pipewire/spa/plugins/audioconvert/fmt-ops.h
Wim Taymans d8e399dee9 audioconvert: pass state to functions
Pass some state to convert and channelmix functions. This makes it
possible to select per channel optimized convert functions but
also makes it possible to implement noise shaping later.
Pass the channelmix matrix and volume in the state.
Handle specialized 2 channel s16 -> f32 conversion
2019-03-29 17:39:59 +01:00

177 lines
5.4 KiB
C

/* Spa
*
* Copyright © 2019 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include <spa/utils/defs.h>
#define U8_MIN 0
#define U8_MAX 255
#define U8_SCALE 127.5f
#define U8_OFFS 128
#define U8_TO_F32(v) ((((uint8_t)(v)) * (1.0f / U8_OFFS)) - 1.0)
#define F32_TO_U8(v) (uint8_t)((SPA_CLAMP(v, -1.0f, 1.0f) * U8_SCALE) + U8_OFFS)
#define S16_MIN -32767
#define S16_MAX 32767
#define S16_MAX_F 32767.0f
#define S16_SCALE 32767.0f
#define S16_TO_F32(v) (((int16_t)(v)) * (1.0f / S16_SCALE))
#define F32_TO_S16(v) (int16_t)(SPA_CLAMP(v, -1.0f, 1.0f) * S16_SCALE)
#define S24_MIN -8388607
#define S24_MAX 8388607
#define S24_MAX_F 8388607.0f
#define S24_SCALE 8388607.0f
#define S24_TO_F32(v) (((int32_t)(v)) * (1.0f / S24_SCALE))
#define F32_TO_S24(v) (int32_t)(SPA_CLAMP(v, -1.0f, 1.0f) * S24_SCALE)
#define S32_SCALE 2147483648.0f
#define S32_MIN 2147483520.0f
#define S32_TO_F32(v) S24_TO_F32((v) >> 8)
#define F32_TO_S32(v) (F32_TO_S24(v) << 8)
static inline int32_t read_s24(const void *src)
{
const int8_t *s = src;
#if __BYTE_ORDER == __LITTLE_ENDIAN
return (((int32_t)s[2] << 16) | ((uint32_t)(uint8_t)s[1] << 8) | (uint32_t)(uint8_t)s[0]);
#else
return (((int32_t)s[0] << 16) | ((uint32_t)(uint8_t)s[1] << 8) | (uint32_t)(uint8_t)s[2]);
#endif
}
static inline void write_s24(void *dst, int32_t val)
{
uint8_t *d = dst;
#if __BYTE_ORDER == __LITTLE_ENDIAN
d[0] = (uint8_t) (val);
d[1] = (uint8_t) (val >> 8);
d[2] = (uint8_t) (val >> 16);
#else
d[0] = (uint8_t) (val >> 16);
d[1] = (uint8_t) (val >> 8);
d[2] = (uint8_t) (val);
#endif
}
#define MAX_NS 64
struct convert {
uint32_t src_fmt;
uint32_t dst_fmt;
uint32_t n_channels;
uint32_t cpu_flags;
int is_passthrough:1;
float ns_data[MAX_NS];
uint32_t ns_idx;
uint32_t ns_size;
void (*process) (struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples);
void (*free) (struct convert *conv);
};
int convert_init(struct convert *conv);
#define convert_process(conv,...) (conv)->process(conv, __VA_ARGS__)
#define convert_free(conv) (conv)->free(conv)
#define DEFINE_FUNCTION(name,arch) \
void conv_##name##_##arch(struct convert *conv, void * SPA_RESTRICT dst[], \
const void * SPA_RESTRICT src[], uint32_t n_samples) \
DEFINE_FUNCTION(copy8d, c);
DEFINE_FUNCTION(copy8, c);
DEFINE_FUNCTION(copy16d, c);
DEFINE_FUNCTION(copy16, c);
DEFINE_FUNCTION(copy24d, c);
DEFINE_FUNCTION(copy24, c);
DEFINE_FUNCTION(copy32d, c);
DEFINE_FUNCTION(copy32, c);
DEFINE_FUNCTION(u8d_to_f32d, c);
DEFINE_FUNCTION(u8_to_f32, c);
DEFINE_FUNCTION(u8_to_f32d, c);
DEFINE_FUNCTION(u8d_to_f32, c);
DEFINE_FUNCTION(s16d_to_f32d, c);
DEFINE_FUNCTION(s16_to_f32, c);
DEFINE_FUNCTION(s16_to_f32d, c);
DEFINE_FUNCTION(s16d_to_f32, c);
DEFINE_FUNCTION(s32d_to_f32d, c);
DEFINE_FUNCTION(s32_to_f32, c);
DEFINE_FUNCTION(s32_to_f32d, c);
DEFINE_FUNCTION(s32d_to_f32, c);
DEFINE_FUNCTION(s24d_to_f32d, c);
DEFINE_FUNCTION(s24_to_f32, c);
DEFINE_FUNCTION(s24_to_f32d, c);
DEFINE_FUNCTION(s24d_to_f32, c);
DEFINE_FUNCTION(s24_32d_to_f32d, c);
DEFINE_FUNCTION(s24_32_to_f32, c);
DEFINE_FUNCTION(s24_32_to_f32d, c);
DEFINE_FUNCTION(s24_32d_to_f32, c);
DEFINE_FUNCTION(f32d_to_u8d, c);
DEFINE_FUNCTION(f32_to_u8, c);
DEFINE_FUNCTION(f32_to_u8d, c);
DEFINE_FUNCTION(f32d_to_u8, c);
DEFINE_FUNCTION(f32d_to_s16d, c);
DEFINE_FUNCTION(f32_to_s16, c);
DEFINE_FUNCTION(f32_to_s16d, c);
DEFINE_FUNCTION(f32d_to_s16, c);
DEFINE_FUNCTION(f32d_to_s32d, c);
DEFINE_FUNCTION(f32_to_s32, c);
DEFINE_FUNCTION(f32_to_s32d, c);
DEFINE_FUNCTION(f32d_to_s32, c);
DEFINE_FUNCTION(f32d_to_s24d, c);
DEFINE_FUNCTION(f32_to_s24, c);
DEFINE_FUNCTION(f32_to_s24d, c);
DEFINE_FUNCTION(f32d_to_s24, c);
DEFINE_FUNCTION(f32d_to_s24_32d, c);
DEFINE_FUNCTION(f32_to_s24_32, c);
DEFINE_FUNCTION(f32_to_s24_32d, c);
DEFINE_FUNCTION(f32d_to_s24_32, c);
DEFINE_FUNCTION(deinterleave_8, c);
DEFINE_FUNCTION(deinterleave_16, c);
DEFINE_FUNCTION(deinterleave_24, c);
DEFINE_FUNCTION(deinterleave_32, c);
DEFINE_FUNCTION(interleave_8, c);
DEFINE_FUNCTION(interleave_16, c);
DEFINE_FUNCTION(interleave_24, c);
DEFINE_FUNCTION(interleave_32, c);
#if defined(HAVE_SSE2)
DEFINE_FUNCTION(s16_to_f32d_2, sse2);
DEFINE_FUNCTION(s16_to_f32d, sse2);
DEFINE_FUNCTION(s24_to_f32d, sse2);
DEFINE_FUNCTION(f32d_to_s32, sse2);
DEFINE_FUNCTION(f32d_to_s16, sse2);
#endif
#if defined(HAVE_SSSE3)
DEFINE_FUNCTION(s24_to_f32d, ssse3);
#endif
#if defined(HAVE_SSE41)
DEFINE_FUNCTION(s24_to_f32d, sse41);
#endif