mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
SPDX tags make the licensing information easy to understand and clear, and they are machine parseable. See https://spdx.dev for more information.
466 lines
13 KiB
C
466 lines
13 KiB
C
/* Spa Bluez5 decode buffer */
|
|
/* SPDX-FileCopyrightText: Copyright © 2022 Pauli Virtanen */
|
|
/* SPDX-License-Identifier: MIT */
|
|
|
|
/**
|
|
* \file decode-buffer.h Buffering for Bluetooth sources
|
|
*
|
|
* A linear buffer, which is compacted when it gets half full.
|
|
*
|
|
* Also contains buffering logic, which calculates a rate correction
|
|
* factor to maintain the buffer level at the target value.
|
|
*
|
|
* Consider typical packet intervals with nominal frame duration
|
|
* of 10ms:
|
|
*
|
|
* ... 5ms | 5ms | 20ms | 5ms | 5ms | 20ms ...
|
|
*
|
|
* ... 3ms | 3ms | 4ms | 30ms | 3ms | 3ms | 4ms | 30ms ...
|
|
*
|
|
* plus random jitter; 10ms nominal may occasionally have 20+ms interval.
|
|
* The regular timer cycle cannot be aligned with this, so process()
|
|
* may occur at any time.
|
|
*
|
|
* The buffer level is the difference between the number of samples in
|
|
* buffer immediately after receiving a packet, and the samples consumed
|
|
* before receiving the next packet.
|
|
*
|
|
* The buffer level indicates how much any packet can be delayed without
|
|
* underrun. If it is positive, there are no underruns.
|
|
*
|
|
* The rate correction aims to maintain the average level at a safety margin.
|
|
*/
|
|
|
|
#ifndef SPA_BLUEZ5_DECODE_BUFFER_H
|
|
#define SPA_BLUEZ5_DECODE_BUFFER_H
|
|
|
|
#include <stdlib.h>
|
|
#include <spa/utils/defs.h>
|
|
#include <spa/support/log.h>
|
|
|
|
#define BUFFERING_LONG_MSEC (2*60000)
|
|
#define BUFFERING_SHORT_MSEC 1000
|
|
#define BUFFERING_RATE_DIFF_MAX 0.005
|
|
|
|
/**
|
|
* Safety margin.
|
|
*
|
|
* The spike is the long-window maximum difference
|
|
* between minimum and average buffer level.
|
|
*/
|
|
#define BUFFERING_TARGET(spike,packet_size) \
|
|
SPA_CLAMP((spike)*3/2, (packet_size), 6*(packet_size))
|
|
|
|
/**
|
|
* Rate controller.
|
|
*
|
|
* It's here in a form, where it operates on the running average
|
|
* so it's compatible with the level spike determination, and
|
|
* clamping the rate to a range is easy. The impulse response
|
|
* is similar to spa_dll, and step response does not have sign changes.
|
|
*
|
|
* The controller iterates as
|
|
*
|
|
* avg(j+1) = (1 - beta) avg(j) + beta level(j)
|
|
* corr(j+1) = corr(j) + a [avg(j+1) - avg(j)] / duration
|
|
* + b [avg(j) - target] / duration
|
|
*
|
|
* with beta = duration/avg_period < 0.5 is the moving average parameter,
|
|
* and a = beta/3 + ..., b = beta^2/27 + ....
|
|
*
|
|
* This choice results to c(j) being low-pass filtered, and buffer level(j)
|
|
* converging towards target with stable damped evolution with eigenvalues
|
|
* real and close to each other around (1 - beta)^(1/3).
|
|
*
|
|
* Derivation:
|
|
*
|
|
* The deviation from the buffer level target evolves as
|
|
*
|
|
* delta(j) = level(j) - target
|
|
* delta(j+1) = delta(j) + r(j) - c(j+1)
|
|
*
|
|
* where r is samples received in one duration, and c corrected rate
|
|
* (samples per duration).
|
|
*
|
|
* The rate correction is in general determined by linear filter f
|
|
*
|
|
* c(j+1) = c(j) + \sum_{k=0}^\infty delta(j - k) f(k)
|
|
*
|
|
* If \sum_k f(k) is not zero, the only fixed point is c=r, delta=0,
|
|
* so this structure (if the filter is stable) rate matches and
|
|
* drives buffer level to target.
|
|
*
|
|
* The z-transform then is
|
|
*
|
|
* delta(z) = G(z) r(z)
|
|
* c(z) = F(z) delta(z)
|
|
* G(z) = (z - 1) / [(z - 1)^2 + z f(z)]
|
|
* F(z) = f(z) / (z - 1)
|
|
*
|
|
* We now want: poles of G(z) must be in |z|<1 for stability, F(z)
|
|
* should damp high frequencies, and f(z) is causal.
|
|
*
|
|
* To satisfy the conditions, take
|
|
*
|
|
* (z - 1)^2 + z f(z) = p(z) / q(z)
|
|
*
|
|
* where p(z) is polynomial with leading term z^n with wanted root
|
|
* structure, and q(z) is any polynomial with leading term z^{n-2}.
|
|
* This guarantees f(z) is causal, and G(z) = (z-1) q(z) / p(z).
|
|
* We can choose p(z) and q(z) to improve low-pass properties of F(z).
|
|
*
|
|
* Simplest choice is p(z)=(z-x)^2 and q(z)=1, but that gives flat
|
|
* high frequency response in F(z). Better choice is p(z) = (z-u)*(z-v)*(z-w)
|
|
* and q(z) = z - r. To make F(z) better lowpass, one can cancel
|
|
* a resulting 1/z pole in F(z) by setting r=u*v*w. Then,
|
|
*
|
|
* G(z) = (z - u*v*w)*(z - 1) / [(z - u)*(z - v)*(z - w)]
|
|
* F(z) = (a z + b - a) / (z - 1) * H(z)
|
|
* H(z) = beta / (z - 1 + beta)
|
|
* beta = 1 - u*v*w
|
|
* a = [(1-u) + (1-v) + (1-w) - beta] / beta
|
|
* b = (1-u)*(1-v)*(1-w) / beta
|
|
*
|
|
* which corresponds to iteration for c(j):
|
|
*
|
|
* avg(j+1) = (1 - beta) avg(j) + beta delta(j)
|
|
* c(j+1) = c(j) + a [avg(j+1) - avg(j)] + b avg(j)
|
|
*
|
|
* So the controller operates on the running average,
|
|
* which gives the low-pass property for c(j).
|
|
*
|
|
* The simplest filter is obtained by putting the poles at
|
|
* u=v=w=(1-beta)**(1/3). Since beta << 1, computing the root
|
|
* can be avoided by expanding in series.
|
|
*
|
|
* Overshoot in impulse response could be reduced by moving one of the
|
|
* poles closer to z=1, but this increases the step response time.
|
|
*/
|
|
struct spa_bt_rate_control
|
|
{
|
|
double avg;
|
|
double corr;
|
|
};
|
|
|
|
static void spa_bt_rate_control_init(struct spa_bt_rate_control *this, double level)
|
|
{
|
|
this->avg = level;
|
|
this->corr = 1.0;
|
|
}
|
|
|
|
static double spa_bt_rate_control_update(struct spa_bt_rate_control *this, double level,
|
|
double target, double duration, double period)
|
|
{
|
|
/*
|
|
* u = (1 - beta)^(1/3)
|
|
* x = a / beta
|
|
* y = b / beta
|
|
* a = (2 + u) * (1 - u)^2 / beta
|
|
* b = (1 - u)^3 / beta
|
|
* beta -> 0
|
|
*/
|
|
const double beta = SPA_CLAMP(duration / period, 0, 0.5);
|
|
const double x = 1.0/3;
|
|
const double y = beta/27;
|
|
double avg;
|
|
|
|
avg = beta * level + (1 - beta) * this->avg;
|
|
this->corr += x * (avg - this->avg) / period
|
|
+ y * (this->avg - target) / period;
|
|
this->avg = avg;
|
|
|
|
this->corr = SPA_CLAMP(this->corr,
|
|
1 - BUFFERING_RATE_DIFF_MAX,
|
|
1 + BUFFERING_RATE_DIFF_MAX);
|
|
|
|
return this->corr;
|
|
}
|
|
|
|
|
|
/** Windowed min/max */
|
|
struct spa_bt_ptp
|
|
{
|
|
union {
|
|
int32_t min;
|
|
int32_t mins[4];
|
|
};
|
|
union {
|
|
int32_t max;
|
|
int32_t maxs[4];
|
|
};
|
|
uint32_t pos;
|
|
uint32_t period;
|
|
};
|
|
|
|
struct spa_bt_decode_buffer
|
|
{
|
|
struct spa_log *log;
|
|
|
|
uint32_t frame_size;
|
|
uint32_t rate;
|
|
|
|
uint8_t *buffer_decoded;
|
|
uint32_t buffer_size;
|
|
uint32_t buffer_reserve;
|
|
uint32_t write_index;
|
|
uint32_t read_index;
|
|
|
|
struct spa_bt_ptp spike; /**< spikes (long window) */
|
|
struct spa_bt_ptp packet_size; /**< packet size (short window) */
|
|
|
|
struct spa_bt_rate_control ctl;
|
|
double corr;
|
|
|
|
uint32_t prev_consumed;
|
|
uint32_t prev_avail;
|
|
uint32_t prev_duration;
|
|
uint32_t underrun;
|
|
uint32_t pos;
|
|
|
|
uint8_t received:1;
|
|
uint8_t buffering:1;
|
|
};
|
|
|
|
static void spa_bt_ptp_init(struct spa_bt_ptp *p, int32_t period)
|
|
{
|
|
size_t i;
|
|
|
|
spa_zero(*p);
|
|
for (i = 0; i < SPA_N_ELEMENTS(p->mins); ++i) {
|
|
p->mins[i] = INT32_MAX;
|
|
p->maxs[i] = INT32_MIN;
|
|
}
|
|
p->period = period;
|
|
}
|
|
|
|
static void spa_bt_ptp_update(struct spa_bt_ptp *p, int32_t value, uint32_t duration)
|
|
{
|
|
const size_t n = SPA_N_ELEMENTS(p->mins);
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
p->mins[i] = SPA_MIN(p->mins[i], value);
|
|
p->maxs[i] = SPA_MAX(p->maxs[i], value);
|
|
}
|
|
|
|
p->pos += duration;
|
|
if (p->pos >= p->period / (n - 1)) {
|
|
p->pos = 0;
|
|
for (i = 1; i < SPA_N_ELEMENTS(p->mins); ++i) {
|
|
p->mins[i-1] = p->mins[i];
|
|
p->maxs[i-1] = p->maxs[i];
|
|
}
|
|
p->mins[n-1] = INT32_MAX;
|
|
p->maxs[n-1] = INT32_MIN;
|
|
}
|
|
}
|
|
|
|
static int spa_bt_decode_buffer_init(struct spa_bt_decode_buffer *this, struct spa_log *log,
|
|
uint32_t frame_size, uint32_t rate, uint32_t quantum_limit, uint32_t reserve)
|
|
{
|
|
spa_zero(*this);
|
|
this->frame_size = frame_size;
|
|
this->rate = rate;
|
|
this->log = log;
|
|
this->buffer_reserve = this->frame_size * reserve;
|
|
this->buffer_size = this->frame_size * quantum_limit * 2;
|
|
this->buffer_size += this->buffer_reserve;
|
|
this->corr = 1.0;
|
|
this->buffering = true;
|
|
|
|
spa_bt_rate_control_init(&this->ctl, 0);
|
|
|
|
spa_bt_ptp_init(&this->spike, (uint64_t)this->rate * BUFFERING_LONG_MSEC / 1000);
|
|
spa_bt_ptp_init(&this->packet_size, (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000);
|
|
|
|
if ((this->buffer_decoded = malloc(this->buffer_size)) == NULL) {
|
|
this->buffer_size = 0;
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void spa_bt_decode_buffer_clear(struct spa_bt_decode_buffer *this)
|
|
{
|
|
free(this->buffer_decoded);
|
|
spa_zero(*this);
|
|
}
|
|
|
|
static void spa_bt_decode_buffer_compact(struct spa_bt_decode_buffer *this)
|
|
{
|
|
uint32_t avail;
|
|
|
|
spa_assert(this->read_index <= this->write_index);
|
|
|
|
if (this->read_index == this->write_index) {
|
|
this->read_index = 0;
|
|
this->write_index = 0;
|
|
goto done;
|
|
}
|
|
|
|
if (this->write_index > this->read_index + this->buffer_size - this->buffer_reserve) {
|
|
/* Drop data to keep buffer reserve free */
|
|
spa_log_info(this->log, "%p buffer overrun: dropping data", this);
|
|
this->read_index = this->write_index + this->buffer_reserve - this->buffer_size;
|
|
}
|
|
|
|
if (this->write_index < (this->buffer_size - this->buffer_reserve) / 2
|
|
|| this->read_index == 0)
|
|
goto done;
|
|
|
|
avail = this->write_index - this->read_index;
|
|
spa_memmove(this->buffer_decoded,
|
|
SPA_PTROFF(this->buffer_decoded, this->read_index, void),
|
|
avail);
|
|
this->read_index = 0;
|
|
this->write_index = avail;
|
|
|
|
done:
|
|
spa_assert(this->buffer_size - this->write_index >= this->buffer_reserve);
|
|
}
|
|
|
|
static void *spa_bt_decode_buffer_get_write(struct spa_bt_decode_buffer *this, uint32_t *avail)
|
|
{
|
|
spa_bt_decode_buffer_compact(this);
|
|
spa_assert(this->buffer_size >= this->write_index);
|
|
*avail = this->buffer_size - this->write_index;
|
|
return SPA_PTROFF(this->buffer_decoded, this->write_index, void);
|
|
}
|
|
|
|
static void spa_bt_decode_buffer_write_packet(struct spa_bt_decode_buffer *this, uint32_t size)
|
|
{
|
|
spa_assert(size % this->frame_size == 0);
|
|
this->write_index += size;
|
|
this->received = true;
|
|
spa_bt_ptp_update(&this->packet_size, size / this->frame_size, size / this->frame_size);
|
|
}
|
|
|
|
static void *spa_bt_decode_buffer_get_read(struct spa_bt_decode_buffer *this, uint32_t *avail)
|
|
{
|
|
spa_assert(this->write_index >= this->read_index);
|
|
if (!this->buffering)
|
|
*avail = this->write_index - this->read_index;
|
|
else
|
|
*avail = 0;
|
|
return SPA_PTROFF(this->buffer_decoded, this->read_index, void);
|
|
}
|
|
|
|
static void spa_bt_decode_buffer_read(struct spa_bt_decode_buffer *this, uint32_t size)
|
|
{
|
|
spa_assert(size % this->frame_size == 0);
|
|
this->read_index += size;
|
|
}
|
|
|
|
static void spa_bt_decode_buffer_recover(struct spa_bt_decode_buffer *this)
|
|
{
|
|
int32_t size = (this->write_index - this->read_index) / this->frame_size;
|
|
int32_t level;
|
|
|
|
this->prev_avail = size * this->frame_size;
|
|
this->prev_consumed = this->prev_duration;
|
|
|
|
level = (int32_t)this->prev_avail/this->frame_size
|
|
- (int32_t)this->prev_duration;
|
|
this->corr = 1.0;
|
|
|
|
spa_bt_rate_control_init(&this->ctl, level);
|
|
}
|
|
|
|
static void spa_bt_decode_buffer_process(struct spa_bt_decode_buffer *this, uint32_t samples, uint32_t duration)
|
|
{
|
|
const uint32_t data_size = samples * this->frame_size;
|
|
const int32_t packet_size = SPA_CLAMP(this->packet_size.max, 0, INT32_MAX/8);
|
|
const int32_t max_level = SPA_MAX(8 * packet_size, (int32_t)duration);
|
|
uint32_t avail;
|
|
|
|
if (SPA_UNLIKELY(duration != this->prev_duration)) {
|
|
this->prev_duration = duration;
|
|
spa_bt_decode_buffer_recover(this);
|
|
}
|
|
|
|
if (SPA_UNLIKELY(this->buffering)) {
|
|
int32_t size = (this->write_index - this->read_index) / this->frame_size;
|
|
|
|
this->corr = 1.0;
|
|
|
|
spa_log_trace(this->log, "%p buffering size:%d", this, (int)size);
|
|
|
|
if (this->received &&
|
|
packet_size > 0 &&
|
|
size >= SPA_MAX(3*packet_size, (int32_t)duration))
|
|
this->buffering = false;
|
|
else
|
|
return;
|
|
|
|
spa_bt_decode_buffer_recover(this);
|
|
}
|
|
|
|
spa_bt_decode_buffer_get_read(this, &avail);
|
|
|
|
if (this->received) {
|
|
const uint32_t avg_period = (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000;
|
|
int32_t level, target;
|
|
|
|
/* Track buffer level */
|
|
level = (int32_t)(this->prev_avail/this->frame_size) - (int32_t)this->prev_consumed;
|
|
level = SPA_MAX(level, -max_level);
|
|
this->prev_consumed = SPA_MIN(this->prev_consumed, avg_period);
|
|
|
|
spa_bt_ptp_update(&this->spike, this->ctl.avg - level, this->prev_consumed);
|
|
|
|
/* Update target level */
|
|
target = BUFFERING_TARGET(this->spike.max, packet_size);
|
|
|
|
if (level > SPA_MAX(4 * target, 2*(int32_t)duration) &&
|
|
avail > data_size) {
|
|
/* Lagging too much: drop data */
|
|
uint32_t size = SPA_MIN(avail - data_size,
|
|
(level - target*5/2) * this->frame_size);
|
|
|
|
spa_bt_decode_buffer_read(this, size);
|
|
spa_log_trace(this->log, "%p overrun samples:%d level:%d target:%d",
|
|
this, (int)size/this->frame_size,
|
|
(int)level, (int)target);
|
|
|
|
spa_bt_decode_buffer_recover(this);
|
|
}
|
|
|
|
this->pos += this->prev_consumed;
|
|
if (this->pos > this->rate) {
|
|
spa_log_debug(this->log,
|
|
"%p avg:%d target:%d level:%d buffer:%d spike:%d corr:%f",
|
|
this,
|
|
(int)this->ctl.avg,
|
|
(int)target,
|
|
(int)level,
|
|
(int)(avail / this->frame_size),
|
|
(int)this->spike.max,
|
|
(double)this->corr);
|
|
this->pos = 0;
|
|
}
|
|
|
|
this->corr = spa_bt_rate_control_update(&this->ctl,
|
|
level, target, this->prev_consumed, avg_period);
|
|
|
|
spa_bt_decode_buffer_get_read(this, &avail);
|
|
|
|
this->prev_consumed = 0;
|
|
this->prev_avail = avail;
|
|
this->underrun = 0;
|
|
this->received = false;
|
|
}
|
|
|
|
if (avail < data_size) {
|
|
spa_log_trace(this->log, "%p underrun samples:%d", this,
|
|
(data_size - avail) / this->frame_size);
|
|
this->underrun += samples;
|
|
if (this->underrun >= SPA_MIN((uint32_t)max_level, this->buffer_size / this->frame_size)) {
|
|
this->buffering = true;
|
|
spa_log_debug(this->log, "%p underrun too much: start buffering", this);
|
|
}
|
|
}
|
|
|
|
this->prev_consumed += samples;
|
|
}
|
|
|
|
#endif
|