 = mix->matrix[1][1];
|
|
const float m2 = (mix->matrix[0][2] + mix->matrix[1][2]) * 0.5f;
|
|
const float m3 = (mix->matrix[0][3] + mix->matrix[1][3]) * 0.5f;
|
|
|
|
if (m0 == 0.0f && m1 == 0.0f && m2 == 0.0f && m3 == 0.0f) {
|
|
clear_sse(d[0], n_samples);
|
|
clear_sse(d[1], n_samples);
|
|
}
|
|
else {
|
|
uint32_t n, unrolled;
|
|
const __m128 v0 = _mm_set1_ps(m0);
|
|
const __m128 v1 = _mm_set1_ps(m1);
|
|
const __m128 clev = _mm_set1_ps(m2);
|
|
const __m128 llev = _mm_set1_ps(m3);
|
|
__m128 ctr;
|
|
|
|
if (SPA_IS_ALIGNED(s[0], 16) &&
|
|
SPA_IS_ALIGNED(s[1], 16) &&
|
|
SPA_IS_ALIGNED(s[2], 16) &&
|
|
SPA_IS_ALIGNED(s[3], 16) &&
|
|
SPA_IS_ALIGNED(d[0], 16) &&
|
|
SPA_IS_ALIGNED(d[1], 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
ctr = _mm_add_ps(
|
|
_mm_mul_ps(_mm_load_ps(&s[2][n]), clev),
|
|
_mm_mul_ps(_mm_load_ps(&s[3][n]), llev));
|
|
_mm_store_ps(&d[0][n], _mm_add_ps(_mm_mul_ps(_mm_load_ps(&s[0][n]), v0), ctr));
|
|
_mm_store_ps(&d[1][n], _mm_add_ps(_mm_mul_ps(_mm_load_ps(&s[1][n]), v1), ctr));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_add_ss(_mm_mul_ss(_mm_load_ss(&s[2][n]), clev),
|
|
_mm_mul_ss(_mm_load_ss(&s[3][n]), llev));
|
|
_mm_store_ss(&d[0][n], _mm_add_ss(_mm_mul_ss(_mm_load_ss(&s[0][n]), v0), ctr));
|
|
_mm_store_ss(&d[1][n], _mm_add_ss(_mm_mul_ss(_mm_load_ss(&s[1][n]), v1), ctr));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
|
|
void
|
|
channelmix_f32_5p1_2_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t n, unrolled;
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
const float m00 = mix->matrix[0][0];
|
|
const float m11 = mix->matrix[1][1];
|
|
const __m128 clev = _mm_set1_ps((mix->matrix[0][2] + mix->matrix[1][2]) * 0.5f);
|
|
const __m128 llev = _mm_set1_ps((mix->matrix[0][3] + mix->matrix[1][3]) * 0.5f);
|
|
const __m128 slev0 = _mm_set1_ps(mix->matrix[0][4]);
|
|
const __m128 slev1 = _mm_set1_ps(mix->matrix[1][5]);
|
|
__m128 in, ctr;
|
|
|
|
if (SPA_IS_ALIGNED(s[0], 16) &&
|
|
SPA_IS_ALIGNED(s[1], 16) &&
|
|
SPA_IS_ALIGNED(s[2], 16) &&
|
|
SPA_IS_ALIGNED(s[3], 16) &&
|
|
SPA_IS_ALIGNED(s[4], 16) &&
|
|
SPA_IS_ALIGNED(s[5], 16) &&
|
|
SPA_IS_ALIGNED(d[0], 16) &&
|
|
SPA_IS_ALIGNED(d[1], 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
|
|
clear_sse(d[0], n_samples);
|
|
clear_sse(d[1], n_samples);
|
|
}
|
|
else {
|
|
const __m128 v0 = _mm_set1_ps(m00);
|
|
const __m128 v1 = _mm_set1_ps(m11);
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
ctr = _mm_add_ps(_mm_mul_ps(_mm_load_ps(&s[2][n]), clev),
|
|
_mm_mul_ps(_mm_load_ps(&s[3][n]), llev));
|
|
in = _mm_mul_ps(_mm_load_ps(&s[4][n]), slev0);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_mul_ps(_mm_load_ps(&s[0][n]), v0));
|
|
_mm_store_ps(&d[0][n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&s[5][n]), slev1);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_mul_ps(_mm_load_ps(&s[1][n]), v1));
|
|
_mm_store_ps(&d[1][n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&s[2][n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&s[3][n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&s[4][n]), slev0);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_mul_ss(_mm_load_ss(&s[0][n]), v0));
|
|
_mm_store_ss(&d[0][n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&s[5][n]), slev1);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_mul_ss(_mm_load_ss(&s[1][n]), v1));
|
|
_mm_store_ss(&d[1][n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+FC+LFE*/
|
|
void
|
|
channelmix_f32_5p1_3p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n, unrolled, n_dst = mix->dst_chan;
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
|
|
if (SPA_IS_ALIGNED(s[0], 16) &&
|
|
SPA_IS_ALIGNED(s[1], 16) &&
|
|
SPA_IS_ALIGNED(s[2], 16) &&
|
|
SPA_IS_ALIGNED(s[3], 16) &&
|
|
SPA_IS_ALIGNED(s[4], 16) &&
|
|
SPA_IS_ALIGNED(s[5], 16) &&
|
|
SPA_IS_ALIGNED(d[0], 16) &&
|
|
SPA_IS_ALIGNED(d[1], 16) &&
|
|
SPA_IS_ALIGNED(d[2], 16) &&
|
|
SPA_IS_ALIGNED(d[3], 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
|
|
for (i = 0; i < n_dst; i++)
|
|
clear_sse(d[i], n_samples);
|
|
}
|
|
else {
|
|
const __m128 v0 = _mm_set1_ps(mix->matrix[0][0]);
|
|
const __m128 v1 = _mm_set1_ps(mix->matrix[1][1]);
|
|
const __m128 slev0 = _mm_set1_ps(mix->matrix[0][4]);
|
|
const __m128 slev1 = _mm_set1_ps(mix->matrix[1][5]);
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
_mm_store_ps(&d[0][n], _mm_add_ps(
|
|
_mm_mul_ps(_mm_load_ps(&s[0][n]), v0),
|
|
_mm_mul_ps(_mm_load_ps(&s[4][n]), slev0)));
|
|
|
|
_mm_store_ps(&d[1][n], _mm_add_ps(
|
|
_mm_mul_ps(_mm_load_ps(&s[1][n]), v1),
|
|
_mm_mul_ps(_mm_load_ps(&s[5][n]), slev1)));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
_mm_store_ss(&d[0][n], _mm_add_ss(
|
|
_mm_mul_ss(_mm_load_ss(&s[0][n]), v0),
|
|
_mm_mul_ss(_mm_load_ss(&s[4][n]), slev0)));
|
|
|
|
_mm_store_ss(&d[1][n], _mm_add_ss(
|
|
_mm_mul_ss(_mm_load_ss(&s[1][n]), v1),
|
|
_mm_mul_ss(_mm_load_ss(&s[5][n]), slev1)));
|
|
}
|
|
vol_sse(d[2], s[2], mix->matrix[2][2], n_samples);
|
|
vol_sse(d[3], s[3], mix->matrix[3][3], n_samples);
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
|
|
void
|
|
channelmix_f32_5p1_4_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
|
|
const void * SPA_RESTRICT src[], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n_dst = mix->dst_chan;
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
const float v4 = mix->matrix[2][4];
|
|
const float v5 = mix->matrix[3][5];
|
|
|
|
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
|
|
for (i = 0; i < n_dst; i++)
|
|
clear_sse(d[i], n_samples);
|
|
}
|
|
else {
|
|
channelmix_f32_3p1_2_sse(mix, dst, src, n_samples);
|
|
|
|
vol_sse(d[2], s[4], v4, n_samples);
|
|
vol_sse(d[3], s[5], v5, n_samples);
|
|
}
|
|
}
|