mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
Compile an optimized library for the given CPU with the right flags, then link it with the main library.
650 lines
20 KiB
C
650 lines
20 KiB
C
/* Spa
|
|
*
|
|
* Copyright © 2018 Wim Taymans
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "fmt-ops.h"
|
|
|
|
#include <emmintrin.h>
|
|
|
|
static void
|
|
conv_s16_to_f32d_1_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src;
|
|
float **d = (float **) dst;
|
|
float *d0 = d[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in;
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_insert_epi16(in, s[0*n_channels], 1);
|
|
in = _mm_insert_epi16(in, s[1*n_channels], 3);
|
|
in = _mm_insert_epi16(in, s[2*n_channels], 5);
|
|
in = _mm_insert_epi16(in, s[3*n_channels], 7);
|
|
in = _mm_srai_epi32(in, 16);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(out, s[0]);
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s16_to_f32d_2_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src;
|
|
float **d = (float **) dst;
|
|
float *d0 = d[0], *d1 = d[1];
|
|
uint32_t n, unrolled;
|
|
__m128i in, t[2];
|
|
__m128 out[2], factor = _mm_set1_ps(1.0f / S16_SCALE);
|
|
|
|
if (n_channels == 2 &&
|
|
SPA_IS_ALIGNED(s, 16) &&
|
|
SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_load_si128((__m128i*)s);
|
|
|
|
t[0] = _mm_slli_epi32(in, 16);
|
|
t[0] = _mm_srai_epi32(t[0], 16);
|
|
t[1] = _mm_srai_epi32(in, 16);
|
|
|
|
out[0] = _mm_cvtepi32_ps(t[0]);
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_cvtepi32_ps(t[1]);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(out[0], s[0]);
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_cvtsi32_ss(out[1], s[1]);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s16_to_f32d_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src[0];
|
|
uint32_t i = 0;
|
|
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_s16_to_f32d_2_sse2(data, &dst[i], &s[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_s16_to_f32d_1_sse2(data, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_s24_to_f32d_1_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const uint8_t *s = src;
|
|
float **d = (float **) dst;
|
|
float *d0 = d[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in;
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16)) {
|
|
unrolled = n_samples / 4;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled--;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_setr_epi32(
|
|
*((uint32_t*)&s[0 * n_channels]),
|
|
*((uint32_t*)&s[3 * n_channels]),
|
|
*((uint32_t*)&s[6 * n_channels]),
|
|
*((uint32_t*)&s[9 * n_channels]));
|
|
in = _mm_slli_epi32(in, 8);
|
|
in = _mm_srai_epi32(in, 8);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 12 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(out, read_s24(s));
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += 3 * n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_to_f32d_2_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const uint8_t *s = src;
|
|
float **d = (float **) dst;
|
|
float *d0 = d[0], *d1 = d[1];
|
|
uint32_t n, unrolled;
|
|
__m128i in[2];
|
|
__m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16)) {
|
|
unrolled = n_samples / 4;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled--;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[0 + 0*n_channels]),
|
|
*((uint32_t*)&s[0 + 3*n_channels]),
|
|
*((uint32_t*)&s[0 + 6*n_channels]),
|
|
*((uint32_t*)&s[0 + 9*n_channels]));
|
|
in[1] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[3 + 0*n_channels]),
|
|
*((uint32_t*)&s[3 + 3*n_channels]),
|
|
*((uint32_t*)&s[3 + 6*n_channels]),
|
|
*((uint32_t*)&s[3 + 9*n_channels]));
|
|
|
|
in[0] = _mm_slli_epi32(in[0], 8);
|
|
in[1] = _mm_slli_epi32(in[1], 8);
|
|
|
|
in[0] = _mm_srai_epi32(in[0], 8);
|
|
in[1] = _mm_srai_epi32(in[1], 8);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[1] = _mm_cvtepi32_ps(in[1]);
|
|
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
|
|
s += 12 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(out[0], read_s24(s));
|
|
out[1] = _mm_cvtsi32_ss(out[1], read_s24(s+3));
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
s += 3 * n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_s24_to_f32d_4_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const uint8_t *s = src;
|
|
float **d = (float **) dst;
|
|
float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3];
|
|
uint32_t n, unrolled;
|
|
__m128i in[4];
|
|
__m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16)) {
|
|
unrolled = n_samples / 4;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled--;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[0 + 0*n_channels]),
|
|
*((uint32_t*)&s[0 + 3*n_channels]),
|
|
*((uint32_t*)&s[0 + 6*n_channels]),
|
|
*((uint32_t*)&s[0 + 9*n_channels]));
|
|
in[1] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[3 + 0*n_channels]),
|
|
*((uint32_t*)&s[3 + 3*n_channels]),
|
|
*((uint32_t*)&s[3 + 6*n_channels]),
|
|
*((uint32_t*)&s[3 + 9*n_channels]));
|
|
in[2] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[6 + 0*n_channels]),
|
|
*((uint32_t*)&s[6 + 3*n_channels]),
|
|
*((uint32_t*)&s[6 + 6*n_channels]),
|
|
*((uint32_t*)&s[6 + 9*n_channels]));
|
|
in[3] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[9 + 0*n_channels]),
|
|
*((uint32_t*)&s[9 + 3*n_channels]),
|
|
*((uint32_t*)&s[9 + 6*n_channels]),
|
|
*((uint32_t*)&s[9 + 9*n_channels]));
|
|
|
|
in[0] = _mm_slli_epi32(in[0], 8);
|
|
in[1] = _mm_slli_epi32(in[1], 8);
|
|
in[2] = _mm_slli_epi32(in[2], 8);
|
|
in[3] = _mm_slli_epi32(in[3], 8);
|
|
|
|
in[0] = _mm_srai_epi32(in[0], 8);
|
|
in[1] = _mm_srai_epi32(in[1], 8);
|
|
in[2] = _mm_srai_epi32(in[2], 8);
|
|
in[3] = _mm_srai_epi32(in[3], 8);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[1] = _mm_cvtepi32_ps(in[1]);
|
|
out[2] = _mm_cvtepi32_ps(in[2]);
|
|
out[3] = _mm_cvtepi32_ps(in[3]);
|
|
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
out[2] = _mm_mul_ps(out[2], factor);
|
|
out[3] = _mm_mul_ps(out[3], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
|
|
s += 12 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(out[0], read_s24(s));
|
|
out[1] = _mm_cvtsi32_ss(out[1], read_s24(s+3));
|
|
out[2] = _mm_cvtsi32_ss(out[2], read_s24(s+6));
|
|
out[3] = _mm_cvtsi32_ss(out[3], read_s24(s+9));
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
out[2] = _mm_mul_ss(out[2], factor);
|
|
out[3] = _mm_mul_ss(out[3], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
_mm_store_ss(&d2[n], out[2]);
|
|
_mm_store_ss(&d3[n], out[3]);
|
|
s += 3 * n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s24_to_f32d_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int8_t *s = src[0];
|
|
uint32_t i = 0;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_s24_to_f32d_4_sse2(data, &dst[i], &s[3*i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_s24_to_f32d_2_sse2(data, &dst[i], &s[3*i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_s24_to_f32d_1_sse2(data, &dst[i], &s[3*i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
const float *s0 = s[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[1];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S32_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[0] = _mm_min_ps(in[0], int_min);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[0] = _mm_mul_ss(in[0], scale);
|
|
in[0] = _mm_min_ss(in[0], int_min);
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_2_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
const float *s0 = s[0], *s1 = s[1];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2], t[2];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S32_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
|
|
|
|
in[0] = _mm_min_ps(in[0], int_min);
|
|
in[1] = _mm_min_ps(in[1], int_min);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
|
|
t[0] = _mm_unpacklo_epi32(out[0], out[1]);
|
|
t[1] = _mm_unpackhi_epi32(out[0], out[1]);
|
|
|
|
_mm_storel_pd((double*)(d + 0*n_channels), (__m128d)t[0]);
|
|
_mm_storeh_pd((double*)(d + 1*n_channels), (__m128d)t[0]);
|
|
_mm_storel_pd((double*)(d + 2*n_channels), (__m128d)t[1]);
|
|
_mm_storeh_pd((double*)(d + 3*n_channels), (__m128d)t[1]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[1] = _mm_load_ss(&s1[n]);
|
|
|
|
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
|
|
|
in[0] = _mm_mul_ps(in[0], scale);
|
|
in[0] = _mm_min_ps(in[0], int_min);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
_mm_storel_epi64((__m128i*)d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_4_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
const float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S32_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16) &&
|
|
SPA_IS_ALIGNED(d, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale);
|
|
|
|
in[0] = _mm_min_ps(in[0], int_min);
|
|
in[1] = _mm_min_ps(in[1], int_min);
|
|
in[2] = _mm_min_ps(in[2], int_min);
|
|
in[3] = _mm_min_ps(in[3], int_min);
|
|
|
|
_MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[2] = _mm_cvtps_epi32(in[2]);
|
|
out[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
_mm_store_si128((__m128i*)(d + 0*n_channels), out[0]);
|
|
_mm_store_si128((__m128i*)(d + 1*n_channels), out[1]);
|
|
_mm_store_si128((__m128i*)(d + 2*n_channels), out[2]);
|
|
_mm_store_si128((__m128i*)(d + 3*n_channels), out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[1] = _mm_load_ss(&s1[n]);
|
|
in[2] = _mm_load_ss(&s2[n]);
|
|
in[3] = _mm_load_ss(&s3[n]);
|
|
|
|
in[0] = _mm_unpacklo_ps(in[0], in[2]);
|
|
in[1] = _mm_unpacklo_ps(in[1], in[3]);
|
|
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
|
|
|
in[0] = _mm_mul_ps(in[0], scale);
|
|
in[0] = _mm_min_ps(in[0], int_min);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
_mm_storeu_si128((__m128i*)d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s32_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_f32d_to_s32_4_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_f32d_to_s32_2_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_f32d_to_s32_1_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
const float *s0 = s[0];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples / 8;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
|
|
d[0*n_channels] = _mm_extract_epi16(out[0], 0);
|
|
d[1*n_channels] = _mm_extract_epi16(out[0], 1);
|
|
d[2*n_channels] = _mm_extract_epi16(out[0], 2);
|
|
d[3*n_channels] = _mm_extract_epi16(out[0], 3);
|
|
d[4*n_channels] = _mm_extract_epi16(out[0], 4);
|
|
d[5*n_channels] = _mm_extract_epi16(out[0], 5);
|
|
d[6*n_channels] = _mm_extract_epi16(out[0], 6);
|
|
d[7*n_channels] = _mm_extract_epi16(out[0], 7);
|
|
d += 8*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_2_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
const float *s0 = s[0], *s1 = s[1];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[4], t[2];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
|
|
|
t[0] = _mm_cvtps_epi32(in[0]);
|
|
t[1] = _mm_cvtps_epi32(in[1]);
|
|
|
|
t[0] = _mm_packs_epi32(t[0], t[0]);
|
|
t[1] = _mm_packs_epi32(t[1], t[1]);
|
|
|
|
out[0] = _mm_unpacklo_epi16(t[0], t[1]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
*((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]);
|
|
*((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]);
|
|
*((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]);
|
|
*((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min));
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_4_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
const float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4], t[4];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_max);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_max);
|
|
|
|
t[0] = _mm_cvtps_epi32(in[0]);
|
|
t[1] = _mm_cvtps_epi32(in[1]);
|
|
t[2] = _mm_cvtps_epi32(in[2]);
|
|
t[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
t[0] = _mm_packs_epi32(t[0], t[2]);
|
|
t[1] = _mm_packs_epi32(t[1], t[3]);
|
|
|
|
out[0] = _mm_unpacklo_epi16(t[0], t[1]);
|
|
out[1] = _mm_unpackhi_epi16(t[0], t[1]);
|
|
out[2] = _mm_unpacklo_epi32(out[0], out[1]);
|
|
out[3] = _mm_unpackhi_epi32(out[0], out[1]);
|
|
|
|
_mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]);
|
|
_mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]);
|
|
_mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]);
|
|
_mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]);
|
|
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max);
|
|
in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_max);
|
|
in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min));
|
|
in[2] = _mm_min_ss(int_max, _mm_max_ss(in[2], int_min));
|
|
in[3] = _mm_min_ss(int_max, _mm_max_ss(in[3], int_min));
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d[2] = _mm_cvtss_si32(in[2]);
|
|
d[3] = _mm_cvtss_si32(in[3]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
int16_t *d = dst[0];
|
|
uint32_t i = 0;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_f32d_to_s16_4_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_f32d_to_s16_2_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_f32d_to_s16_1_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
|
}
|