pipewire/spa/plugins/avb/avb-pcm.c
Wim Taymans 11f1298f53 spa: make a function to make a channel short name
Make a function that can generate and parse a short name for
the positions that are not in the type list, like the AUX channels.
2025-10-22 13:04:53 +02:00

1218 lines
34 KiB
C

/* Spa AVB PCM */
/* SPDX-FileCopyrightText: Copyright © 2022 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <sys/time.h>
#include <math.h>
#include <limits.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <spa/pod/filter.h>
#include <spa/utils/result.h>
#include <spa/utils/string.h>
#include <spa/support/system.h>
#include <spa/utils/keys.h>
#include "avb-pcm.h"
#define TAI_OFFSET (37ULL * SPA_NSEC_PER_SEC)
#define TAI_TO_UTC(t) (t - TAI_OFFSET)
static int avb_set_param(struct state *state, const char *k, const char *s)
{
struct props *p = &state->props;
int fmt_change = 0;
if (spa_streq(k, SPA_KEY_AUDIO_CHANNELS)) {
state->default_channels = atoi(s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_RATE)) {
state->default_rate = atoi(s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_FORMAT)) {
state->default_format = spa_type_audio_format_from_short_name(s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_POSITION)) {
spa_audio_parse_position_n(s, strlen(s), state->default_pos.pos,
SPA_N_ELEMENTS(state->default_pos.pos),
&state->default_pos.channels);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_ALLOWED_RATES)) {
state->n_allowed_rates = spa_avb_parse_rates(state->allowed_rates,
MAX_RATES, s, strlen(s));
fmt_change++;
} else if (spa_streq(k, "avb.ifname")) {
snprintf(p->ifname, sizeof(p->ifname), "%s", s);
} else if (spa_streq(k, "avb.macaddr")) {
parse_addr(p->addr, s);
} else if (spa_streq(k, "avb.prio")) {
p->prio = atoi(s);
} else if (spa_streq(k, "avb.streamid")) {
parse_streamid(&p->streamid, s);
} else if (spa_streq(k, "avb.mtt")) {
p->mtt = atoi(s);
} else if (spa_streq(k, "avb.time-uncertainty")) {
p->t_uncertainty = atoi(s);
} else if (spa_streq(k, "avb.frames-per-pdu")) {
p->frames_per_pdu = atoi(s);
} else if (spa_streq(k, "avb.ptime-tolerance")) {
p->ptime_tolerance = atoi(s);
} else if (spa_streq(k, "latency.internal.rate")) {
state->process_latency.rate = atoi(s);
} else if (spa_streq(k, "latency.internal.ns")) {
state->process_latency.ns = atoi(s);
} else if (spa_streq(k, "clock.name")) {
spa_scnprintf(state->clock_name,
sizeof(state->clock_name), "%s", s);
} else
return 0;
if (fmt_change > 0) {
struct port *port = &state->ports[0];
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[PORT_EnumFormat].user++;
}
return 1;
}
static int position_to_string(struct channel_map *map, char *val, size_t len)
{
uint32_t i, o = 0;
int r;
char pos[8];
o += snprintf(val, len, "[ ");
for (i = 0; i < map->channels; i++) {
r = snprintf(val+o, len-o, "%s%s", i == 0 ? "" : ", ",
spa_type_audio_channel_make_short_name(map->pos[i],
pos, sizeof(pos), "UNK"));
if (r < 0 || o + r >= len)
return -ENOSPC;
o += r;
}
if (len > o)
o += snprintf(val+o, len-o, " ]");
return 0;
}
static int uint32_array_to_string(uint32_t *vals, uint32_t n_vals, char *val, size_t len)
{
uint32_t i, o = 0;
int r;
o += snprintf(val, len, "[ ");
for (i = 0; i < n_vals; i++) {
r = snprintf(val+o, len-o, "%s%d", i == 0 ? "" : ", ", vals[i]);
if (r < 0 || o + r >= len)
return -ENOSPC;
o += r;
}
if (len > o)
o += snprintf(val+o, len-o, " ]");
return 0;
}
struct spa_pod *spa_avb_enum_propinfo(struct state *state,
uint32_t idx, struct spa_pod_builder *b)
{
struct spa_pod *param;
struct props *p = &state->props;
char tmp[128];
switch (idx) {
case 0:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_CHANNELS),
SPA_PROP_INFO_description, SPA_POD_String("Audio Channels"),
SPA_PROP_INFO_type, SPA_POD_Int(state->default_channels),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 1:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_RATE),
SPA_PROP_INFO_description, SPA_POD_String("Audio Rate"),
SPA_PROP_INFO_type, SPA_POD_Int(state->default_rate),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 2:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_FORMAT),
SPA_PROP_INFO_description, SPA_POD_String("Audio Format"),
SPA_PROP_INFO_type, SPA_POD_String(
spa_debug_type_find_short_name(spa_type_audio_format,
state->default_format)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 3:
{
char buf[1024];
position_to_string(&state->default_pos, buf, sizeof(buf));
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_POSITION),
SPA_PROP_INFO_description, SPA_POD_String("Audio Position"),
SPA_PROP_INFO_type, SPA_POD_String(buf),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
}
case 4:
{
char buf[1024];
uint32_array_to_string(state->allowed_rates, state->n_allowed_rates, buf, sizeof(buf));
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_ALLOWED_RATES),
SPA_PROP_INFO_description, SPA_POD_String("Audio Allowed Rates"),
SPA_PROP_INFO_type, SPA_POD_String(buf),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
}
case 5:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.ifname"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB interface name"),
SPA_PROP_INFO_type, SPA_POD_Stringn(p->ifname, sizeof(p->ifname)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 6:
format_addr(tmp, sizeof(tmp), p->addr);
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.macaddr"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB MAC address"),
SPA_PROP_INFO_type, SPA_POD_String(tmp),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 7:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.prio"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB stream priority"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->prio, 0, INT32_MAX),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 8:
format_streamid(tmp, sizeof(tmp), p->streamid);
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.streamid"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB stream id"),
SPA_PROP_INFO_type, SPA_POD_String(tmp),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 9:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.mtt"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB mtt"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->mtt, 0, INT32_MAX),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 10:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.time-uncertainty"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB time uncertainty"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->t_uncertainty, 0, INT32_MAX),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 11:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.frames-per-pdu"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB frames per packet"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->frames_per_pdu, 0, INT32_MAX),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 12:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("avb.ptime-tolerance"),
SPA_PROP_INFO_description, SPA_POD_String("The AVB packet tolerance"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->ptime_tolerance, 0, INT32_MAX),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 13:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("latency.internal.rate"),
SPA_PROP_INFO_description, SPA_POD_String("Internal latency in samples"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->process_latency.rate,
0, 65536),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 14:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("latency.internal.ns"),
SPA_PROP_INFO_description, SPA_POD_String("Internal latency in nanoseconds"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(state->process_latency.ns,
0, 2 * SPA_NSEC_PER_SEC),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 15:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("clock.name"),
SPA_PROP_INFO_description, SPA_POD_String("The name of the clock"),
SPA_PROP_INFO_type, SPA_POD_String(state->clock_name),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
default:
return NULL;
}
return param;
}
int spa_avb_add_prop_params(struct state *state, struct spa_pod_builder *b)
{
struct props *p = &state->props;
struct spa_pod_frame f[1];
char buf[1024];
spa_pod_builder_prop(b, SPA_PROP_params, 0);
spa_pod_builder_push_struct(b, &f[0]);
spa_pod_builder_string(b, SPA_KEY_AUDIO_CHANNELS);
spa_pod_builder_int(b, state->default_channels);
spa_pod_builder_string(b, SPA_KEY_AUDIO_RATE);
spa_pod_builder_int(b, state->default_rate);
spa_pod_builder_string(b, SPA_KEY_AUDIO_FORMAT);
spa_pod_builder_string(b,
spa_debug_type_find_short_name(spa_type_audio_format,
state->default_format));
position_to_string(&state->default_pos, buf, sizeof(buf));
spa_pod_builder_string(b, SPA_KEY_AUDIO_POSITION);
spa_pod_builder_string(b, buf);
uint32_array_to_string(state->allowed_rates, state->n_allowed_rates,
buf, sizeof(buf));
spa_pod_builder_string(b, SPA_KEY_AUDIO_ALLOWED_RATES);
spa_pod_builder_string(b, buf);
spa_pod_builder_string(b, "avb.ifname");
spa_pod_builder_string(b, p->ifname);
format_addr(buf, sizeof(buf), p->addr);
spa_pod_builder_string(b, "avb.macadr");
spa_pod_builder_string(b, buf);
spa_pod_builder_string(b, "avb.prio");
spa_pod_builder_int(b, p->prio);
format_streamid(buf, sizeof(buf), p->streamid);
spa_pod_builder_string(b, "avb.streamid");
spa_pod_builder_string(b, buf);
spa_pod_builder_string(b, "avb.mtt");
spa_pod_builder_int(b, p->mtt);
spa_pod_builder_string(b, "avb.time-uncertainty");
spa_pod_builder_int(b, p->t_uncertainty);
spa_pod_builder_string(b, "avb.frames-per-pdu");
spa_pod_builder_int(b, p->frames_per_pdu);
spa_pod_builder_string(b, "avb.ptime-tolerance");
spa_pod_builder_int(b, p->ptime_tolerance);
spa_pod_builder_string(b, "latency.internal.rate");
spa_pod_builder_int(b, state->process_latency.rate);
spa_pod_builder_string(b, "latency.internal.ns");
spa_pod_builder_long(b, state->process_latency.ns);
spa_pod_builder_string(b, "clock.name");
spa_pod_builder_string(b, state->clock_name);
spa_pod_builder_pop(b, &f[0]);
return 0;
}
int spa_avb_parse_prop_params(struct state *state, struct spa_pod *params)
{
struct spa_pod_parser prs;
struct spa_pod_frame f;
int changed = 0;
if (params == NULL)
return 0;
spa_pod_parser_pod(&prs, params);
if (spa_pod_parser_push_struct(&prs, &f) < 0)
return 0;
while (true) {
const char *name;
struct spa_pod *pod;
char value[512];
if (spa_pod_parser_get_string(&prs, &name) < 0)
break;
if (spa_pod_parser_get_pod(&prs, &pod) < 0)
break;
if (spa_pod_is_string(pod)) {
spa_pod_copy_string(pod, sizeof(value), value);
} else if (spa_pod_is_int(pod)) {
snprintf(value, sizeof(value), "%d",
SPA_POD_VALUE(struct spa_pod_int, pod));
} else if (spa_pod_is_long(pod)) {
snprintf(value, sizeof(value), "%"PRIi64,
SPA_POD_VALUE(struct spa_pod_long, pod));
} else if (spa_pod_is_bool(pod)) {
snprintf(value, sizeof(value), "%s",
SPA_POD_VALUE(struct spa_pod_bool, pod) ?
"true" : "false");
} else
continue;
spa_log_info(state->log, "key:'%s' val:'%s'", name, value);
avb_set_param(state, name, value);
changed++;
}
if (changed > 0) {
state->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
state->params[NODE_Props].user++;
}
return changed;
}
int spa_avb_init(struct state *state, const struct spa_dict *info)
{
uint32_t i;
state->quantum_limit = 8192;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;
if (spa_streq(k, "clock.quantum-limit")) {
spa_atou32(s, &state->quantum_limit, 0);
} else {
avb_set_param(state, k, s);
}
}
state->ringbuffer_size = state->quantum_limit * 64;
state->ringbuffer_data = calloc(1, state->ringbuffer_size * 4);
spa_ringbuffer_init(&state->ring);
return 0;
}
int spa_avb_clear(struct state *state)
{
return 0;
}
static int spa_format_to_aaf(uint32_t format)
{
switch(format) {
case SPA_AUDIO_FORMAT_F32_BE: return SPA_AVBTP_AAF_FORMAT_FLOAT_32BIT;
case SPA_AUDIO_FORMAT_S32_BE: return SPA_AVBTP_AAF_FORMAT_INT_32BIT;
case SPA_AUDIO_FORMAT_S24_BE: return SPA_AVBTP_AAF_FORMAT_INT_24BIT;
case SPA_AUDIO_FORMAT_S16_BE: return SPA_AVBTP_AAF_FORMAT_INT_16BIT;
default: return SPA_AVBTP_AAF_FORMAT_USER;
}
}
static int calc_frame_size(uint32_t format)
{
switch(format) {
case SPA_AUDIO_FORMAT_F32_BE:
case SPA_AUDIO_FORMAT_S32_BE: return 4;
case SPA_AUDIO_FORMAT_S24_BE: return 3;
case SPA_AUDIO_FORMAT_S16_BE: return 2;
default: return 0;
}
}
static int spa_rate_to_aaf(uint32_t rate)
{
switch(rate) {
case 8000: return SPA_AVBTP_AAF_PCM_NSR_8KHZ;
case 16000: return SPA_AVBTP_AAF_PCM_NSR_16KHZ;
case 24000: return SPA_AVBTP_AAF_PCM_NSR_24KHZ;
case 32000: return SPA_AVBTP_AAF_PCM_NSR_32KHZ;
case 44100: return SPA_AVBTP_AAF_PCM_NSR_44_1KHZ;
case 48000: return SPA_AVBTP_AAF_PCM_NSR_48KHZ;
case 88200: return SPA_AVBTP_AAF_PCM_NSR_88_2KHZ;
case 96000: return SPA_AVBTP_AAF_PCM_NSR_96KHZ;
case 176400: return SPA_AVBTP_AAF_PCM_NSR_176_4KHZ;
case 192000: return SPA_AVBTP_AAF_PCM_NSR_192KHZ;
default: return SPA_AVBTP_AAF_PCM_NSR_USER;
}
}
int
spa_avb_enum_format(struct state *state, int seq, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
uint8_t buffer[4096];
struct spa_pod_builder b = { 0 };
struct spa_pod_frame f[2];
struct spa_pod *fmt;
int res = 0;
struct spa_result_node_params result;
uint32_t count = 0;
result.id = SPA_PARAM_EnumFormat;
result.next = start;
next:
result.index = result.next++;
if (result.index > 0)
return 0;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
spa_pod_builder_push_object(&b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_add(&b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
0);
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_format, 0);
if (state->default_format != 0) {
spa_pod_builder_id(&b, state->default_format);
} else {
spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_Enum, 0);
spa_pod_builder_id(&b, SPA_AUDIO_FORMAT_F32_BE);
spa_pod_builder_id(&b, SPA_AUDIO_FORMAT_F32_BE);
spa_pod_builder_id(&b, SPA_AUDIO_FORMAT_S32_BE);
spa_pod_builder_id(&b, SPA_AUDIO_FORMAT_S24_BE);
spa_pod_builder_id(&b, SPA_AUDIO_FORMAT_S16_BE);
spa_pod_builder_pop(&b, &f[1]);
}
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_rate, 0);
if (state->default_rate != 0) {
spa_pod_builder_int(&b, state->default_rate);
} else {
spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_Enum, 0);
spa_pod_builder_int(&b, 48000);
spa_pod_builder_int(&b, 8000);
spa_pod_builder_int(&b, 16000);
spa_pod_builder_int(&b, 24000);
spa_pod_builder_int(&b, 32000);
spa_pod_builder_int(&b, 44100);
spa_pod_builder_int(&b, 48000);
spa_pod_builder_int(&b, 88200);
spa_pod_builder_int(&b, 96000);
spa_pod_builder_int(&b, 176400);
spa_pod_builder_int(&b, 192000);
spa_pod_builder_pop(&b, &f[1]);
}
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_channels, 0);
if (state->default_channels != 0) {
spa_pod_builder_int(&b, state->default_channels);
} else {
spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_Range, 0);
spa_pod_builder_int(&b, 8);
spa_pod_builder_int(&b, 2);
spa_pod_builder_int(&b, 32);
spa_pod_builder_pop(&b, &f[1]);
}
fmt = spa_pod_builder_pop(&b, &f[0]);
if (spa_pod_filter(&b, &result.param, fmt, filter) < 0)
goto next;
spa_node_emit_result(&state->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return res;
}
static int setup_socket(struct state *state)
{
int fd, res;
struct ifreq req;
struct props *p = &state->props;
fd = socket(AF_PACKET, SOCK_DGRAM|SOCK_NONBLOCK, htons(ETH_P_TSN));
if (fd < 0) {
spa_log_error(state->log, "socket() failed: %m");
return -errno;
}
snprintf(req.ifr_name, sizeof(req.ifr_name), "%s", p->ifname);
res = ioctl(fd, SIOCGIFINDEX, &req);
if (res < 0) {
spa_log_error(state->log, "SIOCGIFINDEX %s failed: %m", p->ifname);
res = -errno;
goto error_close;
}
state->sock_addr.sll_family = AF_PACKET;
state->sock_addr.sll_protocol = htons(ETH_P_TSN);
state->sock_addr.sll_halen = ETH_ALEN;
state->sock_addr.sll_ifindex = req.ifr_ifindex;
memcpy(&state->sock_addr.sll_addr, p->addr, ETH_ALEN);
if (state->ports[0].direction == SPA_DIRECTION_INPUT) {
struct sock_txtime txtime_cfg;
res = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &p->prio,
sizeof(p->prio));
if (res < 0) {
spa_log_error(state->log, "setsockopt(SO_PRIORITY %d) failed: %m", p->prio);
res = -errno;
goto error_close;
}
txtime_cfg.clockid = CLOCK_TAI;
txtime_cfg.flags = 0;
res = setsockopt(fd, SOL_SOCKET, SO_TXTIME, &txtime_cfg,
sizeof(txtime_cfg));
if (res < 0) {
spa_log_error(state->log, "setsockopt(SO_TXTIME) failed: %m");
res = -errno;
goto error_close;
}
} else {
struct packet_mreq mreq = { 0 };
res = bind(fd, (struct sockaddr *) &state->sock_addr,
sizeof(state->sock_addr));
if (res < 0) {
spa_log_error(state->log, "bind() failed: %m");
res = -errno;
goto error_close;
}
mreq.mr_ifindex = req.ifr_ifindex;
mreq.mr_type = PACKET_MR_MULTICAST;
mreq.mr_alen = ETH_ALEN;
memcpy(&mreq.mr_address, p->addr, ETH_ALEN);
res = setsockopt(fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
&mreq, sizeof(struct packet_mreq));
if (res < 0) {
spa_log_error(state->log, "setsockopt(ADD_MEMBERSHIP) failed: %m");
res = -errno;
goto error_close;
}
}
state->sockfd = fd;
return 0;
error_close:
close(fd);
return res;
}
static int setup_packet(struct state *state, struct spa_audio_info *fmt)
{
struct spa_avbtp_packet_aaf *pdu;
struct props *p = &state->props;
ssize_t payload_size, hdr_size, pdu_size;
hdr_size = sizeof(*pdu);
payload_size = state->stride * p->frames_per_pdu;
pdu_size = hdr_size + payload_size;
if ((pdu = calloc(1, pdu_size)) == NULL)
return -errno;
SPA_AVBTP_PACKET_AAF_SET_SUBTYPE(pdu, SPA_AVBTP_SUBTYPE_AAF);
if (state->ports[0].direction == SPA_DIRECTION_INPUT) {
SPA_AVBTP_PACKET_AAF_SET_SV(pdu, 1);
SPA_AVBTP_PACKET_AAF_SET_STREAM_ID(pdu, p->streamid);
SPA_AVBTP_PACKET_AAF_SET_TV(pdu, 1);
SPA_AVBTP_PACKET_AAF_SET_FORMAT(pdu, spa_format_to_aaf(state->format));
SPA_AVBTP_PACKET_AAF_SET_NSR(pdu, spa_rate_to_aaf(state->rate));
SPA_AVBTP_PACKET_AAF_SET_CHAN_PER_FRAME(pdu, state->channels);
SPA_AVBTP_PACKET_AAF_SET_BIT_DEPTH(pdu, calc_frame_size(state->format)*8);
SPA_AVBTP_PACKET_AAF_SET_DATA_LEN(pdu, payload_size);
SPA_AVBTP_PACKET_AAF_SET_SP(pdu, SPA_AVBTP_AAF_PCM_SP_NORMAL);
}
state->pdu = pdu;
state->hdr_size = hdr_size;
state->payload_size = payload_size;
state->pdu_size = pdu_size;
return 0;
}
static int setup_msg(struct state *state)
{
state->iov[0].iov_base = state->pdu;
state->iov[0].iov_len = state->hdr_size;
state->iov[1].iov_base = state->pdu->payload;
state->iov[1].iov_len = state->payload_size;
state->iov[2].iov_base = state->pdu->payload;
state->iov[2].iov_len = 0;
state->msg.msg_name = &state->sock_addr;
state->msg.msg_namelen = sizeof(state->sock_addr);
state->msg.msg_iov = state->iov;
state->msg.msg_iovlen = 3;
state->msg.msg_control = state->control;
state->msg.msg_controllen = sizeof(state->control);
state->cmsg = CMSG_FIRSTHDR(&state->msg);
state->cmsg->cmsg_level = SOL_SOCKET;
state->cmsg->cmsg_type = SCM_TXTIME;
state->cmsg->cmsg_len = CMSG_LEN(sizeof(__u64));
return 0;
}
int spa_avb_clear_format(struct state *state)
{
close(state->sockfd);
close(state->timerfd);
free(state->pdu);
return 0;
}
int spa_avb_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags)
{
int res, frame_size;
struct props *p = &state->props;
frame_size = calc_frame_size(fmt->info.raw.format);
if (frame_size == 0)
return -EINVAL;
if (fmt->info.raw.rate == 0 ||
fmt->info.raw.channels == 0)
return -EINVAL;
state->format = fmt->info.raw.format;
state->rate = fmt->info.raw.rate;
state->channels = fmt->info.raw.channels;
state->blocks = 1;
state->stride = state->channels * frame_size;
if ((res = setup_socket(state)) < 0)
return res;
if ((res = spa_system_timerfd_create(state->data_system,
CLOCK_REALTIME, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0)
goto error_close_sockfd;
state->timerfd = res;
if ((res = setup_packet(state, fmt)) < 0)
return res;
if ((res = setup_msg(state)) < 0)
return res;
state->pdu_period = SPA_NSEC_PER_SEC * p->frames_per_pdu /
state->rate;
return 0;
error_close_sockfd:
close(state->sockfd);
return res;
}
void spa_avb_recycle_buffer(struct state *this, struct port *port, uint32_t buffer_id)
{
struct buffer *b = &port->buffers[buffer_id];
if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) {
spa_log_trace_fp(this->log, "%p: recycle buffer %u", this, buffer_id);
spa_list_append(&port->free, &b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT);
}
}
static void reset_buffers(struct state *this, struct port *port)
{
uint32_t i;
spa_list_init(&port->free);
spa_list_init(&port->ready);
for (i = 0; i < port->n_buffers; i++) {
struct buffer *b = &port->buffers[i];
if (port->direction == SPA_DIRECTION_INPUT) {
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
} else {
spa_list_append(&port->free, &b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT);
}
}
}
static inline bool is_pdu_valid(struct state *state)
{
uint8_t seq_num;
seq_num = SPA_AVBTP_PACKET_AAF_GET_SEQ_NUM(state->pdu);
if (state->prev_seq != 0 && (uint8_t)(state->prev_seq + 1) != seq_num) {
spa_log_warn(state->log, "dropped packets %d != %d", state->prev_seq + 1, seq_num);
}
state->prev_seq = seq_num;
return true;
}
static inline void
set_iovec(struct spa_ringbuffer *rbuf, void *buffer, uint32_t size,
uint32_t offset, struct iovec *iov, uint32_t len)
{
iov[0].iov_len = SPA_MIN(len, size - offset);
iov[0].iov_base = SPA_PTROFF(buffer, offset, void);
iov[1].iov_len = len - iov[0].iov_len;
iov[1].iov_base = buffer;
}
static void avb_on_socket_event(struct spa_source *source)
{
struct state *state = source->data;
ssize_t n;
int32_t filled;
uint32_t subtype, index;
struct spa_avbtp_packet_aaf *pdu = state->pdu;
bool overrun = false;
filled = spa_ringbuffer_get_write_index(&state->ring, &index);
overrun = filled > (int32_t) state->ringbuffer_size;
if (overrun) {
state->iov[1].iov_base = state->pdu->payload;
state->iov[1].iov_len = state->payload_size;
state->iov[2].iov_len = 0;
} else {
set_iovec(&state->ring,
state->ringbuffer_data,
state->ringbuffer_size,
index % state->ringbuffer_size,
&state->iov[1], state->payload_size);
}
n = recvmsg(state->sockfd, &state->msg, 0);
if (n < 0) {
spa_log_error(state->log, "recv() failed: %m");
return;
}
if (n != (ssize_t)state->pdu_size) {
spa_log_error(state->log, "AVB packet dropped: Invalid size");
return;
}
subtype = SPA_AVBTP_PACKET_AAF_GET_SUBTYPE(pdu);
if (subtype != SPA_AVBTP_SUBTYPE_AAF) {
spa_log_error(state->log, "non supported subtype %d", subtype);
return;
}
if (!is_pdu_valid(state)) {
spa_log_error(state->log, "AAF PDU invalid");
return;
}
if (overrun) {
spa_log_warn(state->log, "overrun %d", filled);
return;
}
index += state->payload_size;
spa_ringbuffer_write_update(&state->ring, index);
}
static void set_timeout(struct state *state, uint64_t next_time)
{
struct itimerspec ts;
uint64_t time_utc;
spa_log_trace(state->log, "set timeout %"PRIu64, next_time);
time_utc = next_time > TAI_OFFSET ? TAI_TO_UTC(next_time) : 0;
ts.it_value.tv_sec = time_utc / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time_utc % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
spa_system_timerfd_settime(state->data_system,
state->timer_source.fd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
}
static void update_position(struct state *state)
{
if (state->position) {
state->duration = state->position->clock.duration;
state->rate_denom = state->position->clock.rate.denom;
} else {
state->duration = 1024;
state->rate_denom = state->rate;
}
}
static int flush_write(struct state *state, uint64_t current_time)
{
int32_t avail, wanted;
uint32_t index;
uint64_t ptime, txtime;
int pdu_count;
struct props *p = &state->props;
struct spa_avbtp_packet_aaf *pdu = state->pdu;
ssize_t n;
avail = spa_ringbuffer_get_read_index(&state->ring, &index);
wanted = state->duration * state->stride;
if (avail < wanted) {
spa_log_warn(state->log, "underrun %d < %d", avail, wanted);
return -EPIPE;
}
pdu_count = state->duration / p->frames_per_pdu;
txtime = current_time + p->t_uncertainty;
ptime = txtime + p->mtt;
while (pdu_count--) {
*(__u64 *)CMSG_DATA(state->cmsg) = txtime;
set_iovec(&state->ring,
state->ringbuffer_data,
state->ringbuffer_size,
index % state->ringbuffer_size,
&state->iov[1], state->payload_size);
SPA_AVBTP_PACKET_AAF_SET_SEQ_NUM(pdu, state->pdu_seq++);
SPA_AVBTP_PACKET_AAF_SET_TIMESTAMP(pdu, ptime);
n = sendmsg(state->sockfd, &state->msg, MSG_NOSIGNAL);
if (n < 0 || n != (ssize_t)state->pdu_size) {
spa_log_error(state->log, "sendmdg() failed: %m");
}
txtime += state->pdu_period;
ptime += state->pdu_period;
index += state->payload_size;
}
spa_ringbuffer_read_update(&state->ring, index);
return 0;
}
int spa_avb_write(struct state *state)
{
int32_t filled;
uint32_t index, to_write;
struct port *port = &state->ports[0];
update_position(state);
filled = spa_ringbuffer_get_write_index(&state->ring, &index);
if (filled < 0) {
spa_log_warn(state->log, "underrun %d", filled);
} else if (filled > (int32_t)state->ringbuffer_size) {
spa_log_warn(state->log, "overrun %d", filled);
}
to_write = state->ringbuffer_size - filled;
while (!spa_list_is_empty(&port->ready) && to_write > 0) {
size_t n_bytes;
struct buffer *b;
struct spa_data *d;
uint32_t offs, avail, size;
b = spa_list_first(&port->ready, struct buffer, link);
d = b->buf->datas;
offs = SPA_MIN(d[0].chunk->offset + port->ready_offset, d[0].maxsize);
size = SPA_MIN(d[0].chunk->size, d[0].maxsize - offs);
avail = size - offs;
n_bytes = SPA_MIN(avail, to_write);
if (n_bytes == 0)
break;
spa_ringbuffer_write_data(&state->ring,
state->ringbuffer_data,
state->ringbuffer_size,
index % state->ringbuffer_size,
SPA_PTROFF(d[0].data, offs, void),
n_bytes);
port->ready_offset += n_bytes;
if (port->ready_offset >= size || avail == 0) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
port->io->buffer_id = b->id;
spa_log_trace_fp(state->log, "%p: reuse buffer %u", state, b->id);
spa_node_call_reuse_buffer(&state->callbacks, 0, b->id);
port->ready_offset = 0;
}
to_write -= n_bytes;
index += n_bytes;
}
spa_ringbuffer_write_update(&state->ring, index);
if (state->following)
flush_write(state, state->position->clock.nsec);
return 0;
}
static int handle_play(struct state *state, uint64_t current_time)
{
update_position(state);
flush_write(state, current_time);
spa_node_call_ready(&state->callbacks, SPA_STATUS_NEED_DATA);
return 0;
}
int spa_avb_read(struct state *state)
{
int32_t avail, wanted;
uint32_t index;
struct port *port = &state->ports[0];
struct buffer *b;
struct spa_data *d;
uint32_t n_bytes;
update_position(state);
avail = spa_ringbuffer_get_read_index(&state->ring, &index);
wanted = state->duration * state->stride;
if (spa_list_is_empty(&port->free)) {
spa_log_warn(state->log, "out of buffers");
return -EPIPE;
}
b = spa_list_first(&port->free, struct buffer, link);
d = b->buf->datas;
n_bytes = SPA_MIN(d[0].maxsize, (uint32_t)wanted);
if (avail < wanted) {
spa_log_warn(state->log, "capture underrun %d < %d", avail, wanted);
memset(d[0].data, 0, n_bytes);
} else {
spa_ringbuffer_read_data(&state->ring,
state->ringbuffer_data,
state->ringbuffer_size,
index % state->ringbuffer_size,
d[0].data, n_bytes);
index += n_bytes;
spa_ringbuffer_read_update(&state->ring, index);
}
d[0].chunk->offset = 0;
d[0].chunk->size = n_bytes;
d[0].chunk->stride = state->stride;
d[0].chunk->flags = 0;
spa_list_remove(&b->link);
spa_list_append(&port->ready, &b->link);
return 0;
}
static int handle_capture(struct state *state, uint64_t current_time)
{
struct port *port = &state->ports[0];
struct spa_io_buffers *io;
struct buffer *b;
spa_avb_read(state);
if (spa_list_is_empty(&port->ready))
return 0;
io = port->io;
if (io != NULL &&
(io->status != SPA_STATUS_HAVE_DATA || port->rate_match != NULL)) {
if (io->buffer_id < port->n_buffers)
spa_avb_recycle_buffer(state, port, io->buffer_id);
b = spa_list_first(&port->ready, struct buffer, link);
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
io->buffer_id = b->id;
io->status = SPA_STATUS_HAVE_DATA;
spa_log_trace_fp(state->log, "%p: output buffer:%d", state, b->id);
}
spa_node_call_ready(&state->callbacks, SPA_STATUS_HAVE_DATA);
return 0;
}
static void avb_on_timeout_event(struct spa_source *source)
{
struct state *state = source->data;
uint64_t expirations, current_time, duration;
struct spa_fraction rate;
int res;
spa_log_trace(state->log, "timeout");
if ((res = spa_system_timerfd_read(state->data_system,
state->timer_source.fd, &expirations)) < 0) {
if (res != -EAGAIN)
spa_log_error(state->log, "read timerfd: %s", spa_strerror(res));
return;
}
current_time = state->next_time;
if (SPA_LIKELY(state->position)) {
duration = state->position->clock.target_duration;
rate = state->position->clock.target_rate;
} else {
duration = 1024;
rate = SPA_FRACTION(1, 48000);
}
state->next_time = current_time + duration * SPA_NSEC_PER_SEC / rate.denom;
if (state->ports[0].direction == SPA_DIRECTION_INPUT)
handle_play(state, current_time);
else
handle_capture(state, current_time);
if (SPA_LIKELY(state->clock)) {
state->clock->nsec = current_time;
state->clock->rate = rate;
state->clock->position += state->clock->duration;
state->clock->duration = duration;
state->clock->delay = 0;
state->clock->rate_diff = 1.0;
state->clock->next_nsec = state->next_time;
}
set_timeout(state, state->next_time);
}
static int set_timers(struct state *state)
{
struct timespec now;
int res;
if ((res = spa_system_clock_gettime(state->data_system, CLOCK_TAI, &now)) < 0)
return res;
state->next_time = SPA_TIMESPEC_TO_NSEC(&now);
if (state->following) {
set_timeout(state, 0);
} else {
set_timeout(state, state->next_time);
}
return 0;
}
static inline bool is_following(struct state *state)
{
return state->position && state->clock && state->position->clock.id != state->clock->id;
}
static int do_reassign_follower(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct state *state = user_data;
spa_dll_init(&state->dll);
set_timers(state);
return 0;
}
int spa_avb_reassign_follower(struct state *state)
{
bool following, freewheel;
if (!state->started)
return 0;
following = is_following(state);
if (following != state->following) {
spa_log_debug(state->log, "%p: reassign follower %d->%d", state, state->following, following);
state->following = following;
spa_loop_locked(state->data_loop, do_reassign_follower, 0, NULL, 0, state);
}
freewheel = state->position &&
SPA_FLAG_IS_SET(state->position->clock.flags, SPA_IO_CLOCK_FLAG_FREEWHEEL);
if (state->freewheel != freewheel) {
spa_log_debug(state->log, "%p: freewheel %d->%d", state, state->freewheel, freewheel);
state->freewheel = freewheel;
}
return 0;
}
int spa_avb_start(struct state *state)
{
if (state->started)
return 0;
update_position(state);
spa_dll_init(&state->dll);
state->max_error = (256.0 * state->rate) / state->rate_denom;
state->following = is_following(state);
state->timer_source.func = avb_on_timeout_event;
state->timer_source.data = state;
state->timer_source.fd = state->timerfd;
state->timer_source.mask = SPA_IO_IN;
state->timer_source.rmask = 0;
spa_loop_add_source(state->data_loop, &state->timer_source);
state->pdu_seq = 0;
if (state->ports[0].direction == SPA_DIRECTION_OUTPUT) {
state->sock_source.func = avb_on_socket_event;
state->sock_source.data = state;
state->sock_source.fd = state->sockfd;
state->sock_source.mask = SPA_IO_IN;
state->sock_source.rmask = 0;
spa_loop_add_source(state->data_loop, &state->sock_source);
}
reset_buffers(state, &state->ports[0]);
set_timers(state);
state->started = true;
return 0;
}
static int do_remove_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct state *state = user_data;
spa_loop_remove_source(state->data_loop, &state->timer_source);
set_timeout(state, 0);
if (state->ports[0].direction == SPA_DIRECTION_OUTPUT)
spa_loop_remove_source(state->data_loop, &state->sock_source);
return 0;
}
int spa_avb_pause(struct state *state)
{
if (!state->started)
return 0;
spa_log_debug(state->log, "%p: pause", state);
spa_loop_locked(state->data_loop, do_remove_source, 0, NULL, 0, state);
state->started = false;
return 0;
}