pipewire/src/modules/module-jack/shared.h
2017-08-16 17:11:37 +02:00

1045 lines
29 KiB
C

/* PipeWire
* Copyright (C) 2015 Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <math.h>
extern int segment_num;
static inline int jack_shm_alloc(size_t size, jack_shm_info_t *info, int num)
{
char name[64];
snprintf(name, sizeof(name), "/jack_shared%d", num);
if (jack_shmalloc(name, size, info)) {
pw_log_error("Cannot create shared memory segment of size = %zd (%s)", size, strerror(errno));
return -1;
}
if (jack_attach_shm(info)) {
jack_error("Cannot attach shared memory segment name = %s err = %s", name, strerror(errno));
jack_destroy_shm(info);
return -1;
}
info->size = size;
return 0;
}
typedef uint16_t jack_int_t; // Internal type for ports and refnum
typedef enum {
NotTriggered,
Triggered,
Running,
Finished,
} jack_client_state_t;
PRE_PACKED_STRUCTURE
struct jack_client_timing {
jack_time_t signaled_at;
jack_time_t awake_at;
jack_time_t finished_at;
jack_client_state_t status;
} POST_PACKED_STRUCTURE;
#define JACK_CLIENT_TIMING_INIT (struct jack_client_timing) { 0, 0, 0, NotTriggered }
PRE_PACKED_STRUCTURE
struct jack_port {
int type_id;
enum JackPortFlags flags;
char name[REAL_JACK_PORT_NAME_SIZE];
char alias1[REAL_JACK_PORT_NAME_SIZE];
char alias2[REAL_JACK_PORT_NAME_SIZE];
int ref_num;
jack_nframes_t latency;
jack_nframes_t total_latency;
jack_latency_range_t playback_latency;
jack_latency_range_t capture_latency;
uint8_t monitor_requests;
bool in_use;
jack_port_id_t tied;
jack_default_audio_sample_t buffer[BUFFER_SIZE_MAX + 8];
} POST_PACKED_STRUCTURE;
static inline void jack_port_init(struct jack_port *port, int ref_num,
const char* port_name, int type_id, enum JackPortFlags flags)
{
port->type_id = type_id;
port->flags = flags;
strcpy(port->name, port_name);
port->alias1[0] = '\0';
port->alias2[0] = '\0';
port->ref_num = ref_num;
port->latency = 0;
port->total_latency = 0;
port->playback_latency.min = port->playback_latency.max = 0;
port->capture_latency.min = port->capture_latency.max = 0;
port->monitor_requests = 0;
port->in_use = true;
port->tied = NO_PORT;
}
static inline void jack_port_release(struct jack_port *port) {
port->in_use = false;
}
PRE_PACKED_STRUCTURE
struct jack_client_control {
jack_shm_info_t info;
char name[JACK_CLIENT_NAME_SIZE+1];
bool callback[jack_notify_max];
volatile jack_transport_state_t transport_state;
volatile bool transport_sync;
volatile bool transport_timebase;
int ref_num;
int PID;
bool active;
int session_ID;
char session_command[JACK_SESSION_COMMAND_SIZE];
jack_session_flags_t session_flags;
} POST_PACKED_STRUCTURE;
static inline struct jack_client_control *
jack_client_control_alloc(const char* name, int pid, int ref_num, int uuid)
{
struct jack_client_control *ctrl;
jack_shm_info_t info;
size_t size;
size = sizeof(struct jack_client_control);
if (jack_shm_alloc(size, &info, segment_num++) < 0)
return NULL;
ctrl = (struct jack_client_control *)jack_shm_addr(&info);
ctrl->info = info;
strcpy(ctrl->name, name);
for (int i = 0; i < jack_notify_max; i++)
ctrl->callback[i] = false;
// Always activated
ctrl->callback[jack_notify_AddClient] = true;
ctrl->callback[jack_notify_RemoveClient] = true;
ctrl->callback[jack_notify_ActivateClient] = true;
ctrl->callback[jack_notify_LatencyCallback] = true;
// So that driver synchro are correctly setup in "flush" or "normal" mode
ctrl->callback[jack_notify_StartFreewheelCallback] = true;
ctrl->callback[jack_notify_StopFreewheelCallback] = true;
ctrl->ref_num = ref_num;
ctrl->PID = pid;
ctrl->transport_state = JackTransportStopped;
ctrl->transport_sync = false;
ctrl->transport_timebase = false;
ctrl->active = false;
ctrl->session_ID = uuid;
return ctrl;
}
#define MAKE_FIXED_ARRAY(size) \
PRE_PACKED_STRUCTURE \
struct { \
jack_int_t table[size]; \
uint32_t counter; \
} POST_PACKED_STRUCTURE
#define INIT_FIXED_ARRAY(arr) ({ \
int _i; \
for (_i = 0; _i < SPA_N_ELEMENTS(arr.table); _i++) \
arr.table[_i] = EMPTY; \
arr.counter = 0; \
})
#define GET_ITEMS_FIXED_ARRAY(arr) ({ \
arr.table; \
})
#define ADD_FIXED_ARRAY(arr,item) ({ \
int _ret = -1; \
if (arr.counter < SPA_N_ELEMENTS(arr.table)) { \
_ret = arr.counter++; \
arr.table[_ret] = item; \
} \
_ret; \
})
#define GET_FIXED_ARRAY(arr,item) ({ \
int _i,_ret = -1; \
for (_i = 0; _i < arr.counter; _i++) { \
if (arr.table[_i] == item) { \
_ret = _i; \
break; \
} \
} \
_ret; \
})
#define REMOVE_FIXED_ARRAY(arr,item) ({ \
int _ret = GET_FIXED_ARRAY(arr,item); \
if (_ret >= 0) { \
arr.counter--; \
arr.table[_ret] = arr.table[arr.counter]; \
arr.table[arr.counter] = EMPTY; \
} \
_ret; \
})
#define MAKE_FIXED_ARRAY1(size) \
PRE_PACKED_STRUCTURE \
struct { \
MAKE_FIXED_ARRAY(size) array; \
bool used; \
} POST_PACKED_STRUCTURE
#define INIT_FIXED_ARRAY1(arr) ({ \
INIT_FIXED_ARRAY(arr.array); \
arr.used = false; \
})
#define GET_ITEMS_FIXED_ARRAY1(arr) GET_ITEMS_FIXED_ARRAY(arr.array)
#define ADD_FIXED_ARRAY1(arr,item) ADD_FIXED_ARRAY(arr.array,item)
#define GET_FIXED_ARRAY1(arr,item) GET_FIXED_ARRAY(arr.array,item)
#define REMOVE_FIXED_ARRAY1(arr,item) REMOVE_FIXED_ARRAY(arr.array,item)
#define MAKE_FIXED_MATRIX(size) \
PRE_PACKED_STRUCTURE \
struct { \
jack_int_t table[size][size]; \
} POST_PACKED_STRUCTURE
#define INIT_FIXED_MATRIX(mat,idx) ({ \
int i; \
for (i = 0; i < SPA_N_ELEMENTS(mat.table[0]); i++){ \
mat.table[idx][i] = 0; \
mat.table[i][idx] = 0; \
} \
})
#define GET_ITEMS_FIXED_MATRIX(mat,idx1) ({ \
mat.table[idx1]; \
})
#define INC_FIXED_MATRIX(mat,idx1,idx2) ({ \
++mat.table[idx1][idx2]; \
})
#define DEC_FIXED_MATRIX(mat,idx1,idx2) ({ \
--mat.table[idx1][idx2]; \
})
#define GET_FIXED_MATRIX(mat,idx1,idx2) ({ \
mat.table[idx1][idx2]; \
})
#define CLEAR_FIXED_MATRIX(mat,idx1,idx2) ({ \
mat.table[idx1][idx2] = 0; \
})
PRE_PACKED_STRUCTURE
struct jack_activation_count {
int32_t value;
int32_t count;
} POST_PACKED_STRUCTURE;
static inline void jack_activation_count_set_value(struct jack_activation_count *cnt, int32_t val) {
cnt->value = val;
}
static inline int32_t jack_activation_count_get_value(struct jack_activation_count *cnt) {
return cnt->value;
}
static inline int32_t jack_activation_count_get_count(struct jack_activation_count *cnt) {
return cnt->count;
}
static inline void jack_activation_count_reset(struct jack_activation_count *cnt) {
cnt->value = cnt->count;
}
static inline void jack_activation_count_inc_value(struct jack_activation_count *cnt) {
cnt->count++;
}
static inline void jack_activation_count_dec_value(struct jack_activation_count *cnt) {
cnt->count--;
}
static inline bool jack_activation_count_signal(struct jack_activation_count *cnt,
struct jack_synchro *synchro)
{
bool res = true;
if (cnt->value == 0)
res = jack_synchro_signal(synchro);
else if (__atomic_sub_fetch(&cnt->value, 1, __ATOMIC_SEQ_CST) == 0)
res = jack_synchro_signal(synchro);
return res;
}
#define MAKE_LOOP_FEEDBACK(size) \
PRE_PACKED_STRUCTURE \
struct { \
int table[size][3]; \
} POST_PACKED_STRUCTURE
#define INIT_LOOP_FEEDBACK(arr,size) ({ \
int i; \
for (i = 0; i < size; i++) { \
arr.table[i][0] = EMPTY; \
arr.table[i][1] = EMPTY; \
arr.table[i][2] = 0; \
} \
})
#define ADD_LOOP_FEEDBACK(arr,ref1,ref2) ({ \
int i,res = false; \
for (i = 0; i < SPA_N_ELEMENTS(arr.table); i++) { \
if (arr.table[i][0] == EMPTY) { \
arr.table[i][0] = ref1; \
arr.table[i][1] = ref2; \
arr.table[i][2] = 1; \
res = true; \
break; \
} \
} \
res; \
})
#define DEL_LOOP_FEEDBACK(arr,ref1,ref2) ({ \
int i,res = false; \
for (i = 0; i < SPA_N_ELEMENTS(arr.table); i++) { \
if (arr.table[i][0] == ref1 && \
arr.table[i][1] == ref2) { \
arr.table[i][0] = EMPTY; \
arr.table[i][1] = EMPTY; \
arr.table[i][2] = 0; \
res = true; \
break; \
} \
} \
res; \
})
#define GET_LOOP_FEEDBACK(arr,ref1,ref2) ({ \
int i,res = 1; \
for (i = 0; i < SPA_N_ELEMENTS(arr.table); i++) { \
if (arr.table[i][0] == ref1 && \
arr.table[i][1] == ref2) { \
res = i; \
break; \
} \
} \
res; \
})
#define INC_LOOP_FEEDBACK(arr,ref1,ref2) ({ \
int res = true, idx = GET_LOOP_FEEDBACK(arr,ref1,ref2); \
if (idx >= 0) \
arr.table[idx][2]++; \
else \
res = ADD_LOOP_FEEDBACK(arr,ref1,ref2); \
res; \
})
#define DEC_LOOP_FEEDBACK(arr,ref1,ref2) ({ \
int res = true, idx = GET_LOOP_FEEDBACK(arr,ref1,ref2); \
if (idx >= 0) { \
if (--arr.table[idx][2] == 0) \
res = DEL_LOOP_FEEDBACK(arr,ref1,ref2); \
} \
else \
res = false; \
res; \
})
PRE_PACKED_STRUCTURE
struct jack_connection_manager {
MAKE_FIXED_ARRAY(CONNECTION_NUM_FOR_PORT) connection[PORT_NUM_MAX];
MAKE_FIXED_ARRAY1(PORT_NUM_FOR_CLIENT) input_port[CLIENT_NUM];
MAKE_FIXED_ARRAY(PORT_NUM_FOR_CLIENT) output_port[CLIENT_NUM];
MAKE_FIXED_MATRIX(CLIENT_NUM) connection_ref;
struct jack_activation_count input_counter[CLIENT_NUM];
MAKE_LOOP_FEEDBACK(CONNECTION_NUM_FOR_PORT) loop_feedback;
} POST_PACKED_STRUCTURE;
static inline void
jack_connection_manager_init_ref_num(struct jack_connection_manager *conn, int ref_num)
{
INIT_FIXED_ARRAY1(conn->input_port[ref_num]);
INIT_FIXED_ARRAY(conn->output_port[ref_num]);
INIT_FIXED_MATRIX(conn->connection_ref, ref_num);
conn->input_counter[ref_num].count = 0;
jack_activation_count_set_value(&conn->input_counter[ref_num], 0);
}
static inline void
jack_connection_manager_init(struct jack_connection_manager *conn)
{
int i;
for (i = 0; i < PORT_NUM_MAX; i++)
INIT_FIXED_ARRAY(conn->connection[i]);
INIT_LOOP_FEEDBACK(conn->loop_feedback, CONNECTION_NUM_FOR_PORT);
for (i = 0; i < CLIENT_NUM; i++)
jack_connection_manager_init_ref_num(conn, i);
}
static inline void
jack_connection_manager_reset(struct jack_connection_manager *conn,
struct jack_client_timing *timing)
{
int i;
for (i = 0; i < CLIENT_NUM; i++) {
jack_activation_count_reset(&conn->input_counter[i]);
timing[i].status = NotTriggered;
}
}
static inline int
jack_connection_manager_add_inport(struct jack_connection_manager *conn,
int ref_num, jack_port_id_t port_id)
{
return ADD_FIXED_ARRAY1(conn->input_port[ref_num], port_id);
}
static inline int
jack_connection_manager_remove_inport(struct jack_connection_manager *conn,
int ref_num, jack_port_id_t port_id)
{
return REMOVE_FIXED_ARRAY1(conn->input_port[ref_num], port_id);
}
static inline int
jack_connection_manager_add_outport(struct jack_connection_manager *conn,
int ref_num, jack_port_id_t port_id)
{
return ADD_FIXED_ARRAY(conn->output_port[ref_num], port_id);
}
static inline int
jack_connection_manager_remove_outport(struct jack_connection_manager *conn,
int ref_num, jack_port_id_t port_id)
{
return REMOVE_FIXED_ARRAY(conn->output_port[ref_num], port_id);
}
static inline const jack_int_t *
jack_connection_manager_get_inputs(struct jack_connection_manager *conn, int ref_num)
{
return GET_ITEMS_FIXED_ARRAY1(conn->input_port[ref_num]);
}
static inline const jack_int_t *
jack_connection_manager_get_outputs(struct jack_connection_manager *conn, int ref_num)
{
return GET_ITEMS_FIXED_ARRAY(conn->output_port[ref_num]);
}
static inline const jack_int_t *
jack_connection_manager_get_connections(struct jack_connection_manager *conn, int port_index)
{
return GET_ITEMS_FIXED_ARRAY(conn->connection[port_index]);
}
static inline int
jack_connection_manager_get_output_refnum(struct jack_connection_manager *conn,
jack_port_id_t port_index)
{
int i;
for (i = 0; i < CLIENT_NUM; i++) {
if (GET_FIXED_ARRAY(conn->output_port[i], port_index) != -1)
return i;
}
return -1;
}
static inline int
jack_connection_manager_get_input_refnum(struct jack_connection_manager *conn,
jack_port_id_t port_index)
{
int i;
for (i = 0; i < CLIENT_NUM; i++) {
if (GET_FIXED_ARRAY1(conn->input_port[i], port_index) != -1)
return i;
}
return -1;
}
static inline bool
jack_connection_manager_is_connected(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
return GET_FIXED_ARRAY(conn->connection[src_id], dst_id) != -1;
}
static inline int
jack_connection_manager_connect(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
return ADD_FIXED_ARRAY(conn->connection[src_id], dst_id);
}
static inline int
jack_connection_manager_disconnect(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
return REMOVE_FIXED_ARRAY(conn->connection[src_id], dst_id);
}
static inline int
jack_connection_manager_is_loop_path(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
/* FIXME */
return false;
}
static inline void
jack_connection_manager_direct_connect(struct jack_connection_manager *conn,
int ref1, int ref2)
{
if (INC_FIXED_MATRIX(conn->connection_ref, ref1, ref2) == 1)
jack_activation_count_inc_value(&conn->input_counter[ref2]);
}
static inline bool
jack_connection_manager_is_direct_connection(struct jack_connection_manager *conn,
int ref1, int ref2)
{
return GET_FIXED_MATRIX(conn->connection_ref, ref1, ref2) > 0;
}
static inline void
jack_connection_manager_direct_disconnect(struct jack_connection_manager *conn,
int ref1, int ref2)
{
if (DEC_FIXED_MATRIX(conn->connection_ref, ref1, ref2) == 0)
jack_activation_count_dec_value(&conn->input_counter[ref2]);
}
static inline bool
jack_connection_manager_inc_feedback_connection(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
int ref1 = jack_connection_manager_get_output_refnum(conn, src_id);
int ref2 = jack_connection_manager_get_input_refnum(conn, dst_id);
if (ref1 != ref2)
jack_connection_manager_direct_connect(conn, ref2, ref1);
return INC_LOOP_FEEDBACK(conn->loop_feedback, ref1, ref2);
}
static inline bool
jack_connection_manager_dec_feedback_connection(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
int ref1 = jack_connection_manager_get_output_refnum(conn, src_id);
int ref2 = jack_connection_manager_get_input_refnum(conn, dst_id);
if (ref1 != ref2)
jack_connection_manager_direct_disconnect(conn, ref2, ref1);
return DEC_LOOP_FEEDBACK(conn->loop_feedback, ref1, ref2);
}
static inline void
jack_connection_manager_inc_direct_connection(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
int ref1 = jack_connection_manager_get_output_refnum(conn, src_id);
int ref2 = jack_connection_manager_get_input_refnum(conn, dst_id);
jack_connection_manager_direct_connect(conn, ref1, ref2);
}
static inline void
jack_connection_manager_dec_direct_connection(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
int ref1 = jack_connection_manager_get_output_refnum(conn, src_id);
int ref2 = jack_connection_manager_get_input_refnum(conn, dst_id);
jack_connection_manager_direct_disconnect(conn, ref1, ref2);
}
static inline int
jack_connection_manager_connect_ports(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
if (jack_connection_manager_is_connected(conn, src_id, dst_id)) {
pw_log_error("connection %p: ports are already connected", conn);
return -1;
}
if (jack_connection_manager_connect(conn, src_id, dst_id) < 0) {
pw_log_error("connection %p: connection table is full", conn);
return -1;
}
if (jack_connection_manager_connect(conn, dst_id, src_id) < 0) {
pw_log_error("connection %p: connection table is full", conn);
return -1;
}
if (jack_connection_manager_is_loop_path(conn, src_id, dst_id) < 0)
jack_connection_manager_inc_feedback_connection(conn, src_id, dst_id);
else
jack_connection_manager_inc_direct_connection(conn, src_id, dst_id);
return 0;
}
static inline int
jack_connection_manager_disconnect_ports(struct jack_connection_manager *conn,
jack_port_id_t src_id, jack_port_id_t dst_id)
{
if (!jack_connection_manager_is_connected(conn, src_id, dst_id)) {
pw_log_error("connection %p: ports are not connected", conn);
return -1;
}
jack_connection_manager_disconnect(conn, src_id, dst_id);
jack_connection_manager_disconnect(conn, dst_id, src_id);
if (jack_connection_manager_is_loop_path(conn, src_id, dst_id) < 0)
jack_connection_manager_dec_feedback_connection(conn, src_id, dst_id);
else
jack_connection_manager_dec_direct_connection(conn, src_id, dst_id);
return 0;
}
static inline int
jack_connection_manager_get_activation(struct jack_connection_manager *conn, int ref_num)
{
return jack_activation_count_get_value(&conn->input_counter[ref_num]);
}
static inline int
jack_connection_manager_suspend_ref_num(struct jack_connection_manager *conn,
struct jack_client_control *control,
struct jack_synchro *synchro,
struct jack_client_timing *timing)
{
int res = 0, ref_num = control->ref_num;
jack_time_t current_date = 0;
if (jack_synchro_wait(&synchro[ref_num])) {
timing[ref_num].status = Finished;
timing[ref_num].awake_at = current_date;
}
return res ? 0 : -1;
}
static inline int
jack_connection_manager_resume_ref_num(struct jack_connection_manager *conn,
struct jack_client_control *control,
struct jack_synchro *synchro,
struct jack_client_timing *timing)
{
int i, res = 0, ref_num = control->ref_num;
const jack_int_t* output_ref = GET_ITEMS_FIXED_MATRIX(conn->connection_ref, ref_num);
jack_time_t current_date = 0;
timing[ref_num].status = Finished;
timing[ref_num].finished_at = current_date;
for (i = 0; i < CLIENT_NUM; i++) {
if (output_ref[i] <= 0)
continue;
timing[i].status = Triggered;
timing[i].signaled_at = current_date;
if (!jack_activation_count_signal(&conn->input_counter[i], &synchro[i]))
res = -1;
}
return res;
}
PRE_PACKED_STRUCTURE
struct jack_atomic_counter {
union {
struct {
uint16_t short_val1; // Cur
uint16_t short_val2; // Next
} scounter;
uint32_t long_val;
} info;
} POST_PACKED_STRUCTURE;
#define Counter(e) (e).info.long_val
#define CurIndex(e) (e).info.scounter.short_val1
#define NextIndex(e) (e).info.scounter.short_val2
#define CurArrayIndex(e) (CurIndex(e) & 0x0001)
#define NextArrayIndex(e) ((CurIndex(e) + 1) & 0x0001)
#define MAKE_ATOMIC_STATE(type) \
PRE_PACKED_STRUCTURE \
struct { \
type state[2]; \
volatile struct jack_atomic_counter counter; \
int32_t call_write_counter; \
} POST_PACKED_STRUCTURE
PRE_PACKED_STRUCTURE
struct jack_atomic_array_counter {
union {
struct {
unsigned char byte_val[4];
} scounter;
uint32_t long_val;
} info;
} POST_PACKED_STRUCTURE;
#define MAKE_ATOMIC_ARRAY_STATE(type) \
PRE_PACKED_STRUCTURE \
struct { \
type state[3]; \
volatile struct jack_atomic_array_counter counter; \
} POST_PACKED_STRUCTURE
PRE_PACKED_STRUCTURE
struct jack_graph_manager {
jack_shm_info_t info;
MAKE_ATOMIC_STATE(struct jack_connection_manager) state;
unsigned int port_max;
struct jack_client_timing client_timing[CLIENT_NUM];
struct jack_port port_array[0];
} POST_PACKED_STRUCTURE;
static inline struct jack_graph_manager *
jack_graph_manager_alloc(int port_max)
{
struct jack_graph_manager *mgr;
jack_shm_info_t info;
size_t i, size;
size = sizeof(struct jack_graph_manager) + port_max * sizeof(struct jack_port);
if (jack_shm_alloc(size, &info, segment_num++) < 0)
return NULL;
mgr = (struct jack_graph_manager *)jack_shm_addr(&info);
mgr->info = info;
Counter(mgr->state.counter) = 0;
mgr->state.call_write_counter = 0;
jack_connection_manager_init(&mgr->state.state[0]);
jack_connection_manager_init(&mgr->state.state[1]);
mgr->port_max = port_max;
for (i = 0; i < port_max; i++) {
mgr->port_array[i].in_use = false;
mgr->port_array[i].ref_num = -1;
}
return mgr;
}
static inline jack_port_id_t
jack_graph_manager_allocate_port(struct jack_graph_manager *mgr,
int ref_num, const char* port_name, int type_id,
enum JackPortFlags flags)
{
int i;
for (i = 1; i < mgr->port_max; i++) {
if (!mgr->port_array[i].in_use) {
jack_port_init(&mgr->port_array[i], ref_num, port_name, type_id, flags);
return i;
}
}
return NO_PORT;
}
static inline void
jack_graph_manager_release_port(struct jack_graph_manager *mgr, jack_port_id_t port_id)
{
jack_port_release(&mgr->port_array[port_id]);
}
static inline struct jack_port *
jack_graph_manager_get_port(struct jack_graph_manager *mgr, jack_port_id_t port_index)
{
if (port_index > 0 && port_index < mgr->port_max)
return &mgr->port_array[port_index];
return NULL;
}
static inline jack_port_id_t
jack_graph_manager_find_port(struct jack_graph_manager *mgr, const char *name)
{
int i;
for (i = 0; i < mgr->port_max; i++) {
struct jack_port *port = &mgr->port_array[i];
if (port->in_use && strcmp(port->name, name) == 0)
return i;
}
return NO_PORT;
}
static inline struct jack_connection_manager *
jack_graph_manager_next_start(struct jack_graph_manager *manager)
{
uint32_t next_index;
if (manager->state.call_write_counter++ == 0) {
struct jack_atomic_counter old_val;
struct jack_atomic_counter new_val;
uint32_t cur_index;
bool need_copy;
do {
old_val = manager->state.counter;
new_val = old_val;
cur_index = CurArrayIndex(new_val);
next_index = NextArrayIndex(new_val);
need_copy = (CurIndex(new_val) == NextIndex(new_val));
NextIndex(new_val) = CurIndex(new_val); // Invalidate next index
}
while (!__atomic_compare_exchange_n((uint32_t*)&manager->state.counter,
(uint32_t*)&Counter(old_val),
Counter(new_val),
false,
__ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST));
if (need_copy)
memcpy(&manager->state.state[next_index],
&manager->state.state[cur_index],
sizeof(struct jack_connection_manager));
}
else {
next_index = NextArrayIndex(manager->state.counter);
}
return &manager->state.state[next_index];
}
static inline void
jack_graph_manager_next_stop(struct jack_graph_manager *manager)
{
if (--manager->state.call_write_counter == 0) {
struct jack_atomic_counter old_val;
struct jack_atomic_counter new_val;
do {
old_val = manager->state.counter;
new_val = old_val;
NextIndex(new_val)++; // Set next index
}
while (!__atomic_compare_exchange_n((uint32_t*)&manager->state.counter,
(uint32_t*)&Counter(old_val),
Counter(new_val),
false,
__ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST));
}
}
static inline bool
jack_graph_manager_is_pending_change(struct jack_graph_manager *manager)
{
return CurIndex(manager->state.counter) != NextIndex(manager->state.counter);
}
static inline struct jack_connection_manager *
jack_graph_manager_get_current(struct jack_graph_manager *manager)
{
return &manager->state.state[CurArrayIndex(manager->state.counter)];
}
static inline struct jack_connection_manager *
jack_graph_manager_try_switch(struct jack_graph_manager *manager)
{
struct jack_atomic_counter old_val;
struct jack_atomic_counter new_val;
do {
old_val = manager->state.counter;
new_val = old_val;
CurIndex(new_val) = NextIndex(new_val);
}
while (!__atomic_compare_exchange_n((uint32_t*)&manager->state.counter,
(uint32_t*)&Counter(old_val),
Counter(new_val),
false,
__ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST));
return &manager->state.state[CurArrayIndex(manager->state.counter)];
}
typedef enum {
TransportCommandNone = 0,
TransportCommandStart = 1,
TransportCommandStop = 2,
} transport_command_t;
PRE_PACKED_STRUCTURE
struct jack_transport_engine {
MAKE_ATOMIC_ARRAY_STATE(jack_position_t) state;
jack_transport_state_t transport_state;
volatile transport_command_t transport_cmd;
transport_command_t previous_cmd; /* previous transport_cmd */
jack_time_t sync_timeout;
int sync_time_left;
int time_base_master;
bool pending_pos;
bool network_sync;
bool conditionnal;
int32_t write_counter;
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
struct jack_timer {
jack_nframes_t frames;
jack_time_t current_wakeup;
jack_time_t current_callback;
jack_time_t next_wakeup;
float period_usecs;
float filter_omega; /* set once, never altered */
bool initialized;
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
struct jack_frame_timer {
MAKE_ATOMIC_STATE(struct jack_timer) state;
bool first_wakeup;
} POST_PACKED_STRUCTURE;
#ifdef JACK_MONITOR
PRE_PACKED_STRUCTURE
struct jack_timing_measure_client {
int ref_num;
jack_time_t signaled_at;
jack_time_t awake_at;
jack_time_t finished_at;
jack_client_state_t status;
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
struct jack_timing_client_interval {
int ref_num;
char name[JACK_CLIENT_NAME_SIZE+1];
int begin_interval;
int end_interval;
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
struct jack_timing_measure {
unsigned int audio_cycle;
jack_time_t period_usecs;
jack_time_t cur_cycle_begin;
jack_time_t prev_cycle_end;
struct jack_timing_measure_client client_table[CLIENT_NUM];
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
struct jack_engine_profiling {
struct jack_timing_measure profile_table[TIME_POINTS];
struct jack_timing_client_interval interval_table[MEASURED_CLIENTS];
unsigned int audio_cycle;
unsigned int measured_client;
} POST_PACKED_STRUCTURE;
#endif
PRE_PACKED_STRUCTURE
struct jack_engine_control {
jack_shm_info_t info;
jack_nframes_t buffer_size;
jack_nframes_t sample_rate;
bool sync_mode;
bool temporary;
jack_time_t period_usecs;
jack_time_t timeout_usecs;
float max_delayed_usecs;
float xrun_delayed_usecs;
bool timeout;
bool real_time;
bool saved_real_time;
int server_priority;
int client_priority;
int max_client_priority;
char server_name[JACK_SERVER_NAME_SIZE];
struct jack_transport_engine transport;
jack_timer_type_t clock_source;
int driver_num;
bool verbose;
jack_time_t prev_cycle_time;
jack_time_t cur_cycle_time;
jack_time_t spare_usecs;
jack_time_t max_usecs;
jack_time_t rolling_client_usecs[JACK_ENGINE_ROLLING_COUNT];
unsigned int rolling_client_usecs_cnt;
int rolling_client_usecs_index;
int rolling_interval;
float CPU_load;
uint64_t period;
uint64_t computation;
uint64_t constraint;
struct jack_frame_timer frame_timer;
#ifdef JACK_MONITOR
struct jack_engine_profiling profiler;
#endif
} POST_PACKED_STRUCTURE;
static inline void
jack_engine_control_reset_rolling_usecs(struct jack_engine_control *ctrl)
{
memset(ctrl->rolling_client_usecs, 0, sizeof(ctrl->rolling_client_usecs));
ctrl->rolling_client_usecs_index = 0;
ctrl->rolling_client_usecs_cnt = 0;
ctrl->spare_usecs = 0;
ctrl->rolling_interval = floor((JACK_ENGINE_ROLLING_INTERVAL * 1000.f) / ctrl->period_usecs);
}
static inline struct jack_engine_control *
jack_engine_control_alloc(const char* name)
{
struct jack_engine_control *ctrl;
jack_shm_info_t info;
size_t size;
size = sizeof(struct jack_engine_control);
if (jack_shm_alloc(size, &info, segment_num++) < 0)
return NULL;
ctrl = (struct jack_engine_control *)jack_shm_addr(&info);
ctrl->info = info;
ctrl->buffer_size = 64;
ctrl->sample_rate = 48000;
ctrl->sync_mode = false;
ctrl->temporary = false;
ctrl->period_usecs = 1000000.f / ctrl->sample_rate * ctrl->buffer_size;
ctrl->timeout_usecs = 0;
ctrl->max_delayed_usecs = 0.f;
ctrl->xrun_delayed_usecs = 0.f;
ctrl->timeout = false;
ctrl->real_time = true;
ctrl->saved_real_time = false;
ctrl->server_priority = 20;
ctrl->client_priority = 15;
ctrl->max_client_priority = 19;
strcpy(ctrl->server_name, name);
ctrl->clock_source = 0;
ctrl->driver_num = 0;
ctrl->verbose = true;
ctrl->prev_cycle_time = 0;
ctrl->cur_cycle_time = 0;
ctrl->spare_usecs = 0;
ctrl->max_usecs = 0;
jack_engine_control_reset_rolling_usecs(ctrl);
ctrl->CPU_load = 0.f;
ctrl->period = 0;
ctrl->computation = 0;
ctrl->constraint = 0;
return ctrl;
}