pipewire/spa/plugins/audioconvert/audioconvert.c
Pauli Virtanen 68dc45cc62 audioconvert: simplify volume ramp generation
Don't use floating point accumulators, interpolate from sample position.
2025-10-26 14:12:19 +00:00

4368 lines
126 KiB
C

/* Spa */
/* SPDX-FileCopyrightText: Copyright © 2022 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <sys/mman.h>
#include <spa/support/plugin.h>
#include <spa/support/cpu.h>
#include <spa/support/loop.h>
#include <spa/support/log.h>
#include <spa/support/plugin-loader.h>
#include <spa/utils/result.h>
#include <spa/utils/list.h>
#include <spa/utils/json.h>
#include <spa/utils/names.h>
#include <spa/utils/string.h>
#include <spa/utils/ratelimit.h>
#include <spa/node/node.h>
#include <spa/node/io.h>
#include <spa/node/utils.h>
#include <spa/node/keys.h>
#include <spa/param/audio/format-utils.h>
#include <spa/param/audio/raw-json.h>
#include <spa/param/param.h>
#include <spa/param/latency-utils.h>
#include <spa/param/tag-utils.h>
#include <spa/pod/filter.h>
#include <spa/pod/dynamic.h>
#include <spa/debug/types.h>
#include <spa/control/ump-utils.h>
#include <spa/filter-graph/filter-graph.h>
#include "volume-ops.h"
#include "fmt-ops.h"
#include "channelmix-ops.h"
#include "resample.h"
#include "wavfile.h"
#undef SPA_LOG_TOPIC_DEFAULT
#define SPA_LOG_TOPIC_DEFAULT &log_topic
SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.audioconvert");
#define DEFAULT_RATE 48000
#define DEFAULT_CHANNELS 2
#define MAX_CHANNELS SPA_AUDIO_MAX_CHANNELS
#define MAX_ALIGN FMT_OPS_MAX_ALIGN
#define MAX_BUFFERS 32
#define MAX_DATAS MAX_CHANNELS
#define MAX_PORTS (MAX_CHANNELS+1)
#define MAX_STAGES 64
#define MAX_GRAPH 9 /* 8 active + 1 replacement slot */
#define DEFAULT_MUTE false
#define DEFAULT_VOLUME VOLUME_NORM
#define DEFAULT_MIN_VOLUME 0.0
#define DEFAULT_MAX_VOLUME 10.0
struct volumes {
bool mute;
uint32_t n_volumes;
float volumes[MAX_CHANNELS];
};
static void init_volumes(struct volumes *vol)
{
uint32_t i;
vol->mute = DEFAULT_MUTE;
vol->n_volumes = 0;
for (i = 0; i < MAX_CHANNELS; i++)
vol->volumes[i] = DEFAULT_VOLUME;
}
struct volume_ramp_params {
unsigned int volume_ramp_samples;
unsigned int volume_ramp_step_samples;
unsigned int volume_ramp_time;
unsigned int volume_ramp_step_time;
enum spa_audio_volume_ramp_scale scale;
float start;
float end;
uint32_t rate;
};
struct props {
float volume;
float min_volume;
float max_volume;
float prev_volume;
uint32_t n_channels;
uint32_t channel_map[MAX_CHANNELS];
struct volumes channel;
struct volumes soft;
struct volumes monitor;
unsigned int have_soft_volume:1;
unsigned int mix_disabled:1;
unsigned int resample_disabled:1;
unsigned int resample_quality;
double rate;
char wav_path[512];
unsigned int lock_volumes:1;
unsigned int filter_graph_disabled:1;
};
static void props_reset(struct props *props)
{
uint32_t i;
props->volume = DEFAULT_VOLUME;
props->min_volume = DEFAULT_MIN_VOLUME;
props->max_volume = DEFAULT_MAX_VOLUME;
props->n_channels = 0;
for (i = 0; i < MAX_CHANNELS; i++)
props->channel_map[i] = SPA_AUDIO_CHANNEL_UNKNOWN;
init_volumes(&props->channel);
init_volumes(&props->soft);
init_volumes(&props->monitor);
props->have_soft_volume = false;
props->mix_disabled = false;
props->resample_disabled = false;
props->resample_quality = RESAMPLE_DEFAULT_QUALITY;
props->rate = 1.0;
spa_zero(props->wav_path);
props->lock_volumes = false;
props->filter_graph_disabled = false;
}
struct buffer {
uint32_t id;
#define BUFFER_FLAG_QUEUED (1<<0)
#define BUFFER_FLAG_MAPPED (1<<1)
uint32_t flags;
struct spa_list link;
struct spa_buffer *buf;
void *datas[MAX_DATAS];
};
struct port {
uint32_t direction;
uint32_t id;
struct spa_io_buffers *io;
uint64_t info_all;
struct spa_port_info info;
#define IDX_EnumFormat 0
#define IDX_Meta 1
#define IDX_IO 2
#define IDX_Format 3
#define IDX_Buffers 4
#define IDX_Latency 5
#define IDX_Tag 6
#define N_PORT_PARAMS 7
struct spa_param_info params[N_PORT_PARAMS];
char position[16];
struct buffer buffers[MAX_BUFFERS];
uint32_t n_buffers;
struct spa_latency_info latency[2];
unsigned int have_latency:1;
struct spa_audio_info format;
unsigned int valid:1;
unsigned int have_format:1;
unsigned int is_dsp:1;
unsigned int is_monitor:1;
unsigned int is_control:1;
uint32_t blocks;
uint32_t stride;
uint32_t maxsize;
const struct spa_pod_sequence *ctrl;
uint32_t ctrl_offset;
struct spa_list queue;
};
struct dir {
struct port *ports[MAX_PORTS];
uint32_t n_ports;
enum spa_direction direction;
enum spa_param_port_config_mode mode;
struct spa_audio_info format;
unsigned int have_format:1;
unsigned int have_profile:1;
struct spa_pod *tag;
uint32_t remap[MAX_PORTS];
struct convert conv;
unsigned int need_remap:1;
unsigned int is_passthrough:1;
unsigned int control:1;
};
struct stage_context {
#define CTX_DATA_SRC 0
#define CTX_DATA_DST 1
#define CTX_DATA_REMAP_DST 2
#define CTX_DATA_REMAP_SRC 3
#define CTX_DATA_TMP_0 4
#define CTX_DATA_TMP_1 5
#define CTX_DATA_MAX 6
void **datas[CTX_DATA_MAX];
uint32_t in_samples;
uint32_t n_samples;
uint32_t n_out;
uint32_t src_idx;
uint32_t dst_idx;
uint32_t final_idx;
uint32_t tmp;
#define SRC_CONVERT_BIT (1<<0)
#define RESAMPLE_BIT (1<<1)
#define FILTER_BIT (1<<2)
#define MIX_BIT (1<<3)
#define DST_CONVERT_BIT (1<<4)
uint32_t bits;
struct port *ctrlport;
bool empty;
};
struct stage {
struct impl *impl;
uint32_t in_idx;
uint32_t out_idx;
void *data;
void (*run) (struct stage *stage, struct stage_context *c);
};
struct filter_graph {
struct impl *impl;
struct spa_list link;
int order;
struct spa_handle *handle;
struct spa_filter_graph *graph;
struct spa_hook listener;
uint32_t n_inputs;
uint32_t inputs_position[MAX_CHANNELS];
uint32_t n_outputs;
uint32_t outputs_position[MAX_CHANNELS];
uint32_t latency;
bool removing;
bool setup;
};
struct impl {
struct spa_handle handle;
struct spa_node node;
struct spa_log *log;
struct spa_cpu *cpu;
struct spa_loop *data_loop;
struct spa_plugin_loader *loader;
uint32_t n_graph;
struct filter_graph *filter_graph[MAX_GRAPH];
struct spa_list free_graphs;
struct spa_list active_graphs;
struct filter_graph graphs[MAX_GRAPH];
struct spa_process_latency_info latency;
int in_filter_props;
int filter_props_count;
struct stage stages[MAX_STAGES];
uint32_t n_stages;
uint32_t cpu_flags;
uint32_t max_align;
uint32_t quantum_limit;
enum spa_direction direction;
struct spa_ratelimit rate_limit;
struct props props;
struct spa_io_position *io_position;
struct spa_io_rate_match *io_rate_match;
uint64_t info_all;
struct spa_node_info info;
#define IDX_EnumPortConfig 0
#define IDX_PortConfig 1
#define IDX_PropInfo 2
#define IDX_Props 3
#define N_NODE_PARAMS 4
struct spa_param_info params[N_NODE_PARAMS];
struct spa_hook_list hooks;
unsigned int monitor:1;
unsigned int monitor_channel_volumes:1;
struct dir dir[2];
struct channelmix mix;
struct resample resample;
struct volume volume;
double rate_scale;
struct spa_pod_sequence *vol_ramp_sequence;
void *vol_ramp_sequence_data;
uint32_t vol_ramp_offset;
uint32_t in_offset;
uint32_t out_offset;
unsigned int started:1;
unsigned int setup:1;
unsigned int resample_peaks:1;
unsigned int ramp_volume:1;
unsigned int drained:1;
unsigned int rate_adjust:1;
unsigned int port_ignore_latency:1;
unsigned int monitor_passthrough:1;
unsigned int resample_passthrough:1;
bool recalc;
char group_name[128];
uint32_t maxsize;
uint32_t maxports;
uint32_t scratch_size;
uint32_t scratch_ports;
float *empty;
float *scratch;
float *tmp[2][MAX_PORTS];
float *tmp_datas[2][MAX_PORTS];
struct wav_file *wav_file;
};
#define CHECK_PORT(this,d,p) ((p) < this->dir[d].n_ports)
#define GET_PORT(this,d,p) (this->dir[d].ports[p])
#define GET_IN_PORT(this,p) GET_PORT(this,SPA_DIRECTION_INPUT,p)
#define GET_OUT_PORT(this,p) GET_PORT(this,SPA_DIRECTION_OUTPUT,p)
#define PORT_IS_DSP(this,d,p) (GET_PORT(this,d,p)->is_dsp)
#define PORT_IS_CONTROL(this,d,p) (GET_PORT(this,d,p)->is_control)
static void set_volume(struct impl *this);
static void emit_node_info(struct impl *this, bool full)
{
uint64_t old = full ? this->info.change_mask : 0;
if (full)
this->info.change_mask = this->info_all;
if (this->info.change_mask) {
if (this->info.change_mask & SPA_NODE_CHANGE_MASK_PARAMS) {
SPA_FOR_EACH_ELEMENT_VAR(this->params, p) {
if (p->user > 0) {
p->flags ^= SPA_PARAM_INFO_SERIAL;
p->user = 0;
}
}
}
spa_node_emit_info(&this->hooks, &this->info);
this->info.change_mask = old;
}
}
static void emit_port_info(struct impl *this, struct port *port, bool full)
{
uint64_t old = full ? port->info.change_mask : 0;
if (full)
port->info.change_mask = port->info_all;
if (port->info.change_mask) {
struct spa_dict_item items[5];
uint32_t n_items = 0;
if (PORT_IS_DSP(this, port->direction, port->id)) {
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_FORMAT_DSP, "32 bit float mono audio");
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_AUDIO_CHANNEL, port->position);
if (port->is_monitor)
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_MONITOR, "true");
if (this->port_ignore_latency)
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_IGNORE_LATENCY, "true");
} else if (PORT_IS_CONTROL(this, port->direction, port->id)) {
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_NAME, "control");
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_FORMAT_DSP, "8 bit raw midi");
}
if (this->group_name[0] != '\0')
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_GROUP, this->group_name);
port->info.props = &SPA_DICT_INIT(items, n_items);
if (port->info.change_mask & SPA_PORT_CHANGE_MASK_PARAMS) {
SPA_FOR_EACH_ELEMENT_VAR(port->params, p) {
if (p->user > 0) {
p->flags ^= SPA_PARAM_INFO_SERIAL;
p->user = 0;
}
}
}
spa_node_emit_port_info(&this->hooks, port->direction, port->id, &port->info);
port->info.change_mask = old;
}
}
static void emit_info(struct impl *this, bool full)
{
struct port *p;
uint32_t i;
emit_node_info(this, full);
for (i = 0; i < this->dir[SPA_DIRECTION_INPUT].n_ports; i++) {
if ((p = GET_IN_PORT(this, i)) && p->valid)
emit_port_info(this, p, full);
}
for (i = 0; i < this->dir[SPA_DIRECTION_OUTPUT].n_ports; i++) {
if ((p = GET_OUT_PORT(this, i)) && p->valid)
emit_port_info(this, p, full);
}
}
static int init_port(struct impl *this, enum spa_direction direction, uint32_t port_id,
uint32_t position, bool is_dsp, bool is_monitor, bool is_control)
{
struct port *port = GET_PORT(this, direction, port_id);
spa_assert(port_id < MAX_PORTS);
if (port == NULL) {
port = calloc(1, sizeof(struct port));
if (port == NULL)
return -errno;
this->dir[direction].ports[port_id] = port;
}
port->direction = direction;
port->id = port_id;
port->latency[SPA_DIRECTION_INPUT] = SPA_LATENCY_INFO(SPA_DIRECTION_INPUT);
port->latency[SPA_DIRECTION_OUTPUT] = SPA_LATENCY_INFO(SPA_DIRECTION_OUTPUT);
spa_type_audio_channel_make_short_name(position, port->position, sizeof(port->position), "UNK");
port->info = SPA_PORT_INFO_INIT();
port->info.change_mask = port->info_all = SPA_PORT_CHANGE_MASK_FLAGS |
SPA_PORT_CHANGE_MASK_PROPS |
SPA_PORT_CHANGE_MASK_PARAMS;
port->info.flags = SPA_PORT_FLAG_NO_REF |
SPA_PORT_FLAG_DYNAMIC_DATA;
port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ);
port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ);
port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ);
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE);
port->params[IDX_Tag] = SPA_PARAM_INFO(SPA_PARAM_Tag, SPA_PARAM_INFO_READWRITE);
port->info.params = port->params;
port->info.n_params = N_PORT_PARAMS;
port->n_buffers = 0;
port->have_format = false;
port->is_monitor = is_monitor;
port->is_dsp = is_dsp;
if (port->is_dsp) {
port->format.media_type = SPA_MEDIA_TYPE_audio;
port->format.media_subtype = SPA_MEDIA_SUBTYPE_dsp;
port->format.info.dsp.format = SPA_AUDIO_FORMAT_DSP_F32;
port->blocks = 1;
port->stride = 4;
}
port->is_control = is_control;
if (port->is_control) {
port->format.media_type = SPA_MEDIA_TYPE_application;
port->format.media_subtype = SPA_MEDIA_SUBTYPE_control;
port->blocks = 1;
port->stride = 1;
}
port->valid = true;
spa_list_init(&port->queue);
spa_log_debug(this->log, "%p: add port %d:%d position:%s %d %d %d",
this, direction, port_id, port->position, is_dsp,
is_monitor, is_control);
return 0;
}
static int deinit_port(struct impl *this, enum spa_direction direction, uint32_t port_id)
{
struct port *port = GET_PORT(this, direction, port_id);
if (port == NULL || !port->valid)
return -ENOENT;
port->valid = false;
spa_node_emit_port_info(&this->hooks, direction, port_id, NULL);
return 0;
}
static int node_param_enum_port_config(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
{
struct dir *dir = &this->dir[index];
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamPortConfig, id,
SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(dir->direction),
SPA_PARAM_PORT_CONFIG_mode, SPA_POD_CHOICE_ENUM_Id(4,
SPA_PARAM_PORT_CONFIG_MODE_none,
SPA_PARAM_PORT_CONFIG_MODE_none,
SPA_PARAM_PORT_CONFIG_MODE_dsp,
SPA_PARAM_PORT_CONFIG_MODE_convert),
SPA_PARAM_PORT_CONFIG_monitor, SPA_POD_CHOICE_Bool(false),
SPA_PARAM_PORT_CONFIG_control, SPA_POD_CHOICE_Bool(false));
break;
}
default:
return 0;
}
return 1;
}
static int node_param_port_config(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
{
struct dir *dir = &this->dir[index];
struct spa_pod_frame f[1];
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_ParamPortConfig, id);
spa_pod_builder_add(b,
SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(dir->direction),
SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(dir->mode),
SPA_PARAM_PORT_CONFIG_monitor, SPA_POD_Bool(this->monitor),
SPA_PARAM_PORT_CONFIG_control, SPA_POD_Bool(dir->control),
0);
if (dir->have_format) {
spa_pod_builder_prop(b, SPA_PARAM_PORT_CONFIG_format, 0);
spa_format_audio_raw_build(b, id, &dir->format.info.raw);
}
*param = spa_pod_builder_pop(b, &f[0]);
break;
}
default:
return 0;
}
return 1;
}
static int node_param_prop_info(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
struct props *p = &this->props;
struct spa_pod_frame f[2];
switch (index) {
case 0:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_volume),
SPA_PROP_INFO_description, SPA_POD_String("Volume"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME));
break;
case 1:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_mute),
SPA_PROP_INFO_description, SPA_POD_String("Mute"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->channel.mute));
break;
case 2:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_channelVolumes),
SPA_PROP_INFO_description, SPA_POD_String("Channel Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 3:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_channelMap),
SPA_PROP_INFO_description, SPA_POD_String("Channel Map"),
SPA_PROP_INFO_type, SPA_POD_Id(SPA_AUDIO_CHANNEL_UNKNOWN),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 4:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_monitorMute),
SPA_PROP_INFO_description, SPA_POD_String("Monitor Mute"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->monitor.mute));
break;
case 5:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_monitorVolumes),
SPA_PROP_INFO_description, SPA_POD_String("Monitor Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 6:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_softMute),
SPA_PROP_INFO_description, SPA_POD_String("Soft Mute"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->soft.mute));
break;
case 7:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_softVolumes),
SPA_PROP_INFO_description, SPA_POD_String("Soft Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 8:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("monitor.channel-volumes"),
SPA_PROP_INFO_description, SPA_POD_String("Monitor channel volume"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
this->monitor_channel_volumes),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 9:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.disable"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Channel mixing"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->mix_disabled),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 10:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.min-volume"),
SPA_PROP_INFO_description, SPA_POD_String("Minimum volume level"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->min_volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 11:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.max-volume"),
SPA_PROP_INFO_description, SPA_POD_String("Maximum volume level"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->max_volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 12:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.normalize"),
SPA_PROP_INFO_description, SPA_POD_String("Normalize Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
SPA_FLAG_IS_SET(this->mix.options, CHANNELMIX_OPTION_NORMALIZE)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 13:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.mix-lfe"),
SPA_PROP_INFO_description, SPA_POD_String("Mix LFE into channels"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
SPA_FLAG_IS_SET(this->mix.options, CHANNELMIX_OPTION_MIX_LFE)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 14:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.upmix"),
SPA_PROP_INFO_description, SPA_POD_String("Enable upmixing"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
SPA_FLAG_IS_SET(this->mix.options, CHANNELMIX_OPTION_UPMIX)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 15:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.lfe-cutoff"),
SPA_PROP_INFO_description, SPA_POD_String("LFE cutoff frequency"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.lfe_cutoff, 0.0, 1000.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 16:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.fc-cutoff"),
SPA_PROP_INFO_description, SPA_POD_String("FC cutoff frequency (Hz)"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.fc_cutoff, 0.0, 48000.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 17:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.rear-delay"),
SPA_PROP_INFO_description, SPA_POD_String("Rear channels delay (ms)"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.rear_delay, 0.0, 1000.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 18:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.stereo-widen"),
SPA_PROP_INFO_description, SPA_POD_String("Stereo widen"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.widen, 0.0, 1.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 19:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.hilbert-taps"),
SPA_PROP_INFO_description, SPA_POD_String("Taps for phase shift of rear"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(
this->mix.hilbert_taps, 0, MAX_TAPS),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 20:
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_PropInfo, id);
spa_pod_builder_add(b,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.upmix-method"),
SPA_PROP_INFO_description, SPA_POD_String("Upmix method to use"),
SPA_PROP_INFO_type, SPA_POD_String(
channelmix_upmix_info[this->mix.upmix].label),
SPA_PROP_INFO_params, SPA_POD_Bool(true),
0);
spa_pod_builder_prop(b, SPA_PROP_INFO_labels, 0);
spa_pod_builder_push_struct(b, &f[1]);
SPA_FOR_EACH_ELEMENT_VAR(channelmix_upmix_info, i) {
spa_pod_builder_string(b, i->label);
spa_pod_builder_string(b, i->description);
}
spa_pod_builder_pop(b, &f[1]);
*param = spa_pod_builder_pop(b, &f[0]);
break;
case 21:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_rate),
SPA_PROP_INFO_description, SPA_POD_String("Rate scaler"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Double(p->rate, 0.0, 10.0));
break;
case 22:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_quality),
SPA_PROP_INFO_name, SPA_POD_String("resample.quality"),
SPA_PROP_INFO_description, SPA_POD_String("Resample Quality"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->resample_quality, 0, 14),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 23:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("resample.disable"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Resampling"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->resample_disabled),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 24:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("dither.noise"),
SPA_PROP_INFO_description, SPA_POD_String("Add noise bits"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(this->dir[1].conv.noise_bits, 0, 16),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 25:
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_PropInfo, id);
spa_pod_builder_add(b,
SPA_PROP_INFO_name, SPA_POD_String("dither.method"),
SPA_PROP_INFO_description, SPA_POD_String("The dithering method"),
SPA_PROP_INFO_type, SPA_POD_String(
dither_method_info[this->dir[1].conv.method].label),
SPA_PROP_INFO_params, SPA_POD_Bool(true),
0);
spa_pod_builder_prop(b, SPA_PROP_INFO_labels, 0);
spa_pod_builder_push_struct(b, &f[1]);
SPA_FOR_EACH_ELEMENT_VAR(dither_method_info, i) {
spa_pod_builder_string(b, i->label);
spa_pod_builder_string(b, i->description);
}
spa_pod_builder_pop(b, &f[1]);
*param = spa_pod_builder_pop(b, &f[0]);
break;
case 26:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("debug.wav-path"),
SPA_PROP_INFO_description, SPA_POD_String("Path to WAV file"),
SPA_PROP_INFO_type, SPA_POD_String(p->wav_path),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 27:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.lock-volumes"),
SPA_PROP_INFO_description, SPA_POD_String("Disable volume updates"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->lock_volumes),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 28:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("audioconvert.filter-graph.disable"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Filter graph updates"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->filter_graph_disabled),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 29:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("audioconvert.filter-graph.N"),
SPA_PROP_INFO_description, SPA_POD_String("A filter graph to load"),
SPA_PROP_INFO_type, SPA_POD_String(""),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
default:
if (this->filter_graph[0] && this->filter_graph[0]->graph) {
return spa_filter_graph_enum_prop_info(this->filter_graph[0]->graph,
index - 30, b, param);
}
return 0;
}
return 1;
}
static int node_param_props(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
struct props *p = &this->props;
struct spa_pod_frame f[2];
switch (index) {
case 0:
spa_pod_builder_push_object(b, &f[0],
SPA_TYPE_OBJECT_Props, id);
spa_pod_builder_add(b,
SPA_PROP_volume, SPA_POD_Float(p->volume),
SPA_PROP_mute, SPA_POD_Bool(p->channel.mute),
SPA_PROP_channelVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float,
p->channel.n_volumes,
p->channel.volumes),
SPA_PROP_channelMap, SPA_POD_Array(sizeof(uint32_t),
SPA_TYPE_Id,
p->n_channels,
p->channel_map),
SPA_PROP_softMute, SPA_POD_Bool(p->soft.mute),
SPA_PROP_softVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float,
p->soft.n_volumes,
p->soft.volumes),
SPA_PROP_monitorMute, SPA_POD_Bool(p->monitor.mute),
SPA_PROP_monitorVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float,
p->monitor.n_volumes,
p->monitor.volumes),
0);
spa_pod_builder_prop(b, SPA_PROP_params, 0);
spa_pod_builder_push_struct(b, &f[1]);
spa_pod_builder_string(b, "monitor.channel-volumes");
spa_pod_builder_bool(b, this->monitor_channel_volumes);
spa_pod_builder_string(b, "channelmix.disable");
spa_pod_builder_bool(b, this->props.mix_disabled);
spa_pod_builder_string(b, "channelmix.min-volume");
spa_pod_builder_float(b, this->props.min_volume);
spa_pod_builder_string(b, "channelmix.max-volume");
spa_pod_builder_float(b, this->props.max_volume);
spa_pod_builder_string(b, "channelmix.normalize");
spa_pod_builder_bool(b, SPA_FLAG_IS_SET(this->mix.options,
CHANNELMIX_OPTION_NORMALIZE));
spa_pod_builder_string(b, "channelmix.mix-lfe");
spa_pod_builder_bool(b, SPA_FLAG_IS_SET(this->mix.options,
CHANNELMIX_OPTION_MIX_LFE));
spa_pod_builder_string(b, "channelmix.upmix");
spa_pod_builder_bool(b, SPA_FLAG_IS_SET(this->mix.options,
CHANNELMIX_OPTION_UPMIX));
spa_pod_builder_string(b, "channelmix.lfe-cutoff");
spa_pod_builder_float(b, this->mix.lfe_cutoff);
spa_pod_builder_string(b, "channelmix.fc-cutoff");
spa_pod_builder_float(b, this->mix.fc_cutoff);
spa_pod_builder_string(b, "channelmix.rear-delay");
spa_pod_builder_float(b, this->mix.rear_delay);
spa_pod_builder_string(b, "channelmix.stereo-widen");
spa_pod_builder_float(b, this->mix.widen);
spa_pod_builder_string(b, "channelmix.hilbert-taps");
spa_pod_builder_int(b, this->mix.hilbert_taps);
spa_pod_builder_string(b, "channelmix.upmix-method");
spa_pod_builder_string(b, channelmix_upmix_info[this->mix.upmix].label);
spa_pod_builder_string(b, "resample.quality");
spa_pod_builder_int(b, p->resample_quality);
spa_pod_builder_string(b, "resample.disable");
spa_pod_builder_bool(b, p->resample_disabled);
spa_pod_builder_string(b, "dither.noise");
spa_pod_builder_int(b, this->dir[1].conv.noise_bits);
spa_pod_builder_string(b, "dither.method");
spa_pod_builder_string(b, dither_method_info[this->dir[1].conv.method].label);
spa_pod_builder_string(b, "debug.wav-path");
spa_pod_builder_string(b, p->wav_path);
spa_pod_builder_string(b, "channelmix.lock-volumes");
spa_pod_builder_bool(b, p->lock_volumes);
spa_pod_builder_string(b, "audioconvert.filter-graph.disable");
spa_pod_builder_bool(b, p->filter_graph_disabled);
spa_pod_builder_string(b, "audioconvert.filter-graph");
spa_pod_builder_string(b, "");
spa_pod_builder_pop(b, &f[1]);
*param = spa_pod_builder_pop(b, &f[0]);
break;
default:
{
struct spa_filter_graph *graph;
int res;
if (index-1 >= this->n_graph)
return 0;
graph = this->filter_graph[index-1]->graph;
if (graph == NULL)
return 1;
res = spa_filter_graph_get_props(graph, b, param);
if (res == 0) {
*param = NULL;
return 1;
}
return res;
}
}
return 1;
}
static int impl_node_enum_params(void *object, int seq,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[4096];
struct spa_result_node_params result;
uint32_t count = 0;
int res = 0;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
param = NULL;
switch (id) {
case SPA_PARAM_EnumPortConfig:
res = node_param_enum_port_config(this, id, result.index, &param, &b);
break;
case SPA_PARAM_PortConfig:
res = node_param_port_config(this, id, result.index, &param, &b);
break;
case SPA_PARAM_PropInfo:
res = node_param_prop_info(this, id, result.index, &param, &b);
break;
case SPA_PARAM_Props:
res = node_param_props(this, id, result.index, &param, &b);
break;
default:
return 0;
}
if (res <= 0)
return res;
if (param == NULL || spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_debug(this->log, "%p: io %d %p/%zd", this, id, data, size);
switch (id) {
case SPA_IO_Position:
this->io_position = data;
break;
default:
return -ENOENT;
}
return 0;
}
static void port_update_latency(struct port *port,
const struct spa_latency_info *info, bool valid)
{
if (spa_latency_info_compare(info, &port->latency[info->direction]) != 0) {
port->latency[info->direction] = *info;
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[IDX_Latency].user++;
}
port->have_latency = valid;
}
static void recalc_latencies(struct impl *this, enum spa_direction direction)
{
struct spa_latency_info info;
enum spa_direction other = SPA_DIRECTION_REVERSE(direction);
struct port *port;
uint32_t i;
bool have_latency = false;
spa_latency_info_combine_start(&info, other);
for (i = 0; i < this->dir[direction].n_ports; i++) {
port = GET_PORT(this, direction, i);
if ((port->is_monitor) || !port->have_latency)
continue;
spa_log_debug(this->log, "%p: combine %d", this, i);
spa_latency_info_combine(&info, &port->latency[other]);
have_latency = true;
}
spa_latency_info_combine_finish(&info);
spa_process_latency_info_add(&this->latency, &info);
spa_log_debug(this->log, "%p: combined %s latency %f-%f %d-%d %"PRIu64"-%"PRIu64, this,
info.direction == SPA_DIRECTION_INPUT ? "input" : "output",
info.min_quantum, info.max_quantum,
info.min_rate, info.max_rate,
info.min_ns, info.max_ns);
for (i = 0; i < this->dir[other].n_ports; i++) {
port = GET_PORT(this, other, i);
if (port->is_monitor)
continue;
port_update_latency(port, &info, have_latency);
}
}
static void recalc_graph_latency(struct impl *impl)
{
struct filter_graph *g;
int32_t latency = 0;
spa_list_for_each(g, &impl->active_graphs, link)
latency += g->latency;
if (latency != impl->latency.rate) {
impl->latency.rate = latency;
recalc_latencies(impl, SPA_DIRECTION_INPUT);
recalc_latencies(impl, SPA_DIRECTION_OUTPUT);
}
}
static void update_graph_latency(struct filter_graph *g, uint32_t latency)
{
if (g->latency != latency) {
g->latency = latency;
recalc_graph_latency(g->impl);
}
}
static void graph_info(void *object, const struct spa_filter_graph_info *info)
{
struct filter_graph *g = object;
struct spa_dict *props = info->props;
uint32_t i;
if (g->removing)
return;
g->n_inputs = info->n_inputs;
g->n_outputs = info->n_outputs;
for (i = 0; props && i < props->n_items; i++) {
const char *k = props->items[i].key;
const char *s = props->items[i].value;
if (spa_streq(k, "n_inputs"))
spa_atou32(s, &g->n_inputs, 0);
else if (spa_streq(k, "n_outputs"))
spa_atou32(s, &g->n_outputs, 0);
else if (spa_streq(k, "inputs.audio.position"))
spa_audio_parse_position_n(s, strlen(s), g->inputs_position,
SPA_N_ELEMENTS(g->inputs_position), &g->n_inputs);
else if (spa_streq(k, "outputs.audio.position"))
spa_audio_parse_position_n(s, strlen(s), g->outputs_position,
SPA_N_ELEMENTS(g->outputs_position), &g->n_outputs);
else if (spa_streq(k, "latency")) {
double latency;
if (spa_atod(s, &latency))
update_graph_latency(g, (uint32_t)latency);
}
}
emit_info(g->impl, false);
}
static int apply_props(struct impl *impl, const struct spa_pod *props);
static void graph_apply_props(void *object, enum spa_direction direction, const struct spa_pod *props)
{
struct filter_graph *g = object;
struct impl *impl = g->impl;
if (g->removing)
return;
apply_props(impl, props);
emit_info(impl, false);
}
static void graph_props_changed(void *object, enum spa_direction direction)
{
struct filter_graph *g = object;
struct impl *impl = g->impl;
if (g->removing)
return;
impl->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
impl->params[IDX_Props].user++;
emit_info(impl, false);
}
struct spa_filter_graph_events graph_events = {
SPA_VERSION_FILTER_GRAPH_EVENTS,
.info = graph_info,
.apply_props = graph_apply_props,
.props_changed = graph_props_changed,
};
static int setup_filter_graph(struct impl *this, struct filter_graph *g,
uint32_t channels, uint32_t *position)
{
int res;
char rate_str[64], in_ports[64];
struct dir *dir;
if (g->graph == NULL || g->setup)
return 0;
dir = &this->dir[SPA_DIRECTION_REVERSE(this->direction)];
snprintf(rate_str, sizeof(rate_str), "%d", dir->format.info.raw.rate);
if (channels) {
snprintf(in_ports, sizeof(in_ports), "%d", channels);
g->n_inputs = channels;
if (position) {
memcpy(g->inputs_position, position, sizeof(uint32_t) * channels);
memcpy(g->outputs_position, position, sizeof(uint32_t) * channels);
}
}
spa_filter_graph_deactivate(g->graph);
res = spa_filter_graph_activate(g->graph,
&SPA_DICT_ITEMS(
SPA_DICT_ITEM(SPA_KEY_AUDIO_RATE, rate_str),
SPA_DICT_ITEM("filter-graph.n_inputs", channels ? in_ports : NULL)));
g->setup = res >= 0;
return res;
}
static int setup_channelmix(struct impl *this, uint32_t channels, uint32_t *position);
static void free_tmp(struct impl *this)
{
uint32_t i;
spa_log_debug(this->log, "free tmp %d", this->scratch_size);
free(this->empty);
this->empty = NULL;
this->scratch_size = 0;
this->scratch_ports = 0;
free(this->scratch);
this->scratch = NULL;
for (i = 0; i < MAX_PORTS; i++) {
free(this->tmp[0][i]);
this->tmp[0][i] = NULL;
free(this->tmp[1][i]);
this->tmp[1][i] = NULL;
this->tmp_datas[0][i] = NULL;
this->tmp_datas[1][i] = NULL;
}
}
static int ensure_tmp(struct impl *this)
{
uint32_t maxsize = this->maxsize, maxports = this->maxports;
uint32_t i;
float *empty, *scratch, *tmp[2];
if (maxsize > this->scratch_size) {
spa_log_info(this->log, "resize tmp %d -> %d", this->scratch_size, maxsize);
if ((empty = realloc(this->empty, maxsize + MAX_ALIGN)) != NULL)
this->empty = empty;
if ((scratch = realloc(this->scratch, maxsize + MAX_ALIGN)) != NULL)
this->scratch = scratch;
if (empty == NULL || scratch == NULL) {
free_tmp(this);
return -ENOMEM;
}
memset(this->empty, 0, maxsize + MAX_ALIGN);
for (i = 0; i < this->scratch_ports; i++) {
if ((tmp[0] = realloc(this->tmp[0][i], maxsize + MAX_ALIGN)) != NULL)
this->tmp[0][i] = tmp[0];
if ((tmp[1] = realloc(this->tmp[1][i], maxsize + MAX_ALIGN)) != NULL)
this->tmp[1][i] = tmp[1];
if (tmp[0] == NULL || tmp[1] == NULL) {
free_tmp(this);
return -ENOMEM;
}
this->tmp_datas[0][i] = SPA_PTR_ALIGN(this->tmp[0][i], MAX_ALIGN, void);
this->tmp_datas[1][i] = SPA_PTR_ALIGN(this->tmp[1][i], MAX_ALIGN, void);
}
this->scratch_size = maxsize;
}
if (maxports > this->scratch_ports) {
spa_log_info(this->log, "resize ports %d -> %d", this->scratch_ports, maxports);
for (i = this->scratch_ports; i < maxports; i++) {
if ((tmp[0] = malloc(maxsize + MAX_ALIGN)) != NULL)
this->tmp[0][i] = tmp[0];
if ((tmp[1] = malloc(maxsize + MAX_ALIGN)) != NULL)
this->tmp[1][i] = tmp[1];
if (tmp[0] == NULL || tmp[1] == NULL) {
free_tmp(this);
return -ENOMEM;
}
this->tmp_datas[0][i] = SPA_PTR_ALIGN(this->tmp[0][i], MAX_ALIGN, void);
this->tmp_datas[0][i] = SPA_PTR_ALIGN(this->tmp[0][i], MAX_ALIGN, void);
}
this->scratch_ports = maxports;
}
return 0;
}
static int setup_filter_graphs(struct impl *impl, bool force)
{
int res;
uint32_t channels, *position;
struct dir *in, *out;
struct filter_graph *g, *t;
in = &impl->dir[SPA_DIRECTION_INPUT];
out = &impl->dir[SPA_DIRECTION_OUTPUT];
channels = in->format.info.raw.channels;
position = in->format.info.raw.position;
impl->maxports = SPA_MAX(in->format.info.raw.channels, out->format.info.raw.channels);
spa_list_for_each_safe(g, t, &impl->active_graphs, link) {
if (g->removing)
continue;
if (force)
g->setup = false;
if ((res = setup_filter_graph(impl, g, channels, position)) < 0) {
g->removing = true;
spa_log_warn(impl->log, "failed to activate graph %d: %s", g->order,
spa_strerror(res));
} else {
channels = g->n_outputs;
position = g->outputs_position;
impl->maxports = SPA_MAX(impl->maxports, channels);
}
}
if ((res = ensure_tmp(impl)) < 0)
return res;
if ((res = setup_channelmix(impl, channels, position)) < 0)
return res;
return 0;
}
static int do_sync_filter_graph(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
struct impl *impl = user_data;
struct filter_graph *g;
impl->n_graph = 0;
spa_list_for_each(g, &impl->active_graphs, link)
if (g->setup && !g->removing)
impl->filter_graph[impl->n_graph++] = g;
impl->recalc = true;
return 0;
}
static void clean_filter_handles(struct impl *impl, bool force)
{
struct filter_graph *g, *t;
spa_list_for_each_safe(g, t, &impl->active_graphs, link) {
if (!g->removing)
continue;
spa_list_remove(&g->link);
if (g->graph)
spa_hook_remove(&g->listener);
if (g->handle)
spa_plugin_loader_unload(impl->loader, g->handle);
spa_zero(*g);
spa_list_append(&impl->free_graphs, &g->link);
}
recalc_graph_latency(impl);
}
static inline void insert_graph(struct spa_list *graphs, struct filter_graph *pending)
{
struct filter_graph *g;
spa_list_for_each(g, graphs, link) {
if (g->order < pending->order)
break;
}
spa_list_append(&g->link, &pending->link);
}
static int load_filter_graph(struct impl *impl, const char *graph, int order)
{
char qlimit[64];
int res;
void *iface;
struct spa_handle *new_handle = NULL;
struct filter_graph *pending, *g, *t;
if (impl->props.filter_graph_disabled)
return -EPERM;
/* find graph spot */
if (spa_list_is_empty(&impl->free_graphs))
return -ENOSPC;
/* find free graph for our new filter */
pending = spa_list_first(&impl->free_graphs, struct filter_graph, link);
pending->impl = impl;
pending->order = order;
pending->removing = false;
/* move active graphs with same order to inactive list */
spa_list_for_each_safe(g, t, &impl->active_graphs, link) {
if (g->order == order) {
g->removing = true;
spa_log_info(impl->log, "removing filter-graph order:%d", order);
}
}
if (graph != NULL && graph[0] != '\0') {
snprintf(qlimit, sizeof(qlimit), "%u", impl->quantum_limit);
new_handle = spa_plugin_loader_load(impl->loader, "filter.graph",
&SPA_DICT_ITEMS(
SPA_DICT_ITEM(SPA_KEY_LIBRARY_NAME, "filter-graph/libspa-filter-graph"),
SPA_DICT_ITEM("clock.quantum-limit", qlimit),
SPA_DICT_ITEM("filter.graph", graph)));
if (new_handle == NULL)
goto error;
res = spa_handle_get_interface(new_handle, SPA_TYPE_INTERFACE_FilterGraph, &iface);
if (res < 0 || iface == NULL)
goto error;
/* prepare new filter and swap it */
pending->graph = iface;
pending->handle = new_handle;
spa_filter_graph_add_listener(pending->graph,
&pending->listener, &graph_events, pending);
spa_list_remove(&pending->link);
insert_graph(&impl->active_graphs, pending);
spa_log_info(impl->log, "loading filter-graph order:%d", order);
}
if (impl->setup)
res = setup_filter_graphs(impl, false);
spa_loop_locked(impl->data_loop, do_sync_filter_graph, 0, NULL, 0, impl);
if (impl->in_filter_props == 0)
clean_filter_handles(impl, false);
impl->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
impl->params[IDX_PropInfo].user++;
impl->params[IDX_Props].user++;
return 0;
error:
if (new_handle != NULL)
spa_plugin_loader_unload(impl->loader, new_handle);
return -ENOTSUP;
}
static int audioconvert_set_param(struct impl *this, const char *k, const char *s, bool *disable_filter)
{
int res;
if (spa_streq(k, "monitor.channel-volumes"))
this->monitor_channel_volumes = spa_atob(s);
else if (spa_streq(k, "channelmix.disable"))
this->props.mix_disabled = spa_atob(s);
else if (spa_streq(k, "channelmix.min-volume"))
spa_atof(s, &this->props.min_volume);
else if (spa_streq(k, "channelmix.max-volume"))
spa_atof(s, &this->props.max_volume);
else if (spa_streq(k, "channelmix.normalize"))
SPA_FLAG_UPDATE(this->mix.options, CHANNELMIX_OPTION_NORMALIZE, spa_atob(s));
else if (spa_streq(k, "channelmix.mix-lfe"))
SPA_FLAG_UPDATE(this->mix.options, CHANNELMIX_OPTION_MIX_LFE, spa_atob(s));
else if (spa_streq(k, "channelmix.upmix"))
SPA_FLAG_UPDATE(this->mix.options, CHANNELMIX_OPTION_UPMIX, spa_atob(s));
else if (spa_streq(k, "channelmix.lfe-cutoff"))
spa_atof(s, &this->mix.lfe_cutoff);
else if (spa_streq(k, "channelmix.fc-cutoff"))
spa_atof(s, &this->mix.fc_cutoff);
else if (spa_streq(k, "channelmix.rear-delay"))
spa_atof(s, &this->mix.rear_delay);
else if (spa_streq(k, "channelmix.stereo-widen"))
spa_atof(s, &this->mix.widen);
else if (spa_streq(k, "channelmix.hilbert-taps"))
spa_atou32(s, &this->mix.hilbert_taps, 0);
else if (spa_streq(k, "channelmix.upmix-method"))
this->mix.upmix = channelmix_upmix_from_label(s);
else if (spa_streq(k, "resample.quality"))
this->props.resample_quality = atoi(s);
else if (spa_streq(k, "resample.disable"))
this->props.resample_disabled = spa_atob(s);
else if (spa_streq(k, "dither.noise"))
spa_atou32(s, &this->dir[1].conv.noise_bits, 0);
else if (spa_streq(k, "dither.method"))
this->dir[1].conv.method = dither_method_from_label(s);
else if (spa_streq(k, "debug.wav-path")) {
spa_scnprintf(this->props.wav_path,
sizeof(this->props.wav_path), "%s", s ? s : "");
}
else if (spa_streq(k, "channelmix.lock-volumes"))
this->props.lock_volumes = spa_atob(s);
else if (spa_strstartswith(k, "audioconvert.filter-graph.")) {
int order = atoi(k + strlen("audioconvert.filter-graph."));
if ((res = load_filter_graph(this, s, order)) < 0) {
spa_log_warn(this->log, "Can't load filter-graph %d: %s",
order, spa_strerror(res));
}
}
else if (spa_streq(k, "audioconvert.filter-graph.disable")) {
if (!*disable_filter)
*disable_filter = spa_atob(s);
}
else
return 0;
return 1;
}
static int parse_prop_params(struct impl *this, struct spa_pod *params)
{
struct spa_pod_parser prs;
struct spa_pod_frame f;
int changed = 0;
bool filter_graph_disabled = this->props.filter_graph_disabled;
spa_pod_parser_pod(&prs, params);
if (spa_pod_parser_push_struct(&prs, &f) < 0)
return 0;
while (true) {
const char *name;
struct spa_pod *pod;
char value[4096];
if (spa_pod_parser_get_string(&prs, &name) < 0)
break;
if (spa_pod_parser_get_pod(&prs, &pod) < 0)
break;
if (spa_pod_is_string(pod)) {
spa_pod_copy_string(pod, sizeof(value), value);
} else if (spa_pod_is_float(pod)) {
spa_dtoa(value, sizeof(value),
SPA_POD_VALUE(struct spa_pod_float, pod));
} else if (spa_pod_is_double(pod)) {
spa_dtoa(value, sizeof(value),
SPA_POD_VALUE(struct spa_pod_double, pod));
} else if (spa_pod_is_int(pod)) {
snprintf(value, sizeof(value), "%d",
SPA_POD_VALUE(struct spa_pod_int, pod));
} else if (spa_pod_is_long(pod)) {
snprintf(value, sizeof(value), "%"PRIi64,
SPA_POD_VALUE(struct spa_pod_long, pod));
} else if (spa_pod_is_bool(pod)) {
snprintf(value, sizeof(value), "%s",
SPA_POD_VALUE(struct spa_pod_bool, pod) ?
"true" : "false");
} else if (spa_pod_is_none(pod)) {
spa_zero(value);
} else
continue;
spa_log_info(this->log, "key:'%s' val:'%s'", name, value);
changed += audioconvert_set_param(this, name, value, &filter_graph_disabled);
}
if (changed) {
this->props.filter_graph_disabled = filter_graph_disabled;
if (this->setup)
channelmix_init(&this->mix);
}
return changed;
}
static int get_ramp_samples(struct impl *this, struct volume_ramp_params *vrp)
{
int samples = -1;
if (vrp->volume_ramp_samples)
samples = vrp->volume_ramp_samples;
else if (vrp->volume_ramp_time) {
samples = (vrp->volume_ramp_time * vrp->rate) / 1000;
spa_log_info(this->log, "volume ramp samples calculated from time is %d", samples);
}
return samples;
}
static int get_ramp_step_samples(struct impl *this, struct volume_ramp_params *vrp)
{
int samples = -1;
if (vrp->volume_ramp_step_samples)
samples = vrp->volume_ramp_step_samples;
else if (vrp->volume_ramp_step_time) {
/* convert the step time which is in nano seconds to seconds, round up */
samples = SPA_MAX(1u, vrp->volume_ramp_step_time/1000) * (vrp->rate/1000);
spa_log_debug(this->log, "volume ramp step samples calculated from time is %d", samples);
}
return samples;
}
static float get_volume_at_scale(struct volume_ramp_params *vrp, float value)
{
if (vrp->scale == SPA_AUDIO_VOLUME_RAMP_LINEAR || vrp->scale == SPA_AUDIO_VOLUME_RAMP_INVALID)
return value;
else if (vrp->scale == SPA_AUDIO_VOLUME_RAMP_CUBIC)
return (value * value * value);
return 0.0;
}
static struct spa_pod *generate_ramp_seq(struct impl *this, struct volume_ramp_params *vrp,
void *buffer, size_t size)
{
struct spa_pod_dynamic_builder b;
struct spa_pod_frame f[1];
float start = vrp->start, end = vrp->end;
int samples = get_ramp_samples(this, vrp);
int step = get_ramp_step_samples(this, vrp);
int offs = 0;
if (samples < 0 || step < 0 || (samples > 0 && step == 0))
return NULL;
spa_pod_dynamic_builder_init(&b, buffer, size, 4096);
spa_pod_builder_push_sequence(&b.b, &f[0], 0);
spa_log_info(this->log, "generating ramp sequence from %f to %f with "
"step %d/%d at scale %d", start, end, step, samples, vrp->scale);
while (1) {
float pos = (samples == 0) ? end :
SPA_CLAMP(start + (end - start) * offs / samples,
SPA_MIN(start, end), SPA_MAX(start, end));
float vas = get_volume_at_scale(vrp, pos);
spa_log_trace(this->log, "volume %d accum %f", offs, vas);
spa_pod_builder_control(&b.b, offs, SPA_CONTROL_Properties);
spa_pod_builder_add_object(&b.b,
SPA_TYPE_OBJECT_Props, 0,
SPA_PROP_volume, SPA_POD_Float(vas));
if (offs >= samples)
break;
offs = SPA_MIN(samples, offs + step);
}
return spa_pod_builder_pop(&b.b, &f[0]);
}
static void generate_volume_ramp(struct impl *this, struct volume_ramp_params *vrp,
void *buffer, size_t size)
{
void *sequence;
sequence = generate_ramp_seq(this, vrp, buffer, size);
if (!sequence)
spa_log_error(this->log, "unable to generate sequence");
this->vol_ramp_sequence = (struct spa_pod_sequence *) sequence;
this->vol_ramp_sequence_data = (void*)sequence == buffer ? NULL : sequence;
this->vol_ramp_offset = 0;
this->recalc = true;
}
static int apply_props(struct impl *this, const struct spa_pod *param)
{
struct spa_pod_prop *prop;
struct spa_pod_object *obj = (struct spa_pod_object *) param;
struct props *p = &this->props;
bool have_channel_volume = false;
bool have_soft_volume = false;
int changed = 0;
int vol_ramp_params_changed = 0;
struct volume_ramp_params vrp;
uint32_t n;
int32_t value;
uint32_t id;
spa_zero(vrp);
SPA_POD_OBJECT_FOREACH(obj, prop) {
switch (prop->key) {
case SPA_PROP_volume:
p->prev_volume = p->volume;
if (!p->lock_volumes &&
spa_pod_get_float(&prop->value, &p->volume) == 0) {
spa_log_debug(this->log, "%p new volume %f", this, p->volume);
changed++;
}
break;
case SPA_PROP_mute:
if (!p->lock_volumes &&
spa_pod_get_bool(&prop->value, &p->channel.mute) == 0) {
have_channel_volume = true;
changed++;
}
break;
case SPA_PROP_volumeRampSamples:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp.volume_ramp_samples = value;
spa_log_info(this->log, "%p volume ramp samples %d", this, value);
vol_ramp_params_changed++;
}
break;
case SPA_PROP_volumeRampStepSamples:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp.volume_ramp_step_samples = value;
spa_log_info(this->log, "%p volume ramp step samples is %d",
this, value);
}
break;
case SPA_PROP_volumeRampTime:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp.volume_ramp_time = value;
spa_log_info(this->log, "%p volume ramp time %d", this, value);
vol_ramp_params_changed++;
}
break;
case SPA_PROP_volumeRampStepTime:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp.volume_ramp_step_time = value;
spa_log_info(this->log, "%p volume ramp time %d", this, value);
}
break;
case SPA_PROP_volumeRampScale:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_id(&prop->value, &id) == 0 && id) {
vrp.scale = id;
spa_log_info(this->log, "%p volume ramp scale %d", this, id);
}
break;
case SPA_PROP_channelVolumes:
if (!p->lock_volumes &&
(n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
p->channel.volumes, SPA_N_ELEMENTS(p->channel.volumes))) > 0) {
have_channel_volume = true;
p->channel.n_volumes = n;
changed++;
}
break;
case SPA_PROP_channelMap:
if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Id,
p->channel_map, SPA_N_ELEMENTS(p->channel_map))) > 0) {
p->n_channels = n;
changed++;
}
break;
case SPA_PROP_softMute:
if (!p->lock_volumes &&
spa_pod_get_bool(&prop->value, &p->soft.mute) == 0) {
have_soft_volume = true;
changed++;
}
break;
case SPA_PROP_softVolumes:
if (!p->lock_volumes &&
(n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
p->soft.volumes, SPA_N_ELEMENTS(p->soft.volumes))) > 0) {
have_soft_volume = true;
p->soft.n_volumes = n;
changed++;
}
break;
case SPA_PROP_monitorMute:
if (spa_pod_get_bool(&prop->value, &p->monitor.mute) == 0)
changed++;
break;
case SPA_PROP_monitorVolumes:
if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
p->monitor.volumes, SPA_N_ELEMENTS(p->monitor.volumes))) > 0) {
p->monitor.n_volumes = n;
changed++;
}
break;
case SPA_PROP_rate:
if (spa_pod_get_double(&prop->value, &p->rate) == 0 &&
!this->rate_adjust && p->rate != 1.0) {
this->rate_adjust = true;
spa_log_info(this->log, "%p: activating adaptive resampler",
this);
}
break;
case SPA_PROP_params:
if (this->filter_props_count == 0)
changed += parse_prop_params(this, &prop->value);
break;
default:
break;
}
}
if (changed) {
if (have_soft_volume)
p->have_soft_volume = true;
else if (have_channel_volume)
p->have_soft_volume = false;
set_volume(this);
this->recalc = true;
}
if (!p->lock_volumes && vol_ramp_params_changed) {
struct dir *dir = &this->dir[SPA_DIRECTION_REVERSE(this->direction)];
vrp.start = p->prev_volume;
vrp.end = p->volume;
vrp.rate = dir->format.info.raw.rate;
generate_volume_ramp(this, &vrp, NULL, 0);
}
if (changed) {
this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
this->params[IDX_Props].user++;
}
return changed;
}
static int apply_midi(struct impl *this, const struct spa_pod *value)
{
struct props *p = &this->props;
uint8_t ev[8];
int ev_size;
const uint32_t *body = SPA_POD_BODY_CONST(value);
size_t size = SPA_POD_BODY_SIZE(value);
uint64_t state = 0;
ev_size = spa_ump_to_midi(&body, &size, ev, sizeof(ev), &state);
if (ev_size < 3)
return -EINVAL;
if ((ev[0] & 0xf0) != 0xb0 || ev[1] != 7)
return 0;
p->volume = ev[2] / 127.0f;
set_volume(this);
return 1;
}
static int reconfigure_mode(struct impl *this, enum spa_param_port_config_mode mode,
enum spa_direction direction, bool monitor, bool control, struct spa_audio_info *info)
{
struct dir *dir;
uint32_t i;
dir = &this->dir[direction];
if (dir->have_profile && this->monitor == monitor && dir->mode == mode &&
dir->control == control &&
(info == NULL || memcmp(&dir->format, info, sizeof(*info)) == 0))
return 0;
spa_log_debug(this->log, "%p: port config direction:%d monitor:%d "
"control:%d mode:%d %d", this, direction, monitor,
control, mode, dir->n_ports);
for (i = 0; i < dir->n_ports; i++) {
deinit_port(this, direction, i);
if (this->monitor && direction == SPA_DIRECTION_INPUT)
deinit_port(this, SPA_DIRECTION_OUTPUT, i+1);
}
this->monitor = monitor;
this->setup = false;
dir->control = control;
dir->have_profile = true;
dir->mode = mode;
switch (mode) {
case SPA_PARAM_PORT_CONFIG_MODE_dsp:
{
if (info) {
dir->n_ports = info->info.raw.channels;
dir->format = *info;
dir->format.info.raw.format = SPA_AUDIO_FORMAT_DSP_F32;
dir->format.info.raw.rate = 0;
dir->have_format = true;
} else {
dir->n_ports = 0;
}
if (this->monitor && direction == SPA_DIRECTION_INPUT)
this->dir[SPA_DIRECTION_OUTPUT].n_ports = dir->n_ports + 1;
for (i = 0; i < dir->n_ports; i++) {
uint32_t pos = info->info.raw.position[i];
init_port(this, direction, i, pos, true, false, false);
if (this->monitor && direction == SPA_DIRECTION_INPUT)
init_port(this, SPA_DIRECTION_OUTPUT, i+1,
pos, true, true, false);
}
break;
}
case SPA_PARAM_PORT_CONFIG_MODE_convert:
{
dir->n_ports = 1;
dir->have_format = false;
init_port(this, direction, 0, 0, false, false, false);
break;
}
case SPA_PARAM_PORT_CONFIG_MODE_none:
dir->n_ports = 0;
break;
default:
return -ENOTSUP;
}
if (direction == SPA_DIRECTION_INPUT && dir->control) {
i = dir->n_ports++;
init_port(this, direction, i, 0, false, false, true);
}
/* emit all port changes */
emit_info(this, false);
this->info.change_mask |= SPA_NODE_CHANGE_MASK_FLAGS | SPA_NODE_CHANGE_MASK_PARAMS;
this->info.flags &= ~SPA_NODE_FLAG_NEED_CONFIGURE;
this->params[IDX_Props].user++;
this->params[IDX_PortConfig].user++;
return 0;
}
static int node_set_param_port_config(struct impl *this, uint32_t flags,
const struct spa_pod *param)
{
struct spa_audio_info info = { 0, }, *infop = NULL;
struct spa_pod *format = NULL;
enum spa_direction direction;
enum spa_param_port_config_mode mode;
bool monitor = false, control = false;
int res;
if (param == NULL)
return 0;
if (spa_pod_parse_object(param,
SPA_TYPE_OBJECT_ParamPortConfig, NULL,
SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(&direction),
SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(&mode),
SPA_PARAM_PORT_CONFIG_monitor, SPA_POD_OPT_Bool(&monitor),
SPA_PARAM_PORT_CONFIG_control, SPA_POD_OPT_Bool(&control),
SPA_PARAM_PORT_CONFIG_format, SPA_POD_OPT_Pod(&format)) < 0)
return -EINVAL;
if (format) {
if (!spa_pod_is_object_type(format, SPA_TYPE_OBJECT_Format))
return -EINVAL;
if ((res = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0)
return res;
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_raw)
return -EINVAL;
if (spa_format_audio_raw_parse(format, &info.info.raw) < 0)
return -EINVAL;
if (info.info.raw.channels == 0 ||
info.info.raw.channels > MAX_CHANNELS)
return -EINVAL;
infop = &info;
}
return reconfigure_mode(this, mode, direction, monitor, control, infop);
}
static int node_set_param_props(struct impl *this, uint32_t flags,
const struct spa_pod *param)
{
bool have_graph = false;
struct filter_graph *g, *t;
if (param == NULL)
return 0;
this->filter_props_count = 0;
spa_list_for_each_safe(g, t, &this->active_graphs, link) {
if (g->removing)
continue;
have_graph = true;
this->in_filter_props++;
spa_filter_graph_set_props(g->graph, SPA_DIRECTION_INPUT, param);
this->filter_props_count++;
this->in_filter_props--;
}
if (!have_graph)
apply_props(this, param);
clean_filter_handles(this, false);
return 0;
}
static int impl_node_set_param(void *object, uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
switch (id) {
case SPA_PARAM_PortConfig:
res = node_set_param_port_config(this, flags, param);
break;
case SPA_PARAM_Props:
res = node_set_param_props(this, flags, param);
break;
default:
return -ENOENT;
}
emit_info(this, false);
return res;
}
static int int32_cmp(const void *v1, const void *v2)
{
int32_t a1 = *(int32_t*)v1;
int32_t a2 = *(int32_t*)v2;
if (a1 == 0 && a2 != 0)
return 1;
if (a2 == 0 && a1 != 0)
return -1;
return a1 - a2;
}
static int setup_in_convert(struct impl *this)
{
uint32_t i, j;
struct dir *in = &this->dir[SPA_DIRECTION_INPUT];
struct spa_audio_info src_info, dst_info;
int res;
bool remap = false;
src_info = in->format;
dst_info = src_info;
dst_info.info.raw.format = SPA_AUDIO_FORMAT_DSP_F32;
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d", this,
spa_debug_type_find_name(spa_type_audio_format, src_info.info.raw.format),
src_info.info.raw.channels,
src_info.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, dst_info.info.raw.format),
dst_info.info.raw.channels,
dst_info.info.raw.rate);
qsort(dst_info.info.raw.position, dst_info.info.raw.channels,
sizeof(uint32_t), int32_cmp);
for (i = 0; i < src_info.info.raw.channels; i++) {
for (j = 0; j < dst_info.info.raw.channels; j++) {
uint32_t pi, pj;
char b1[8], b2[8];
pi = src_info.info.raw.position[i];
pj = dst_info.info.raw.position[j];
if (pi != pj)
continue;
in->remap[i] = j;
if (i != j)
remap = true;
spa_log_debug(this->log, "%p: channel %d (%d) -> %d (%s -> %s)", this,
i, in->remap[i], j,
spa_type_audio_channel_make_short_name(pi, b1, 8, "UNK"),
spa_type_audio_channel_make_short_name(pj, b2, 8, "UNK"));
dst_info.info.raw.position[j] = -1;
break;
}
}
if (in->conv.free)
convert_free(&in->conv);
in->conv.src_fmt = src_info.info.raw.format;
in->conv.dst_fmt = dst_info.info.raw.format;
in->conv.n_channels = dst_info.info.raw.channels;
in->conv.cpu_flags = this->cpu_flags;
in->need_remap = remap;
if ((res = convert_init(&in->conv)) < 0)
return res;
spa_log_debug(this->log, "%p: got converter features %08x:%08x passthrough:%d remap:%d %s", this,
this->cpu_flags, in->conv.cpu_flags, in->conv.is_passthrough,
remap, in->conv.func_name);
return 0;
}
static void fix_volumes(struct impl *this, struct volumes *vols, uint32_t channels)
{
float s;
uint32_t i;
spa_log_debug(this->log, "%p %d -> %d", this, vols->n_volumes, channels);
if (vols->n_volumes > 0) {
s = 0.0f;
for (i = 0; i < vols->n_volumes; i++)
s += vols->volumes[i];
s /= vols->n_volumes;
} else {
s = 1.0f;
}
vols->n_volumes = channels;
for (i = 0; i < vols->n_volumes; i++)
vols->volumes[i] = s;
}
static int remap_volumes(struct impl *this, const struct spa_audio_info *info)
{
struct props *p = &this->props;
uint32_t i, j, target = info->info.raw.channels;
for (i = 0; i < p->n_channels; i++) {
for (j = i; j < target; j++) {
uint32_t pj = info->info.raw.position[j];
spa_log_debug(this->log, "%d %d: %d <-> %d", i, j,
p->channel_map[i], pj);
if (p->channel_map[i] != pj)
continue;
if (i != j) {
SPA_SWAP(p->channel_map[i], p->channel_map[j]);
SPA_SWAP(p->channel.volumes[i], p->channel.volumes[j]);
SPA_SWAP(p->soft.volumes[i], p->soft.volumes[j]);
SPA_SWAP(p->monitor.volumes[i], p->monitor.volumes[j]);
}
break;
}
}
p->n_channels = target;
for (i = 0; i < p->n_channels; i++)
p->channel_map[i] = info->info.raw.position[i];
if (target == 0)
return 0;
if (p->channel.n_volumes != target)
fix_volumes(this, &p->channel, target);
if (p->soft.n_volumes != target)
fix_volumes(this, &p->soft, target);
if (p->monitor.n_volumes != target)
fix_volumes(this, &p->monitor, target);
return 1;
}
static void set_volume(struct impl *this)
{
struct volumes *vol;
uint32_t i;
float volumes[MAX_CHANNELS];
struct dir *dir = &this->dir[this->direction];
spa_log_debug(this->log, "%p set volume %f have_format:%d", this, this->props.volume, dir->have_format);
if (dir->have_format)
remap_volumes(this, &dir->format);
if (this->mix.set_volume == NULL)
return;
if (this->props.have_soft_volume)
vol = &this->props.soft;
else
vol = &this->props.channel;
for (i = 0; i < vol->n_volumes; i++)
volumes[i] = SPA_CLAMPF(vol->volumes[dir->remap[i]],
this->props.min_volume, this->props.max_volume);
channelmix_set_volume(&this->mix,
SPA_CLAMPF(this->props.volume, this->props.min_volume, this->props.max_volume),
vol->mute, vol->n_volumes, volumes);
this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
this->params[IDX_Props].user++;
}
static char *format_position(char *str, size_t len, uint32_t channels, uint32_t *position)
{
uint32_t i, idx = 0;
char buf[8];
for (i = 0; i < channels; i++)
idx += snprintf(str + idx, len - idx, "%s%s", i == 0 ? "" : " ",
spa_type_audio_channel_make_short_name(position[i],
buf, sizeof(buf), "UNK"));
return str;
}
static int setup_channelmix(struct impl *this, uint32_t channels, uint32_t *position)
{
struct dir *in = &this->dir[SPA_DIRECTION_INPUT];
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
uint32_t i, src_chan, dst_chan, p;
uint64_t src_mask, dst_mask;
char str[1024];
int res;
src_chan = channels;
dst_chan = out->format.info.raw.channels;
for (i = 0, src_mask = 0; i < src_chan; i++) {
p = position[i];
src_mask |= 1ULL << (p < 64 ? p : 0);
}
for (i = 0, dst_mask = 0; i < dst_chan; i++) {
p = out->format.info.raw.position[i];
dst_mask |= 1ULL << (p < 64 ? p : 0);
}
spa_log_info(this->log, "in %s (%016"PRIx64")", format_position(str, sizeof(str),
src_chan, position), src_mask);
spa_log_info(this->log, "out %s (%016"PRIx64")", format_position(str, sizeof(str),
dst_chan, out->format.info.raw.position), dst_mask);
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d %08"PRIx64":%08"PRIx64, this,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
src_chan,
in->format.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
dst_chan,
in->format.info.raw.rate,
src_mask, dst_mask);
if (this->props.mix_disabled &&
(src_chan != dst_chan || src_mask != dst_mask))
return -EPERM;
this->mix.src_chan = src_chan;
this->mix.src_mask = src_mask;
this->mix.dst_chan = dst_chan;
this->mix.dst_mask = dst_mask;
this->mix.cpu_flags = this->cpu_flags;
this->mix.log = this->log;
this->mix.freq = in->format.info.raw.rate;
if ((res = channelmix_init(&this->mix)) < 0)
return res;
set_volume(this);
spa_log_debug(this->log, "%p: got channelmix features %08x:%08x flags:%08x %s",
this, this->cpu_flags, this->mix.cpu_flags,
this->mix.flags, this->mix.func_name);
return 0;
}
static int setup_resample(struct impl *this)
{
struct dir *in = &this->dir[SPA_DIRECTION_INPUT];
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
int res;
uint32_t channels;
if (this->direction == SPA_DIRECTION_INPUT)
channels = in->format.info.raw.channels;
else
channels = out->format.info.raw.channels;
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d", this,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
channels,
in->format.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
channels,
out->format.info.raw.rate);
if (this->props.resample_disabled && !this->resample_peaks &&
in->format.info.raw.rate != out->format.info.raw.rate)
return -EPERM;
if (this->resample.free)
resample_free(&this->resample);
this->resample.channels = channels;
this->resample.i_rate = in->format.info.raw.rate;
this->resample.o_rate = out->format.info.raw.rate;
this->resample.log = this->log;
this->resample.quality = this->props.resample_quality;
this->resample.cpu_flags = this->cpu_flags;
this->rate_adjust = this->props.rate != 1.0;
if (this->resample_peaks)
res = resample_peaks_init(&this->resample);
else
res = resample_native_init(&this->resample);
spa_log_debug(this->log, "%p: got resample features %08x:%08x %s",
this, this->cpu_flags, this->resample.cpu_flags,
this->resample.func_name);
return res;
}
static int calc_width(struct spa_audio_info *info)
{
switch (info->info.raw.format) {
case SPA_AUDIO_FORMAT_U8:
case SPA_AUDIO_FORMAT_U8P:
case SPA_AUDIO_FORMAT_S8:
case SPA_AUDIO_FORMAT_S8P:
case SPA_AUDIO_FORMAT_ULAW:
case SPA_AUDIO_FORMAT_ALAW:
return 1;
case SPA_AUDIO_FORMAT_S16P:
case SPA_AUDIO_FORMAT_S16:
case SPA_AUDIO_FORMAT_S16_OE:
return 2;
case SPA_AUDIO_FORMAT_S24P:
case SPA_AUDIO_FORMAT_S24:
case SPA_AUDIO_FORMAT_S24_OE:
return 3;
case SPA_AUDIO_FORMAT_F64P:
case SPA_AUDIO_FORMAT_F64:
case SPA_AUDIO_FORMAT_F64_OE:
return 8;
default:
return 4;
}
}
static int setup_out_convert(struct impl *this)
{
uint32_t i, j;
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
struct spa_audio_info src_info, dst_info;
int res;
bool remap = false;
dst_info = out->format;
src_info = dst_info;
src_info.info.raw.format = SPA_AUDIO_FORMAT_DSP_F32;
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d", this,
spa_debug_type_find_name(spa_type_audio_format, src_info.info.raw.format),
src_info.info.raw.channels,
src_info.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, dst_info.info.raw.format),
dst_info.info.raw.channels,
dst_info.info.raw.rate);
qsort(src_info.info.raw.position, src_info.info.raw.channels,
sizeof(uint32_t), int32_cmp);
for (i = 0; i < src_info.info.raw.channels; i++) {
for (j = 0; j < dst_info.info.raw.channels; j++) {
uint32_t pi, pj;
char b1[8], b2[8];
pi = src_info.info.raw.position[i];
pj = dst_info.info.raw.position[j];
if (pi != pj)
continue;
out->remap[i] = j;
if (i != j)
remap = true;
spa_log_debug(this->log, "%p: channel %d (%d) -> %d (%s -> %s)", this,
i, out->remap[i], j,
spa_type_audio_channel_make_short_name(pi, b1, 8, "UNK"),
spa_type_audio_channel_make_short_name(pj, b2, 8, "UNK"));
dst_info.info.raw.position[j] = -1;
break;
}
}
if (out->conv.free)
convert_free(&out->conv);
out->conv.src_fmt = src_info.info.raw.format;
out->conv.dst_fmt = dst_info.info.raw.format;
out->conv.rate = dst_info.info.raw.rate;
out->conv.n_channels = dst_info.info.raw.channels;
out->conv.cpu_flags = this->cpu_flags;
out->need_remap = remap;
if ((res = convert_init(&out->conv)) < 0)
return res;
spa_log_debug(this->log, "%p: got converter features %08x:%08x quant:%d:%d"
" passthrough:%d remap:%d %s", this,
this->cpu_flags, out->conv.cpu_flags, out->conv.method,
out->conv.noise_bits, out->conv.is_passthrough, remap, out->conv.func_name);
return 0;
}
static uint32_t resample_update_rate_match(struct impl *this, bool passthrough, uint32_t size, uint32_t queued)
{
uint32_t delay, match_size;
int32_t delay_frac;
if (passthrough) {
delay = 0;
delay_frac = 0;
match_size = size;
} else {
/* Only apply rate_scale if we're working in DSP mode (i.e. in driver rate) */
double scale = this->dir[SPA_DIRECTION_REVERSE(this->direction)].mode == SPA_PARAM_PORT_CONFIG_MODE_dsp ?
this->rate_scale : 1.0;
double rate = scale / this->props.rate;
double fdelay;
if (this->io_rate_match &&
SPA_FLAG_IS_SET(this->io_rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE))
rate *= this->io_rate_match->rate;
resample_update_rate(&this->resample, rate);
fdelay = resample_delay(&this->resample) + resample_phase(&this->resample);
if (this->direction == SPA_DIRECTION_INPUT) {
match_size = resample_in_len(&this->resample, size);
} else {
fdelay *= rate * this->resample.o_rate / this->resample.i_rate;
match_size = resample_out_len(&this->resample, size);
}
delay = (uint32_t)round(fdelay);
delay_frac = (int32_t)((fdelay - delay) * 1e9);
}
match_size -= SPA_MIN(match_size, queued);
spa_log_trace_fp(this->log, "%p: next match %u %u %u", this, match_size, size, queued);
if (this->io_rate_match) {
this->io_rate_match->delay = delay + queued;
this->io_rate_match->delay_frac = delay_frac;
this->io_rate_match->size = match_size;
}
return match_size;
}
static inline bool resample_is_passthrough(struct impl *this)
{
if (this->props.resample_disabled)
return true;
if (this->resample.i_rate != this->resample.o_rate)
return false;
if (this->rate_scale != 1.0)
return false;
if (this->rate_adjust)
return false;
if (this->io_rate_match != NULL &&
SPA_FLAG_IS_SET(this->io_rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE))
return false;
return true;
}
static int setup_convert(struct impl *this)
{
struct dir *in, *out;
uint32_t i, rate, duration;
struct port *p;
int res;
in = &this->dir[SPA_DIRECTION_INPUT];
out = &this->dir[SPA_DIRECTION_OUTPUT];
spa_log_debug(this->log, "%p: setup:%d in_format:%d out_format:%d", this,
this->setup, in->have_format, out->have_format);
if (this->setup)
return 0;
if (!in->have_format || !out->have_format)
return -EINVAL;
if (this->io_position != NULL) {
rate = this->io_position->clock.target_rate.denom;
duration = this->io_position->clock.target_duration;
} else {
rate = DEFAULT_RATE;
duration = this->quantum_limit;
}
/* in DSP mode we always convert to the DSP rate */
if (in->mode == SPA_PARAM_PORT_CONFIG_MODE_dsp)
in->format.info.raw.rate = rate;
if (out->mode == SPA_PARAM_PORT_CONFIG_MODE_dsp)
out->format.info.raw.rate = rate;
/* try to passthrough the rates */
if (in->format.info.raw.rate == 0)
in->format.info.raw.rate = out->format.info.raw.rate;
else if (out->format.info.raw.rate == 0)
out->format.info.raw.rate = in->format.info.raw.rate;
/* try to passthrough the channels */
if (in->format.info.raw.channels == 0)
in->format.info.raw.channels = out->format.info.raw.channels;
else if (out->format.info.raw.channels == 0)
out->format.info.raw.channels = in->format.info.raw.channels;
if (in->format.info.raw.rate == 0 || out->format.info.raw.rate == 0)
return -EINVAL;
if (in->format.info.raw.channels == 0 || out->format.info.raw.channels == 0)
return -EINVAL;
if ((res = setup_in_convert(this)) < 0)
return res;
if ((res = setup_filter_graphs(this, true)) < 0)
return res;
if ((res = setup_resample(this)) < 0)
return res;
if ((res = setup_out_convert(this)) < 0)
return res;
this->maxsize = this->quantum_limit * sizeof(float);
for (i = 0; i < in->n_ports; i++) {
p = GET_IN_PORT(this, i);
this->maxsize = SPA_MAX(this->maxsize, p->maxsize);
}
for (i = 0; i < out->n_ports; i++) {
p = GET_OUT_PORT(this, i);
this->maxsize = SPA_MAX(this->maxsize, p->maxsize);
}
if ((res = ensure_tmp(this)) < 0)
return res;
resample_update_rate_match(this, resample_is_passthrough(this), duration, 0);
this->setup = true;
this->recalc = true;
return 0;
}
static void reset_node(struct impl *this)
{
struct filter_graph *g;
spa_list_for_each(g, &this->active_graphs, link) {
if (g->graph)
spa_filter_graph_deactivate(g->graph);
g->setup = false;
}
if (this->resample.reset)
resample_reset(&this->resample);
this->in_offset = 0;
this->out_offset = 0;
}
static int impl_node_send_command(void *object, const struct spa_command *command)
{
struct impl *this = object;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(command != NULL, -EINVAL);
switch (SPA_NODE_COMMAND_ID(command)) {
case SPA_NODE_COMMAND_Start:
if (this->started)
return 0;
if ((res = setup_convert(this)) < 0)
return res;
this->started = true;
break;
case SPA_NODE_COMMAND_Suspend:
reset_node(this);
this->setup = false;
SPA_FALLTHROUGH;
case SPA_NODE_COMMAND_Pause:
this->started = false;
break;
case SPA_NODE_COMMAND_Flush:
reset_node(this);
break;
default:
return -ENOTSUP;
}
return 0;
}
static int
impl_node_add_listener(void *object,
struct spa_hook *listener,
const struct spa_node_events *events,
void *data)
{
struct impl *this = object;
struct spa_hook_list save;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_trace(this->log, "%p: add listener %p", this, listener);
spa_hook_list_isolate(&this->hooks, &save, listener, events, data);
emit_info(this, true);
spa_hook_list_join(&this->hooks, &save);
return 0;
}
static int
impl_node_set_callbacks(void *object,
const struct spa_node_callbacks *callbacks,
void *user_data)
{
return 0;
}
static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id,
const struct spa_dict *props)
{
return -ENOTSUP;
}
static int
impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id)
{
return -ENOTSUP;
}
static int port_param_enum_formats(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0:
if (port->is_dsp) {
struct spa_audio_info_dsp info;
info.format = SPA_AUDIO_FORMAT_DSP_F32;
*param = spa_format_audio_dsp_build(b, id, &info);
} else if (port->is_control) {
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_Format, id,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control));
} else {
struct spa_pod_frame f[1];
uint32_t rate = impl->io_position ?
impl->io_position->clock.target_rate.denom : DEFAULT_RATE;
spa_pod_builder_push_object(b, &f[0],
SPA_TYPE_OBJECT_Format, id);
spa_pod_builder_add(b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
SPA_FORMAT_AUDIO_format, SPA_POD_CHOICE_ENUM_Id(25,
SPA_AUDIO_FORMAT_F32P,
SPA_AUDIO_FORMAT_F32P,
SPA_AUDIO_FORMAT_F32,
SPA_AUDIO_FORMAT_F32_OE,
SPA_AUDIO_FORMAT_F64P,
SPA_AUDIO_FORMAT_F64,
SPA_AUDIO_FORMAT_F64_OE,
SPA_AUDIO_FORMAT_S32P,
SPA_AUDIO_FORMAT_S32,
SPA_AUDIO_FORMAT_S32_OE,
SPA_AUDIO_FORMAT_S24_32P,
SPA_AUDIO_FORMAT_S24_32,
SPA_AUDIO_FORMAT_S24_32_OE,
SPA_AUDIO_FORMAT_S24P,
SPA_AUDIO_FORMAT_S24,
SPA_AUDIO_FORMAT_S24_OE,
SPA_AUDIO_FORMAT_S16P,
SPA_AUDIO_FORMAT_S16,
SPA_AUDIO_FORMAT_S16_OE,
SPA_AUDIO_FORMAT_S8P,
SPA_AUDIO_FORMAT_S8,
SPA_AUDIO_FORMAT_U8P,
SPA_AUDIO_FORMAT_U8,
SPA_AUDIO_FORMAT_ULAW,
SPA_AUDIO_FORMAT_ALAW),
0);
if (!impl->props.resample_disabled) {
spa_pod_builder_add(b,
SPA_FORMAT_AUDIO_rate, SPA_POD_CHOICE_RANGE_Int(
rate, 1, INT32_MAX),
0);
}
spa_pod_builder_add(b,
SPA_FORMAT_AUDIO_channels, SPA_POD_CHOICE_RANGE_Int(
DEFAULT_CHANNELS, 1, MAX_CHANNELS),
0);
*param = spa_pod_builder_pop(b, &f[0]);
}
break;
default:
return 0;
}
return 1;
}
static int port_param_format(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
if (!port->have_format)
return -EIO;
if (index > 0)
return 0;
if (port->is_dsp)
*param = spa_format_audio_dsp_build(b, id, &port->format.info.dsp);
else if (port->is_control)
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_Format, id,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control));
else
*param = spa_format_audio_raw_build(b, id, &port->format.info.raw);
return 1;
}
static int port_param_buffers(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
uint32_t size;
if (!port->have_format)
return -EIO;
if (index > 0)
return 0;
size = impl->quantum_limit;
if (!port->is_dsp) {
uint32_t irate, orate;
struct dir *dir = &impl->dir[port->direction];
/* Convert ports are scaled so that they can always
* provide one quantum of data. irate is the rate of the
* data before it goes into the resampler. */
irate = dir->format.info.raw.rate;
/* scale the size for adaptive resampling */
size += size/2;
/* collect the other port rate. This is the output of the resampler
* and is usually one quantum. */
dir = &impl->dir[SPA_DIRECTION_REVERSE(port->direction)];
if (dir->mode == SPA_PARAM_PORT_CONFIG_MODE_dsp)
orate = impl->io_position ? impl->io_position->clock.target_rate.denom : DEFAULT_RATE;
else
orate = dir->format.info.raw.rate;
/* scale the buffer size when we can. Only do this when we downsample because
* then we need to ask more input data for one quantum. */
if (irate != 0 && orate != 0 && irate > orate)
size = SPA_SCALE32_UP(size, irate, orate);
}
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamBuffers, id,
SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int(1, 1, MAX_BUFFERS),
SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(port->blocks),
SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int(
size * port->stride,
16 * port->stride,
INT32_MAX),
SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->stride));
return 1;
}
static int port_param_meta(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamMeta, id,
SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header),
SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header)));
break;
default:
return 0;
}
return 1;
}
static int port_param_io(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamIO, id,
SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers),
SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers)));
break;
default:
return 0;
}
return 1;
}
static int port_param_latency(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
*param = spa_latency_build(b, id, &port->latency[index]);
break;
default:
return 0;
}
return 1;
}
static int port_param_tag(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
if (port->is_monitor)
index = index ^ 1;
*param = impl->dir[index].tag;
break;
default:
return 0;
}
return 1;
}
static int
impl_node_port_enum_params(void *object, int seq,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct port *port;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[4096];
struct spa_result_node_params result;
uint32_t count = 0;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
spa_log_debug(this->log, "%p: enum params port %d.%d %d %u",
this, direction, port_id, seq, id);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = GET_PORT(this, direction, port_id);
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
param = NULL;
switch (id) {
case SPA_PARAM_EnumFormat:
res = port_param_enum_formats(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Format:
res = port_param_format(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Buffers:
res = port_param_buffers(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Meta:
res = port_param_meta(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_IO:
res = port_param_io(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Latency:
res = port_param_latency(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Tag:
res = port_param_tag(this, port, id, result.index, &param, &b);
break;
default:
return -ENOENT;
}
if (res <= 0)
return res;
if (param == NULL || spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int clear_buffers(struct impl *this, struct port *port)
{
uint32_t i, j;
spa_log_debug(this->log, "%p: clear buffers %p %d", this, port, port->n_buffers);
for (i = 0; i < port->n_buffers; i++) {
struct buffer *b = &port->buffers[i];
if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_MAPPED)) {
for (j = 0; j < b->buf->n_datas; j++) {
if (b->datas[j]) {
spa_log_debug(this->log, "%p: unmap buffer %d data %d %p",
this, i, j, b->datas[j]);
munmap(b->datas[j], b->buf->datas[j].maxsize);
b->datas[j] = NULL;
}
}
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_MAPPED);
}
}
port->n_buffers = 0;
spa_list_init(&port->queue);
return 0;
}
static int port_set_latency(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
const struct spa_pod *latency)
{
struct impl *this = object;
struct port *port, *oport;
enum spa_direction other = SPA_DIRECTION_REVERSE(direction);
struct spa_latency_info info;
bool have_latency;;
spa_log_debug(this->log, "%p: set latency direction:%d id:%d %p",
this, direction, port_id, latency);
port = GET_PORT(this, direction, port_id);
if (latency == NULL) {
info = SPA_LATENCY_INFO(other);
have_latency = false;
} else {
if (spa_latency_parse(latency, &info) < 0 ||
info.direction != other)
return -EINVAL;
have_latency = true;
}
port_update_latency(port, &info, have_latency);
spa_log_debug(this->log, "%p: set %s latency %f-%f %d-%d %"PRIu64"-%"PRIu64, this,
info.direction == SPA_DIRECTION_INPUT ? "input" : "output",
info.min_quantum, info.max_quantum,
info.min_rate, info.max_rate,
info.min_ns, info.max_ns);
if (this->monitor_passthrough) {
if (port->is_monitor)
oport = GET_PORT(this, other, port_id-1);
else if (this->monitor && direction == SPA_DIRECTION_INPUT)
oport = GET_PORT(this, other, port_id+1);
else
return 0;
if (oport != NULL)
port_update_latency(oport, &info, have_latency);
}
recalc_latencies(this, direction);
return 0;
}
static int port_set_tag(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
const struct spa_pod *tag)
{
struct impl *this = object;
struct port *port, *oport;
enum spa_direction other = SPA_DIRECTION_REVERSE(direction);
uint32_t i;
spa_log_debug(this->log, "%p: set tag direction:%d id:%d %p",
this, direction, port_id, tag);
port = GET_PORT(this, direction, port_id);
if (port->is_monitor && !this->monitor_passthrough)
return 0;
if (tag != NULL) {
struct spa_tag_info info;
void *state = NULL;
if (spa_tag_parse(tag, &info, &state) < 0 ||
info.direction != other)
return -EINVAL;
}
if (spa_tag_compare(tag, this->dir[other].tag) != 0) {
free(this->dir[other].tag);
this->dir[other].tag = tag ? spa_pod_copy(tag) : NULL;
for (i = 0; i < this->dir[other].n_ports; i++) {
oport = GET_PORT(this, other, i);
oport->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
oport->params[IDX_Tag].user++;
}
}
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[IDX_Tag].user++;
return 0;
}
static int port_set_format(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
const struct spa_pod *format)
{
struct impl *this = object;
struct port *port;
int res;
port = GET_PORT(this, direction, port_id);
spa_log_debug(this->log, "%p: %d:%d set format", this, direction, port_id);
if (format == NULL) {
port->have_format = false;
clear_buffers(this, port);
} else {
struct spa_audio_info info = { 0 };
if ((res = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0) {
spa_log_error(this->log, "can't parse format %s", spa_strerror(res));
return res;
}
if (PORT_IS_DSP(this, direction, port_id)) {
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_dsp) {
spa_log_error(this->log, "unexpected types %d/%d",
info.media_type, info.media_subtype);
return -EINVAL;
}
if ((res = spa_format_audio_dsp_parse(format, &info.info.dsp)) < 0) {
spa_log_error(this->log, "can't parse format %s", spa_strerror(res));
return res;
}
if (info.info.dsp.format != SPA_AUDIO_FORMAT_DSP_F32) {
spa_log_error(this->log, "unexpected format %d<->%d",
info.info.dsp.format, SPA_AUDIO_FORMAT_DSP_F32);
return -EINVAL;
}
port->blocks = 1;
port->stride = 4;
}
else if (PORT_IS_CONTROL(this, direction, port_id)) {
if (info.media_type != SPA_MEDIA_TYPE_application ||
info.media_subtype != SPA_MEDIA_SUBTYPE_control) {
spa_log_error(this->log, "unexpected types %d/%d",
info.media_type, info.media_subtype);
return -EINVAL;
}
port->blocks = 1;
port->stride = 1;
}
else {
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_raw) {
spa_log_error(this->log, "unexpected types %d/%d",
info.media_type, info.media_subtype);
return -EINVAL;
}
if ((res = spa_format_audio_raw_parse(format, &info.info.raw)) < 0) {
spa_log_error(this->log, "can't parse format %s", spa_strerror(res));
return res;
}
if (info.info.raw.format == 0 ||
(!this->props.resample_disabled && info.info.raw.rate == 0) ||
info.info.raw.channels == 0 ||
info.info.raw.channels > MAX_CHANNELS) {
spa_log_error(this->log, "invalid format:%d rate:%d channels:%d",
info.info.raw.format, info.info.raw.rate,
info.info.raw.channels);
return -EINVAL;
}
port->stride = calc_width(&info);
if (SPA_AUDIO_FORMAT_IS_PLANAR(info.info.raw.format)) {
port->blocks = info.info.raw.channels;
} else {
port->stride *= info.info.raw.channels;
port->blocks = 1;
}
this->dir[direction].format = info;
this->dir[direction].have_format = true;
this->setup = false;
}
port->format = info;
port->have_format = true;
spa_log_debug(this->log, "%p: %d %d %d", this,
port_id, port->stride, port->blocks);
}
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
if (port->have_format) {
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ);
} else {
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
}
return 0;
}
static int
impl_node_port_set_param(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
int res = 0;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_debug(this->log, "%p: set param port %d.%d %u",
this, direction, port_id, id);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
switch (id) {
case SPA_PARAM_Latency:
res = port_set_latency(this, direction, port_id, flags, param);
break;
case SPA_PARAM_Tag:
res = port_set_tag(this, direction, port_id, flags, param);
break;
case SPA_PARAM_Format:
res = port_set_format(this, direction, port_id, flags, param);
break;
default:
return -ENOENT;
}
emit_info(this, false);
return res;
}
static inline void queue_buffer(struct impl *this, struct port *port, uint32_t id)
{
struct buffer *b = &port->buffers[id];
spa_log_trace_fp(this->log, "%p: queue buffer %d on port %d %d",
this, id, port->id, b->flags);
if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_QUEUED))
return;
spa_list_append(&port->queue, &b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_QUEUED);
}
static inline struct buffer *peek_buffer(struct impl *this, struct port *port)
{
struct buffer *b;
if (spa_list_is_empty(&port->queue))
return NULL;
b = spa_list_first(&port->queue, struct buffer, link);
spa_log_trace_fp(this->log, "%p: peek buffer %d/%d on port %d %u",
this, b->id, port->n_buffers, port->id, b->flags);
return b;
}
static inline void dequeue_buffer(struct impl *this, struct port *port, struct buffer *b)
{
spa_log_trace_fp(this->log, "%p: dequeue buffer %d on port %d %u",
this, b->id, port->id, b->flags);
if (!SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_QUEUED))
return;
spa_list_remove(&b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_QUEUED);
}
static int
impl_node_port_use_buffers(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
struct spa_buffer **buffers,
uint32_t n_buffers)
{
struct impl *this = object;
struct port *port;
uint32_t i, j, maxsize;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = GET_PORT(this, direction, port_id);
spa_log_debug(this->log, "%p: use buffers %d on port %d:%d",
this, n_buffers, direction, port_id);
if (n_buffers > 0 && !port->have_format) {
res = -EIO;
goto error;
}
if (n_buffers > MAX_BUFFERS) {
res = -ENOSPC;
goto error;
}
clear_buffers(this, port);
maxsize = this->quantum_limit * sizeof(float);
for (i = 0; i < n_buffers; i++) {
struct buffer *b;
uint32_t n_datas = buffers[i]->n_datas;
struct spa_data *d = buffers[i]->datas;
if (n_datas > MAX_DATAS) {
res = -ENOSPC;
goto error;
}
b = &port->buffers[i];
b->id = i;
b->flags = 0;
b->buf = buffers[i];
if (n_datas != port->blocks) {
spa_log_error(this->log, "%p: invalid blocks %d on buffer %d",
this, n_datas, i);
return -EINVAL;
}
for (j = 0; j < n_datas; j++) {
void *data = d[j].data;
if (data == NULL && SPA_FLAG_IS_SET(d[j].flags, SPA_DATA_FLAG_MAPPABLE)) {
int prot = 0;
if (SPA_FLAG_IS_SET(d[j].flags, SPA_DATA_FLAG_READABLE))
prot |= PROT_READ;
if (SPA_FLAG_IS_SET(d[j].flags, SPA_DATA_FLAG_WRITABLE))
prot |= PROT_WRITE;
data = mmap(NULL, d[j].maxsize,
prot, MAP_SHARED, d[j].fd, d[j].mapoffset);
if (data == MAP_FAILED) {
spa_log_error(this->log, "%p: mmap failed %d on buffer %d %d %p: %m",
this, j, i, d[j].type, data);
res = -EINVAL;
goto error;
}
SPA_FLAG_SET(b->flags, BUFFER_FLAG_MAPPED);
spa_log_debug(this->log, "%p: mmap %d on buffer %d %d %p %p",
this, j, i, d[j].type, data, b);
}
if (data == NULL) {
spa_log_error(this->log, "%p: invalid memory %d on buffer %d %d %p",
this, j, i, d[j].type, data);
res = -EINVAL;
goto error;
} else if (!SPA_IS_ALIGNED(data, this->max_align)) {
spa_log_warn(this->log, "%p: memory %d on buffer %d not aligned",
this, j, i);
}
b->datas[j] = data;
maxsize = SPA_MAX(maxsize, d[j].maxsize);
}
if (direction == SPA_DIRECTION_OUTPUT)
queue_buffer(this, port, i);
port->n_buffers++;
}
port->maxsize = maxsize;
return 0;
error:
clear_buffers(this, port);
return res;
}
struct io_data {
struct port *port;
void *data;
size_t size;
};
static int do_set_port_io(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
const struct io_data *d = user_data;
d->port->io = d->data;
return 0;
}
static int
impl_node_port_set_io(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t id, void *data, size_t size)
{
struct impl *this = object;
struct port *port;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_debug(this->log, "%p: set io %d on port %d:%d %p",
this, id, direction, port_id, data);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = GET_PORT(this, direction, port_id);
switch (id) {
case SPA_IO_Buffers:
if (this->data_loop) {
struct io_data d = { .port = port, .data = data, .size = size };
spa_loop_locked(this->data_loop, do_set_port_io, 0, NULL, 0, &d);
}
else
port->io = data;
break;
case SPA_IO_RateMatch:
this->io_rate_match = data;
break;
default:
return -ENOENT;
}
return 0;
}
static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id)
{
struct impl *this = object;
struct port *port;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, SPA_DIRECTION_OUTPUT, port_id), -EINVAL);
port = GET_OUT_PORT(this, port_id);
queue_buffer(this, port, buffer_id);
return 0;
}
static int channelmix_process_apply_sequence(struct impl *this,
const struct spa_pod_sequence *sequence, uint32_t *processed_offset,
void *SPA_RESTRICT dst[], const void *SPA_RESTRICT src[],
uint32_t n_samples)
{
struct spa_pod_control *c, *prev = NULL;
uint32_t avail_samples = n_samples;
uint32_t i;
const float *s[MAX_PORTS], **ss = (const float**) src;
float *d[MAX_PORTS], **sd = (float **) dst;
const struct spa_pod_sequence_body *body = &(sequence)->body;
uint32_t size = SPA_POD_BODY_SIZE(sequence);
bool end = false;
c = spa_pod_control_first(body);
while (true) {
uint32_t chunk;
if (c == NULL || !spa_pod_control_is_inside(body, size, c)) {
c = NULL;
end = true;
}
if (avail_samples == 0)
break;
/* ignore old control offsets */
if (c != NULL) {
if (c->offset <= *processed_offset) {
prev = c;
if (c != NULL)
c = spa_pod_control_next(c);
continue;
}
chunk = SPA_MIN(avail_samples, c->offset - *processed_offset);
spa_log_trace_fp(this->log, "%p: process %d-%d %d/%d", this,
*processed_offset, c->offset, chunk, avail_samples);
} else {
chunk = avail_samples;
spa_log_trace_fp(this->log, "%p: process remain %d", this, chunk);
}
if (prev) {
switch (prev->type) {
case SPA_CONTROL_UMP:
apply_midi(this, &prev->value);
break;
case SPA_CONTROL_Properties:
apply_props(this, &prev->value);
break;
default:
continue;
}
}
if (ss == (const float**)src && chunk != avail_samples) {
for (i = 0; i < this->mix.src_chan; i++)
s[i] = ss[i];
for (i = 0; i < this->mix.dst_chan; i++)
d[i] = sd[i];
ss = s;
sd = d;
}
channelmix_process(&this->mix, (void**)sd, (const void**)ss, chunk);
if (chunk != avail_samples) {
for (i = 0; i < this->mix.src_chan; i++)
ss[i] += chunk;
for (i = 0; i < this->mix.dst_chan; i++)
sd[i] += chunk;
}
avail_samples -= chunk;
*processed_offset += chunk;
}
return end ? 1 : 0;
}
static inline uint32_t resample_get_in_size(struct impl *this, bool passthrough, uint32_t out_size)
{
uint32_t match_size = passthrough ? out_size : resample_in_len(&this->resample, out_size);
spa_log_trace_fp(this->log, "%p: current match %u", this, match_size);
return match_size;
}
static uint64_t get_time_ns(struct impl *impl)
{
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) < 0)
return 0;
return SPA_TIMESPEC_TO_NSEC(&now);
}
static uint32_t get_dst_idx(struct stage_context *ctx)
{
uint32_t res;
if (ctx->bits == 0)
res = ctx->final_idx;
else
res = CTX_DATA_TMP_0 + ((ctx->tmp++) & 1);
return res;
}
static void run_wav_stage(struct stage *stage, struct stage_context *c)
{
struct impl *impl = stage->impl;
const void **src = (const void **)c->datas[stage->in_idx];
if (SPA_UNLIKELY(impl->props.wav_path[0])) {
if (impl->wav_file == NULL) {
struct wav_file_info info;
info.info = impl->dir[impl->direction].format;
impl->wav_file = wav_file_open(impl->props.wav_path,
"w", &info);
if (impl->wav_file == NULL)
spa_log_warn(impl->log, "can't open wav path: %m");
}
if (impl->wav_file) {
wav_file_write(impl->wav_file, src, c->n_samples);
} else {
spa_zero(impl->props.wav_path);
}
} else if (impl->wav_file != NULL) {
wav_file_close(impl->wav_file);
impl->wav_file = NULL;
impl->recalc = true;
}
}
static void add_wav_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->src_idx;
s->data = NULL;
s->run = run_wav_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
}
static void run_dst_remap_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_OUTPUT];
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
c->datas[s->out_idx][i] = c->datas[s->in_idx][dir->remap[i]];
spa_log_trace_fp(impl->log, "%p: output remap %d -> %d", impl, i, dir->remap[i]);
}
}
static void add_dst_remap_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->in_idx = ctx->dst_idx;
s->out_idx = CTX_DATA_REMAP_DST;
s->data = NULL;
s->run = run_dst_remap_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->dst_idx = CTX_DATA_REMAP_DST;
ctx->final_idx = CTX_DATA_REMAP_DST;
}
static void run_src_remap_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_INPUT];
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
c->datas[s->out_idx][dir->remap[i]] = c->datas[s->in_idx][i];
spa_log_trace_fp(impl->log, "%p: input remap %d -> %d", impl, dir->remap[i], i);
}
}
static void add_src_remap_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = CTX_DATA_REMAP_SRC;
s->data = NULL;
s->run = run_src_remap_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = CTX_DATA_REMAP_SRC;
}
static void run_src_convert_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_INPUT];
void *remap_src_datas[MAX_PORTS], **dst;
spa_log_trace_fp(impl->log, "%p: input convert %d", impl, c->n_samples);
if (dir->need_remap) {
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
remap_src_datas[i] = c->datas[s->out_idx][dir->remap[i]];
spa_log_trace_fp(impl->log, "%p: input remap %d -> %d", impl, dir->remap[i], i);
}
dst = remap_src_datas;
} else {
dst = c->datas[s->out_idx];
}
if (c->empty && dir->conv.clear)
convert_clear(&dir->conv, dst, c->n_samples);
else
convert_process(&dir->conv, dst, (const void**)c->datas[s->in_idx], c->n_samples);
}
static void add_src_convert_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
SPA_FLAG_CLEAR(ctx->bits, SRC_CONVERT_BIT);
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = get_dst_idx(ctx);
s->data = NULL;
s->run = run_src_convert_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = s->out_idx;
}
static void run_resample_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
uint32_t in_len = c->n_samples;
uint32_t out_len = c->n_out;
resample_process(&impl->resample, (const void**)c->datas[s->in_idx], &in_len,
c->datas[s->out_idx], &out_len);
spa_log_trace_fp(impl->log, "%p: resample %d/%d -> %d/%d", impl,
c->n_samples, in_len, c->n_out, out_len);
c->in_samples = in_len;
c->n_samples = out_len;
}
static void add_resample_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
SPA_FLAG_CLEAR(ctx->bits, RESAMPLE_BIT);
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = get_dst_idx(ctx);
s->data = NULL;
s->run = run_resample_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = s->out_idx;
}
static void run_filter_stage(struct stage *s, struct stage_context *c)
{
struct filter_graph *fg = s->data;
spa_log_trace_fp(s->impl->log, "%p: filter-graph %d", s->impl, c->n_samples);
spa_filter_graph_process(fg->graph, (const void **)c->datas[s->in_idx],
c->datas[s->out_idx], c->n_samples);
}
static void add_filter_stage(struct impl *impl, uint32_t i, struct filter_graph *fg, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = get_dst_idx(ctx);
s->data = fg;
s->run = run_filter_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = s->out_idx;
}
static void run_channelmix_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
void **out_datas = c->datas[s->out_idx];
const void **in_datas = (const void**)c->datas[s->in_idx];
struct port *ctrlport = c->ctrlport;
spa_log_trace_fp(impl->log, "%p: channelmix %d", impl, c->n_samples);
if (ctrlport != NULL && ctrlport->ctrl != NULL) {
if (channelmix_process_apply_sequence(impl, ctrlport->ctrl,
&ctrlport->ctrl_offset, out_datas, in_datas, c->n_samples) == 1) {
ctrlport->io->status = SPA_STATUS_OK;
ctrlport->ctrl = NULL;
}
} else if (impl->vol_ramp_sequence) {
if (channelmix_process_apply_sequence(impl, impl->vol_ramp_sequence,
&impl->vol_ramp_offset, out_datas, in_datas, c->n_samples) == 1) {
free(impl->vol_ramp_sequence_data);
impl->vol_ramp_sequence_data = NULL;
impl->vol_ramp_sequence = NULL;
}
} else {
channelmix_process(&impl->mix, out_datas, in_datas, c->n_samples);
}
}
static void add_channelmix_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
SPA_FLAG_CLEAR(ctx->bits, MIX_BIT);
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = get_dst_idx(ctx);
s->data = NULL;
s->run = run_channelmix_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = s->out_idx;
}
static void run_dst_convert_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_OUTPUT];
void *remap_datas[MAX_PORTS], **src;
spa_log_trace_fp(impl->log, "%p: output convert %d", impl, c->n_samples);
if (dir->need_remap) {
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
remap_datas[dir->remap[i]] = c->datas[s->in_idx][i];
spa_log_trace_fp(impl->log, "%p: output remap %d -> %d", impl, i, dir->remap[i]);
}
src = remap_datas;
} else {
src = c->datas[s->in_idx];
}
if (c->empty && dir->conv.clear)
convert_clear(&dir->conv, c->datas[s->out_idx], c->n_samples);
else
convert_process(&dir->conv, c->datas[s->out_idx], (const void **)src, c->n_samples);
}
static void add_dst_convert_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->final_idx;
s->data = NULL;
s->run = run_dst_convert_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = s->out_idx;
}
static void recalc_stages(struct impl *this, struct stage_context *ctx)
{
struct dir *dir;
bool test, do_wav;
struct port *ctrlport = ctx->ctrlport;
bool in_need_remap, out_need_remap;
uint32_t i;
this->recalc = false;
this->n_stages = 0;
ctx->tmp = 0;
ctx->bits = 0;
ctx->src_idx = CTX_DATA_SRC;
ctx->dst_idx = CTX_DATA_DST;
ctx->final_idx = CTX_DATA_DST;
/* set bits for things we need to do */
dir = &this->dir[SPA_DIRECTION_INPUT];
SPA_FLAG_UPDATE(ctx->bits, SRC_CONVERT_BIT, !dir->conv.is_passthrough);
in_need_remap = dir->need_remap;
dir = &this->dir[SPA_DIRECTION_OUTPUT];
SPA_FLAG_UPDATE(ctx->bits, DST_CONVERT_BIT, !dir->conv.is_passthrough);
out_need_remap = dir->need_remap;
this->resample_passthrough = resample_is_passthrough(this);
SPA_FLAG_UPDATE(ctx->bits, RESAMPLE_BIT, !this->resample_passthrough);
SPA_FLAG_UPDATE(ctx->bits, FILTER_BIT, this->n_graph != 0);
test = SPA_FLAG_IS_SET(this->mix.flags, CHANNELMIX_FLAG_IDENTITY) &&
(ctrlport == NULL || ctrlport->ctrl == NULL) && (this->vol_ramp_sequence == NULL);
SPA_FLAG_UPDATE(ctx->bits, MIX_BIT, !test);
/* if we have nothing to do, force a conversion to the destination to make sure we
* actually write something to the destination buffer */
if (ctx->bits == 0)
SPA_FLAG_SET(ctx->bits, DST_CONVERT_BIT);
do_wav = this->props.wav_path[0] || this->wav_file != NULL;
if (!SPA_FLAG_IS_SET(ctx->bits, DST_CONVERT_BIT) && out_need_remap)
add_dst_remap_stage(this, ctx);
if (this->direction == SPA_DIRECTION_INPUT && do_wav)
add_wav_stage(this, ctx);
if (SPA_FLAG_IS_SET(ctx->bits, SRC_CONVERT_BIT)) {
add_src_convert_stage(this, ctx);
} else {
if (in_need_remap)
add_src_remap_stage(this, ctx);
}
if (this->direction == SPA_DIRECTION_INPUT) {
if (SPA_FLAG_IS_SET(ctx->bits, RESAMPLE_BIT))
add_resample_stage(this, ctx);
}
if (SPA_FLAG_IS_SET(ctx->bits, FILTER_BIT)) {
for (i = 0; i < this->n_graph; i++) {
struct filter_graph *fg = this->filter_graph[i];
if (i + 1 == this->n_graph)
SPA_FLAG_CLEAR(ctx->bits, FILTER_BIT);
add_filter_stage(this, i, fg, ctx);
}
}
if (SPA_FLAG_IS_SET(ctx->bits, MIX_BIT))
add_channelmix_stage(this, ctx);
if (this->direction == SPA_DIRECTION_OUTPUT) {
if (SPA_FLAG_IS_SET(ctx->bits, RESAMPLE_BIT))
add_resample_stage(this, ctx);
}
if (SPA_FLAG_IS_SET(ctx->bits, DST_CONVERT_BIT))
add_dst_convert_stage(this, ctx);
if (this->direction == SPA_DIRECTION_OUTPUT && do_wav)
add_wav_stage(this, ctx);
spa_log_debug(this->log, "got %u processing stages", this->n_stages);
}
static int impl_node_process(void *object)
{
struct impl *this = object;
const void *src_datas[MAX_PORTS];
void *dst_datas[MAX_PORTS], *remap_src_datas[MAX_PORTS], *remap_dst_datas[MAX_PORTS], *data;
uint32_t i, j, n_src_datas = 0, n_dst_datas = 0, n_mon_datas = 0, remap;
uint32_t n_samples, max_in, n_out, max_out, quant_samples;
struct port *port, *ctrlport = NULL;
struct buffer *buf, *out_bufs[MAX_PORTS];
struct spa_data *bd;
struct dir *dir;
int res = 0, suppressed;
bool in_avail = false, flush_in = false, flush_out = false;
bool draining = false, in_empty = this->out_offset == 0, out_empty;
struct spa_io_buffers *io;
const struct spa_pod_sequence *ctrl = NULL;
uint64_t current_time;
struct stage_context ctx;
/* calculate quantum scale, this is how many samples we need to produce or
* consume. Also update the rate scale, this is sent to the resampler to adjust
* the rate, either when the graph clock changed or when the user adjusted the
* rate. */
if (SPA_LIKELY(this->io_position)) {
double r = this->rate_scale;
current_time = this->io_position->clock.nsec;
quant_samples = this->io_position->clock.duration;
if (this->direction == SPA_DIRECTION_INPUT) {
if (this->io_position->clock.rate.denom != this->resample.o_rate)
r = (double) this->io_position->clock.rate.denom / this->resample.o_rate;
else
r = 1.0;
} else {
if (this->io_position->clock.rate.denom != this->resample.i_rate)
r = (double) this->resample.i_rate / this->io_position->clock.rate.denom;
else
r = 1.0;
}
if (this->rate_scale != r) {
spa_log_info(this->log, "scale graph:%u in:%u out:%u scale:%f->%f",
this->io_position->clock.rate.denom,
this->resample.i_rate, this->resample.o_rate,
this->rate_scale, r);
this->rate_scale = r;
}
}
else {
current_time = get_time_ns(this);
quant_samples = this->quantum_limit;
}
dir = &this->dir[SPA_DIRECTION_INPUT];
max_in = UINT32_MAX;
/* collect input port data */
for (i = 0; i < dir->n_ports; i++) {
port = GET_IN_PORT(this, i);
if (SPA_UNLIKELY((io = port->io) == NULL)) {
spa_log_trace_fp(this->log, "%p: no io on input port %d",
this, port->id);
buf = NULL;
} else if (SPA_UNLIKELY(io->status != SPA_STATUS_HAVE_DATA)) {
if (io->status & SPA_STATUS_DRAINED) {
spa_log_debug(this->log, "%p: port %d drained", this, port->id);
in_avail = flush_in = draining = true;
in_empty = false;
} else {
spa_log_trace_fp(this->log, "%p: empty input port %d %p %d %d %d",
this, port->id, io, io->status, io->buffer_id,
port->n_buffers);
this->drained = false;
}
buf = NULL;
} else if (SPA_UNLIKELY(io->buffer_id >= port->n_buffers)) {
spa_log_trace_fp(this->log, "%p: invalid input buffer port %d %p %d %d %d",
this, port->id, io, io->status, io->buffer_id,
port->n_buffers);
io->status = -EINVAL;
buf = NULL;
} else {
spa_log_trace_fp(this->log, "%p: input buffer port %d io:%p status:%d id:%d n:%d",
this, port->id, io, io->status, io->buffer_id,
port->n_buffers);
buf = &port->buffers[io->buffer_id];
}
if (SPA_UNLIKELY(buf == NULL)) {
for (j = 0; j < port->blocks; j++) {
if (port->is_control) {
spa_log_trace_fp(this->log, "%p: empty control %d", this,
i * port->blocks + j);
} else {
remap = n_src_datas++;
src_datas[remap] = SPA_PTR_ALIGN(this->empty, MAX_ALIGN, void);
spa_log_trace_fp(this->log, "%p: empty input %d->%d", this,
i * port->blocks + j, remap);
max_in = SPA_MIN(max_in, this->scratch_size / port->stride);
}
}
} else {
in_avail = true;
for (j = 0; j < port->blocks; j++) {
uint32_t offs, size;
bd = &buf->buf->datas[j];
data = bd->data ? bd->data : buf->datas[j];
offs = SPA_MIN(bd->chunk->offset, bd->maxsize);
size = SPA_MIN(bd->maxsize - offs, bd->chunk->size);
if (!SPA_FLAG_IS_SET(bd->chunk->flags, SPA_CHUNK_FLAG_EMPTY))
in_empty = false;
if (SPA_UNLIKELY(port->is_control)) {
spa_log_trace_fp(this->log, "%p: control %d", this,
i * port->blocks + j);
ctrlport = port;
ctrl = spa_pod_from_data(data, bd->maxsize,
bd->chunk->offset, bd->chunk->size);
if (ctrl && !spa_pod_is_sequence(&ctrl->pod))
ctrl = NULL;
if (ctrl != ctrlport->ctrl) {
ctrlport->ctrl = ctrl;
ctrlport->ctrl_offset = 0;
this->recalc = true;
}
} else {
max_in = SPA_MIN(max_in, size / port->stride);
remap = n_src_datas++;
offs += this->in_offset * port->stride;
src_datas[remap] = SPA_PTROFF(data, offs, void);
spa_log_trace_fp(this->log, "%p: input %d:%d:%d %d %d %d->%d", this,
offs, size, port->stride, this->in_offset, max_in,
i * port->blocks + j, remap);
}
}
}
}
bool resample_passthrough = resample_is_passthrough(this);
if (this->resample_passthrough != resample_passthrough)
this->recalc = true;
/* calculate how many samples we are going to produce. */
if (this->direction == SPA_DIRECTION_INPUT) {
/* in split mode we need to output exactly the size of the
* duration so we don't try to flush early */
max_out = quant_samples;
if (!in_avail || this->drained) {
n_out = max_out - SPA_MIN(max_out, this->out_offset);
/* no input, ask for more, update rate-match first */
resample_update_rate_match(this, resample_passthrough, n_out, 0);
spa_log_trace_fp(this->log, "%p: no input drained:%d", this, this->drained);
res |= this->drained ? SPA_STATUS_DRAINED : SPA_STATUS_NEED_DATA;
return res;
}
flush_out = false;
} else {
/* in merge mode we consume one duration of samples and
* always output the resulting data */
max_out = this->quantum_limit;
flush_out = true;
}
dir = &this->dir[SPA_DIRECTION_OUTPUT];
/* collect output ports and monitor ports data */
for (i = 0; i < dir->n_ports; i++) {
port = GET_OUT_PORT(this, i);
if (SPA_UNLIKELY((io = port->io) == NULL ||
io->status == SPA_STATUS_HAVE_DATA)) {
buf = NULL;
}
else {
if (SPA_LIKELY(io->buffer_id < port->n_buffers))
queue_buffer(this, port, io->buffer_id);
buf = peek_buffer(this, port);
if (buf == NULL && port->n_buffers > 0 &&
(suppressed = spa_ratelimit_test(&this->rate_limit, current_time)) >= 0) {
spa_log_warn(this->log, "%p: (%d suppressed) out of buffers on port %d %d",
this, suppressed, port->id, port->n_buffers);
}
}
out_bufs[i] = buf;
if (SPA_UNLIKELY(buf == NULL)) {
for (j = 0; j < port->blocks; j++) {
if (port->is_monitor) {
remap = n_mon_datas++;
spa_log_trace_fp(this->log, "%p: empty monitor %d", this,
remap);
} else if (port->is_control) {
spa_log_trace_fp(this->log, "%p: empty control %d", this, j);
} else {
remap = n_dst_datas++;
dst_datas[remap] = SPA_PTR_ALIGN(this->scratch, MAX_ALIGN, void);
spa_log_trace_fp(this->log, "%p: empty output %d->%d", this,
i * port->blocks + j, remap);
max_out = SPA_MIN(max_out, this->scratch_size / port->stride);
}
}
} else {
for (j = 0; j < port->blocks; j++) {
bd = &buf->buf->datas[j];
data = bd->data ? bd->data : buf->datas[j];
bd->chunk->offset = 0;
bd->chunk->size = 0;
if (port->is_monitor) {
float volume;
uint32_t mon_max;
remap = n_mon_datas++;
volume = this->props.monitor.mute ?
0.0f : this->props.monitor.volumes[remap];
if (this->monitor_channel_volumes)
volume *= this->props.channel.mute ? 0.0f :
this->props.channel.volumes[remap];
volume = SPA_CLAMPF(volume, this->props.min_volume,
this->props.max_volume);
mon_max = SPA_MIN(bd->maxsize / port->stride, max_in);
volume_process(&this->volume, data, src_datas[remap],
volume, mon_max);
bd->chunk->size = mon_max * port->stride;
bd->chunk->stride = port->stride;
spa_log_trace_fp(this->log, "%p: monitor %d %d", this,
remap, mon_max);
dequeue_buffer(this, port, buf);
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = buf->id;
res |= SPA_STATUS_HAVE_DATA;
} else if (SPA_UNLIKELY(port->is_control)) {
spa_log_trace_fp(this->log, "%p: control %d", this, j);
} else {
remap = n_dst_datas++;
dst_datas[remap] = SPA_PTROFF(data,
this->out_offset * port->stride, void);
max_out = SPA_MIN(max_out, bd->maxsize / port->stride);
spa_log_trace_fp(this->log, "%p: output %d offs:%d %d->%d", this,
max_out, this->out_offset,
i * port->blocks + j, remap);
}
}
}
}
/* calculate how many samples at most we are going to consume. If we're
* draining, we consume as much as we can. Otherwise we consume what is
* left. */
if (SPA_UNLIKELY(draining))
n_samples = SPA_MIN(max_in, this->quantum_limit);
else {
n_samples = max_in - SPA_MIN(max_in, this->in_offset);
}
/* we only need to output the remaining samples */
n_out = max_out - SPA_MIN(max_out, this->out_offset);
/* calculate how many samples we are going to consume. */
if (this->direction == SPA_DIRECTION_INPUT) {
/* figure out how much input samples we need to consume */
n_samples = SPA_MIN(n_samples,
resample_get_in_size(this, resample_passthrough, n_out));
} else {
/* in merge mode we consume one duration of samples */
n_samples = SPA_MIN(n_samples, quant_samples);
flush_in = true;
}
ctx.datas[CTX_DATA_SRC] = (void **)src_datas;
ctx.datas[CTX_DATA_DST] = dst_datas;
ctx.datas[CTX_DATA_REMAP_DST] = remap_dst_datas;
ctx.datas[CTX_DATA_REMAP_SRC] = remap_src_datas;
ctx.datas[CTX_DATA_TMP_0] = (void**)this->tmp_datas[0];
ctx.datas[CTX_DATA_TMP_1] = (void**)this->tmp_datas[1];
ctx.in_samples = n_samples;
ctx.n_samples = n_samples;
ctx.n_out = n_out;
ctx.ctrlport = ctrlport;
ctx.empty = in_empty;
if (SPA_UNLIKELY(this->recalc))
recalc_stages(this, &ctx);
for (i = 0; i < this->n_stages; i++) {
struct stage *s = &this->stages[i];
s->run(s, &ctx);
}
this->in_offset += ctx.in_samples;
this->out_offset += ctx.n_samples;
out_empty = ctx.empty;
spa_log_trace_fp(this->log, "%d/%d %d/%d %d->%d", this->in_offset, max_in,
this->out_offset, max_out, n_samples, n_out);
dir = &this->dir[SPA_DIRECTION_INPUT];
if (SPA_LIKELY(this->in_offset >= max_in || flush_in)) {
/* return input buffers */
for (i = 0; i < dir->n_ports; i++) {
port = GET_IN_PORT(this, i);
if (port->is_control)
continue;
if (SPA_UNLIKELY((io = port->io) == NULL))
continue;
spa_log_trace_fp(this->log, "return: input %d %d", port->id, io->buffer_id);
if (!draining)
io->status = SPA_STATUS_NEED_DATA;
}
this->in_offset = 0;
max_in = 0;
res |= SPA_STATUS_NEED_DATA;
}
dir = &this->dir[SPA_DIRECTION_OUTPUT];
if (SPA_LIKELY(this->out_offset > 0 && (this->out_offset >= max_out || flush_out))) {
/* queue output buffers */
for (i = 0; i < dir->n_ports; i++) {
port = GET_OUT_PORT(this, i);
if (SPA_UNLIKELY(port->is_monitor || port->is_control))
continue;
if (SPA_UNLIKELY((io = port->io) == NULL))
continue;
if (SPA_UNLIKELY((buf = out_bufs[i]) == NULL))
continue;
dequeue_buffer(this, port, buf);
for (j = 0; j < port->blocks; j++) {
bd = &buf->buf->datas[j];
bd->chunk->size = this->out_offset * port->stride;
bd->chunk->stride = port->stride;
SPA_FLAG_UPDATE(bd->chunk->flags, SPA_CHUNK_FLAG_EMPTY, out_empty);
spa_log_trace_fp(this->log, "out: offs:%d stride:%d size:%d",
this->out_offset, port->stride, bd->chunk->size);
}
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = buf->id;
}
res |= SPA_STATUS_HAVE_DATA;
this->drained = draining;
this->out_offset = 0;
}
else if (n_samples == 0 && this->resample_peaks) {
for (i = 0; i < dir->n_ports; i++) {
port = GET_OUT_PORT(this, i);
if (port->is_monitor || port->is_control)
continue;
if (SPA_UNLIKELY((io = port->io) == NULL))
continue;
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = SPA_ID_INVALID;
res |= SPA_STATUS_HAVE_DATA;
spa_log_trace_fp(this->log, "%p: no output buffer", this);
}
}
{
uint32_t size, queued;
if (this->direction == SPA_DIRECTION_INPUT) {
size = max_out - this->out_offset;
queued = max_in - this->in_offset;
} else {
size = quant_samples;
queued = 0;
}
if (resample_update_rate_match(this, resample_passthrough,
size, queued) > 0)
res |= SPA_STATUS_NEED_DATA;
}
return res;
}
static const struct spa_node_methods impl_node = {
SPA_VERSION_NODE_METHODS,
.add_listener = impl_node_add_listener,
.set_callbacks = impl_node_set_callbacks,
.enum_params = impl_node_enum_params,
.set_param = impl_node_set_param,
.set_io = impl_node_set_io,
.send_command = impl_node_send_command,
.add_port = impl_node_add_port,
.remove_port = impl_node_remove_port,
.port_enum_params = impl_node_port_enum_params,
.port_set_param = impl_node_port_set_param,
.port_use_buffers = impl_node_port_use_buffers,
.port_set_io = impl_node_port_set_io,
.port_reuse_buffer = impl_node_port_reuse_buffer,
.process = impl_node_process,
};
static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface)
{
struct impl *this;
spa_return_val_if_fail(handle != NULL, -EINVAL);
spa_return_val_if_fail(interface != NULL, -EINVAL);
this = (struct impl *) handle;
if (spa_streq(type, SPA_TYPE_INTERFACE_Node))
*interface = &this->node;
else
return -ENOENT;
return 0;
}
static void free_dir(struct dir *dir)
{
uint32_t i;
for (i = 0; i < MAX_PORTS; i++)
free(dir->ports[i]);
if (dir->conv.free)
convert_free(&dir->conv);
free(dir->tag);
}
static int impl_clear(struct spa_handle *handle)
{
struct impl *this;
spa_return_val_if_fail(handle != NULL, -EINVAL);
this = (struct impl *) handle;
free_dir(&this->dir[SPA_DIRECTION_INPUT]);
free_dir(&this->dir[SPA_DIRECTION_OUTPUT]);
free_tmp(this);
clean_filter_handles(this, true);
if (this->resample.free)
resample_free(&this->resample);
if (this->wav_file != NULL)
wav_file_close(this->wav_file);
free (this->vol_ramp_sequence_data);
return 0;
}
static size_t
impl_get_size(const struct spa_handle_factory *factory,
const struct spa_dict *params)
{
return sizeof(struct impl);
}
static int
impl_init(const struct spa_handle_factory *factory,
struct spa_handle *handle,
const struct spa_dict *info,
const struct spa_support *support,
uint32_t n_support)
{
struct impl *this;
uint32_t i;
bool filter_graph_disabled = false;
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(handle != NULL, -EINVAL);
handle->get_interface = impl_get_interface;
handle->clear = impl_clear;
this = (struct impl *) handle;
this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop);
this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log);
spa_log_topic_init(this->log, &log_topic);
this->cpu = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_CPU);
if (this->cpu) {
this->cpu_flags = spa_cpu_get_flags(this->cpu);
this->max_align = SPA_MIN(MAX_ALIGN, spa_cpu_get_max_align(this->cpu));
}
this->loader = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_PluginLoader);
props_reset(&this->props);
filter_graph_disabled = this->props.filter_graph_disabled;
spa_list_init(&this->active_graphs);
spa_list_init(&this->free_graphs);
for (i = 0; i < MAX_GRAPH; i++) {
struct filter_graph *g = &this->graphs[i];
g->impl = this;
spa_list_append(&this->free_graphs, &g->link);
}
this->rate_limit.interval = 2 * SPA_NSEC_PER_SEC;
this->rate_limit.burst = 1;
this->mix.options = CHANNELMIX_OPTION_UPMIX | CHANNELMIX_OPTION_MIX_LFE;
this->mix.upmix = CHANNELMIX_UPMIX_NONE;
this->mix.log = this->log;
this->mix.lfe_cutoff = 0.0f;
this->mix.fc_cutoff = 0.0f;
this->mix.rear_delay = 0.0f;
this->mix.widen = 0.0f;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;
if (spa_streq(k, "clock.quantum-limit"))
spa_atou32(s, &this->quantum_limit, 0);
else if (spa_streq(k, "resample.peaks"))
this->resample_peaks = spa_atob(s);
else if (spa_streq(k, "resample.prefill"))
SPA_FLAG_UPDATE(this->resample.options,
RESAMPLE_OPTION_PREFILL, spa_atob(s));
else if (spa_streq(k, "convert.direction")) {
if (spa_streq(s, "output"))
this->direction = SPA_DIRECTION_OUTPUT;
else
this->direction = SPA_DIRECTION_INPUT;
}
else if (spa_streq(k, SPA_KEY_AUDIO_POSITION)) {
if (s != NULL)
spa_audio_parse_position_n(s, strlen(s),
this->props.channel_map, SPA_N_ELEMENTS(this->props.channel_map),
&this->props.n_channels);
}
else if (spa_streq(k, SPA_KEY_PORT_IGNORE_LATENCY))
this->port_ignore_latency = spa_atob(s);
else if (spa_streq(k, SPA_KEY_PORT_GROUP))
spa_scnprintf(this->group_name, sizeof(this->group_name), "%s", s);
else if (spa_streq(k, "monitor.passthrough"))
this->monitor_passthrough = spa_atob(s);
}
this->props.channel.n_volumes = this->props.n_channels;
this->props.soft.n_volumes = this->props.n_channels;
this->props.monitor.n_volumes = this->props.n_channels;
this->dir[SPA_DIRECTION_INPUT].direction = SPA_DIRECTION_INPUT;
this->dir[SPA_DIRECTION_OUTPUT].direction = SPA_DIRECTION_OUTPUT;
this->node.iface = SPA_INTERFACE_INIT(
SPA_TYPE_INTERFACE_Node,
SPA_VERSION_NODE,
&impl_node, this);
spa_hook_list_init(&this->hooks);
this->info_all = SPA_NODE_CHANGE_MASK_FLAGS |
SPA_NODE_CHANGE_MASK_PARAMS;
this->info = SPA_NODE_INFO_INIT();
this->info.max_input_ports = MAX_PORTS;
this->info.max_output_ports = MAX_PORTS;
this->info.flags = SPA_NODE_FLAG_RT |
SPA_NODE_FLAG_IN_PORT_CONFIG |
SPA_NODE_FLAG_OUT_PORT_CONFIG |
SPA_NODE_FLAG_NEED_CONFIGURE;
this->params[IDX_EnumPortConfig] = SPA_PARAM_INFO(SPA_PARAM_EnumPortConfig, SPA_PARAM_INFO_READ);
this->params[IDX_PortConfig] = SPA_PARAM_INFO(SPA_PARAM_PortConfig, SPA_PARAM_INFO_READWRITE);
this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ);
this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE);
this->info.params = this->params;
this->info.n_params = N_NODE_PARAMS;
this->volume.cpu_flags = this->cpu_flags;
volume_init(&this->volume);
this->rate_scale = 1.0;
reconfigure_mode(this, SPA_PARAM_PORT_CONFIG_MODE_convert, SPA_DIRECTION_INPUT, false, false, NULL);
reconfigure_mode(this, SPA_PARAM_PORT_CONFIG_MODE_convert, SPA_DIRECTION_OUTPUT, false, false, NULL);
filter_graph_disabled = this->props.filter_graph_disabled;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;
audioconvert_set_param(this, k, s, &filter_graph_disabled);
}
this->props.filter_graph_disabled = filter_graph_disabled;
return 0;
}
static const struct spa_interface_info impl_interfaces[] = {
{SPA_TYPE_INTERFACE_Node,},
};
static int
impl_enum_interface_info(const struct spa_handle_factory *factory,
const struct spa_interface_info **info,
uint32_t *index)
{
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(info != NULL, -EINVAL);
spa_return_val_if_fail(index != NULL, -EINVAL);
switch (*index) {
case 0:
*info = &impl_interfaces[*index];
break;
default:
return 0;
}
(*index)++;
return 1;
}
const struct spa_handle_factory spa_audioconvert_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_AUDIO_CONVERT,
NULL,
impl_get_size,
impl_init,
impl_enum_interface_info,
};