pipewire/src/pipewire/context.c
Wim Taymans 92a812e0ae context: make a copy of group and link_group
Just strdup the group. There is no need to keep it in a fixed size
array.
2023-03-08 13:25:45 +01:00

1547 lines
44 KiB
C

/* PipeWire */
/* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <errno.h>
#include <unistd.h>
#include <time.h>
#include <stdio.h>
#include <regex.h>
#include <limits.h>
#include <sys/mman.h>
#include <pipewire/log.h>
#include <spa/support/cpu.h>
#include <spa/support/dbus.h>
#include <spa/support/plugin.h>
#include <spa/support/plugin-loader.h>
#include <spa/node/utils.h>
#include <spa/utils/names.h>
#include <spa/utils/string.h>
#include <spa/debug/types.h>
#include <pipewire/impl.h>
#include <pipewire/private.h>
#include <pipewire/thread.h>
#include <pipewire/conf.h>
#include <pipewire/extensions/protocol-native.h>
PW_LOG_TOPIC_EXTERN(log_context);
#define PW_LOG_TOPIC_DEFAULT log_context
/** \cond */
struct impl {
struct pw_context this;
struct spa_handle *dbus_handle;
struct spa_plugin_loader plugin_loader;
unsigned int recalc:1;
unsigned int recalc_pending:1;
};
struct factory_entry {
regex_t regex;
char *lib;
};
/** \endcond */
static void fill_properties(struct pw_context *context)
{
struct pw_properties *properties = context->properties;
if (!pw_properties_get(properties, PW_KEY_APP_NAME))
pw_properties_set(properties, PW_KEY_APP_NAME, pw_get_client_name());
if (!pw_properties_get(properties, PW_KEY_APP_PROCESS_BINARY))
pw_properties_set(properties, PW_KEY_APP_PROCESS_BINARY, pw_get_prgname());
if (!pw_properties_get(properties, PW_KEY_APP_LANGUAGE)) {
pw_properties_set(properties, PW_KEY_APP_LANGUAGE, getenv("LANG"));
}
if (!pw_properties_get(properties, PW_KEY_APP_PROCESS_ID)) {
pw_properties_setf(properties, PW_KEY_APP_PROCESS_ID, "%zd", (size_t) getpid());
}
if (!pw_properties_get(properties, PW_KEY_APP_PROCESS_USER))
pw_properties_set(properties, PW_KEY_APP_PROCESS_USER, pw_get_user_name());
if (!pw_properties_get(properties, PW_KEY_APP_PROCESS_HOST))
pw_properties_set(properties, PW_KEY_APP_PROCESS_HOST, pw_get_host_name());
if (!pw_properties_get(properties, PW_KEY_APP_PROCESS_SESSION_ID)) {
pw_properties_set(properties, PW_KEY_APP_PROCESS_SESSION_ID,
getenv("XDG_SESSION_ID"));
}
if (!pw_properties_get(properties, PW_KEY_WINDOW_X11_DISPLAY)) {
pw_properties_set(properties, PW_KEY_WINDOW_X11_DISPLAY,
getenv("DISPLAY"));
}
pw_properties_set(properties, PW_KEY_CORE_VERSION, context->core->info.version);
pw_properties_set(properties, PW_KEY_CORE_NAME, context->core->info.name);
}
static int context_set_freewheel(struct pw_context *context, bool freewheel)
{
struct spa_thread *thr;
int res = 0;
if ((thr = pw_data_loop_get_thread(context->data_loop_impl)) == NULL)
return -EIO;
if (freewheel) {
pw_log_info("%p: enter freewheel", context);
if (context->thread_utils)
res = spa_thread_utils_drop_rt(context->thread_utils, thr);
} else {
pw_log_info("%p: exit freewheel", context);
/* Use the priority as configured within the realtime module */
if (context->thread_utils)
res = spa_thread_utils_acquire_rt(context->thread_utils, thr, -1);
}
if (res < 0)
pw_log_info("%p: freewheel error:%s", context, spa_strerror(res));
context->freewheeling = freewheel;
return res;
}
static struct spa_handle *impl_plugin_loader_load(void *object, const char *factory_name, const struct spa_dict *info)
{
struct impl *impl = object;
if (impl == NULL || factory_name == NULL) {
errno = EINVAL;
return NULL;
}
return pw_context_load_spa_handle(&impl->this, factory_name, info);
}
static int impl_plugin_loader_unload(void *object, struct spa_handle *handle)
{
spa_return_val_if_fail(object != NULL, -EINVAL);
return pw_unload_spa_handle(handle);
}
static const struct spa_plugin_loader_methods impl_plugin_loader = {
SPA_VERSION_PLUGIN_LOADER_METHODS,
.load = impl_plugin_loader_load,
.unload = impl_plugin_loader_unload,
};
static void init_plugin_loader(struct impl *impl)
{
impl->plugin_loader.iface = SPA_INTERFACE_INIT(
SPA_TYPE_INTERFACE_PluginLoader,
SPA_VERSION_PLUGIN_LOADER,
&impl_plugin_loader,
impl);
}
static int do_data_loop_setup(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
struct pw_context *this = user_data;
const char *str;
struct spa_cpu *cpu;
cpu = spa_support_find(this->support, this->n_support, SPA_TYPE_INTERFACE_CPU);
if ((str = pw_properties_get(this->properties, SPA_KEY_CPU_ZERO_DENORMALS)) != NULL &&
cpu != NULL) {
pw_log_info("setting zero denormals: %s", str);
spa_cpu_zero_denormals(cpu, spa_atob(str));
}
return 0;
}
/** Create a new context object
*
* \param main_loop the main loop to use
* \param properties extra properties for the context, ownership it taken
*
* \return a newly allocated context object
*/
SPA_EXPORT
struct pw_context *pw_context_new(struct pw_loop *main_loop,
struct pw_properties *properties,
size_t user_data_size)
{
struct impl *impl;
struct pw_context *this;
const char *lib, *str;
void *dbus_iface = NULL;
uint32_t n_support;
struct pw_properties *pr, *conf;
struct spa_cpu *cpu;
int res = 0;
impl = calloc(1, sizeof(struct impl) + user_data_size);
if (impl == NULL) {
pw_properties_free(properties);
res = -errno;
goto error_cleanup;
}
this = &impl->this;
pw_log_debug("%p: new", this);
if (user_data_size > 0)
this->user_data = SPA_PTROFF(impl, sizeof(struct impl), void);
pw_array_init(&this->factory_lib, 32);
pw_array_init(&this->objects, 32);
pw_map_init(&this->globals, 128, 32);
spa_list_init(&this->core_impl_list);
spa_list_init(&this->protocol_list);
spa_list_init(&this->core_list);
spa_list_init(&this->registry_resource_list);
spa_list_init(&this->global_list);
spa_list_init(&this->module_list);
spa_list_init(&this->device_list);
spa_list_init(&this->client_list);
spa_list_init(&this->node_list);
spa_list_init(&this->factory_list);
spa_list_init(&this->metadata_list);
spa_list_init(&this->link_list);
spa_list_init(&this->control_list[0]);
spa_list_init(&this->control_list[1]);
spa_list_init(&this->export_list);
spa_list_init(&this->driver_list);
spa_hook_list_init(&this->listener_list);
spa_hook_list_init(&this->driver_listener_list);
this->sc_pagesize = sysconf(_SC_PAGESIZE);
if (properties == NULL)
properties = pw_properties_new(NULL, NULL);
if (properties == NULL) {
res = -errno;
goto error_free;
}
this->properties = properties;
conf = pw_properties_new(NULL, NULL);
if (conf == NULL) {
res = -errno;
goto error_free;
}
this->conf = conf;
if ((res = pw_conf_load_conf_for_context (properties, conf)) < 0)
goto error_free;
n_support = pw_get_support(this->support, SPA_N_ELEMENTS(this->support) - 6);
cpu = spa_support_find(this->support, n_support, SPA_TYPE_INTERFACE_CPU);
res = pw_context_conf_update_props(this, "context.properties", properties);
pw_log_info("%p: parsed %d context.properties items", this, res);
if ((str = getenv("PIPEWIRE_CORE"))) {
pw_log_info("using core.name from environment: %s", str);
pw_properties_set(properties, PW_KEY_CORE_NAME, str);
}
if ((str = pw_properties_get(properties, "vm.overrides")) != NULL) {
if (cpu != NULL && spa_cpu_get_vm_type(cpu) != SPA_CPU_VM_NONE)
pw_properties_update_string(properties, str, strlen(str));
pw_properties_set(properties, "vm.overrides", NULL);
}
if (cpu != NULL) {
if (pw_properties_get(properties, PW_KEY_CPU_MAX_ALIGN) == NULL)
pw_properties_setf(properties, PW_KEY_CPU_MAX_ALIGN,
"%u", spa_cpu_get_max_align(cpu));
}
if (getenv("PIPEWIRE_DEBUG") == NULL &&
(str = pw_properties_get(properties, "log.level")) != NULL)
pw_log_set_level(atoi(str));
if (pw_properties_get_bool(properties, "mem.mlock-all", false)) {
if (mlockall(MCL_CURRENT | MCL_FUTURE) < 0)
pw_log_warn("%p: could not mlockall; %m", impl);
else
pw_log_info("%p: mlockall succeeded", impl);
}
pw_settings_init(this);
this->settings = this->defaults;
pr = pw_properties_copy(properties);
if ((str = pw_properties_get(pr, "context.data-loop." PW_KEY_LIBRARY_NAME_SYSTEM)))
pw_properties_set(pr, PW_KEY_LIBRARY_NAME_SYSTEM, str);
this->data_loop_impl = pw_data_loop_new(&pr->dict);
pw_properties_free(pr);
if (this->data_loop_impl == NULL) {
res = -errno;
goto error_free;
}
this->pool = pw_mempool_new(NULL);
if (this->pool == NULL) {
res = -errno;
goto error_free;
}
this->data_loop = pw_data_loop_get_loop(this->data_loop_impl);
this->data_system = this->data_loop->system;
this->main_loop = main_loop;
this->work_queue = pw_work_queue_new(this->main_loop);
if (this->work_queue == NULL) {
res = -errno;
goto error_free;
}
init_plugin_loader(impl);
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_System, this->main_loop->system);
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_Loop, this->main_loop->loop);
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_LoopUtils, this->main_loop->utils);
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_DataSystem, this->data_system);
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_DataLoop, this->data_loop->loop);
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_PluginLoader, &impl->plugin_loader);
if ((str = pw_properties_get(properties, "support.dbus")) == NULL ||
pw_properties_parse_bool(str)) {
lib = pw_properties_get(properties, PW_KEY_LIBRARY_NAME_DBUS);
if (lib == NULL)
lib = "support/libspa-dbus";
impl->dbus_handle = pw_load_spa_handle(lib,
SPA_NAME_SUPPORT_DBUS, NULL,
n_support, this->support);
if (impl->dbus_handle == NULL) {
pw_log_warn("%p: can't load dbus library: %s", this, lib);
} else if ((res = spa_handle_get_interface(impl->dbus_handle,
SPA_TYPE_INTERFACE_DBus, &dbus_iface)) < 0) {
pw_log_warn("%p: can't load dbus interface: %s", this, spa_strerror(res));
} else {
this->support[n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_DBus, dbus_iface);
}
}
this->n_support = n_support;
spa_assert(n_support <= SPA_N_ELEMENTS(this->support));
this->core = pw_context_create_core(this, pw_properties_copy(properties), 0);
if (this->core == NULL) {
res = -errno;
goto error_free;
}
pw_impl_core_register(this->core, NULL);
fill_properties(this);
if ((res = pw_context_parse_conf_section(this, conf, "context.spa-libs")) < 0)
goto error_free;
pw_log_info("%p: parsed %d context.spa-libs items", this, res);
if ((res = pw_context_parse_conf_section(this, conf, "context.modules")) < 0)
goto error_free;
if (res > 0)
pw_log_info("%p: parsed %d context.modules items", this, res);
else
pw_log_warn("%p: no modules loaded from context.modules", this);
if ((res = pw_context_parse_conf_section(this, conf, "context.objects")) < 0)
goto error_free;
pw_log_info("%p: parsed %d context.objects items", this, res);
if ((res = pw_context_parse_conf_section(this, conf, "context.exec")) < 0)
goto error_free;
pw_log_info("%p: parsed %d context.exec items", this, res);
if ((res = pw_data_loop_start(this->data_loop_impl)) < 0)
goto error_free;
pw_data_loop_invoke(this->data_loop_impl,
do_data_loop_setup, 0, NULL, 0, false, this);
pw_settings_expose(this);
pw_log_debug("%p: created", this);
return this;
error_free:
pw_context_destroy(this);
error_cleanup:
errno = -res;
return NULL;
}
/** Destroy a context object
*
* \param context a context to destroy
*/
SPA_EXPORT
void pw_context_destroy(struct pw_context *context)
{
struct impl *impl = SPA_CONTAINER_OF(context, struct impl, this);
struct pw_global *global;
struct pw_impl_client *client;
struct pw_impl_module *module;
struct pw_impl_device *device;
struct pw_core *core;
struct pw_resource *resource;
struct pw_impl_node *node;
struct factory_entry *entry;
struct pw_impl_metadata *metadata;
struct pw_impl_core *core_impl;
pw_log_debug("%p: destroy", context);
pw_context_emit_destroy(context);
spa_list_consume(core, &context->core_list, link)
pw_core_disconnect(core);
spa_list_consume(client, &context->client_list, link)
pw_impl_client_destroy(client);
spa_list_consume(node, &context->node_list, link)
pw_impl_node_destroy(node);
spa_list_consume(device, &context->device_list, link)
pw_impl_device_destroy(device);
spa_list_consume(resource, &context->registry_resource_list, link)
pw_resource_destroy(resource);
if (context->data_loop_impl)
pw_data_loop_stop(context->data_loop_impl);
spa_list_consume(module, &context->module_list, link)
pw_impl_module_destroy(module);
spa_list_consume(global, &context->global_list, link)
pw_global_destroy(global);
spa_list_consume(metadata, &context->metadata_list, link)
pw_impl_metadata_destroy(metadata);
spa_list_consume(core_impl, &context->core_impl_list, link)
pw_impl_core_destroy(core_impl);
pw_log_debug("%p: free", context);
pw_context_emit_free(context);
if (context->data_loop_impl)
pw_data_loop_destroy(context->data_loop_impl);
if (context->pool)
pw_mempool_destroy(context->pool);
if (context->work_queue)
pw_work_queue_destroy(context->work_queue);
pw_properties_free(context->properties);
pw_properties_free(context->conf);
pw_settings_clean(context);
if (impl->dbus_handle)
pw_unload_spa_handle(impl->dbus_handle);
pw_array_for_each(entry, &context->factory_lib) {
regfree(&entry->regex);
free(entry->lib);
}
pw_array_clear(&context->factory_lib);
pw_array_clear(&context->objects);
pw_map_clear(&context->globals);
spa_hook_list_clean(&context->listener_list);
spa_hook_list_clean(&context->driver_listener_list);
free(context);
}
SPA_EXPORT
void *pw_context_get_user_data(struct pw_context *context)
{
return context->user_data;
}
SPA_EXPORT
void pw_context_add_listener(struct pw_context *context,
struct spa_hook *listener,
const struct pw_context_events *events,
void *data)
{
spa_hook_list_append(&context->listener_list, listener, events, data);
}
SPA_EXPORT
const struct spa_support *pw_context_get_support(struct pw_context *context, uint32_t *n_support)
{
*n_support = context->n_support;
return context->support;
}
SPA_EXPORT
struct pw_loop *pw_context_get_main_loop(struct pw_context *context)
{
return context->main_loop;
}
SPA_EXPORT
struct pw_data_loop *pw_context_get_data_loop(struct pw_context *context)
{
return context->data_loop_impl;
}
SPA_EXPORT
struct pw_work_queue *pw_context_get_work_queue(struct pw_context *context)
{
return context->work_queue;
}
SPA_EXPORT
const struct pw_properties *pw_context_get_properties(struct pw_context *context)
{
return context->properties;
}
SPA_EXPORT
const char *pw_context_get_conf_section(struct pw_context *context, const char *section)
{
return pw_properties_get(context->conf, section);
}
/** Update context properties
*
* \param context a context
* \param dict properties to update
*
* Update the context object with the given properties
*/
SPA_EXPORT
int pw_context_update_properties(struct pw_context *context, const struct spa_dict *dict)
{
int changed;
changed = pw_properties_update(context->properties, dict);
pw_log_debug("%p: updated %d properties", context, changed);
return changed;
}
static bool global_can_read(struct pw_context *context, struct pw_global *global)
{
if (context->current_client &&
!PW_PERM_IS_R(pw_global_get_permissions(global, context->current_client)))
return false;
return true;
}
SPA_EXPORT
int pw_context_for_each_global(struct pw_context *context,
int (*callback) (void *data, struct pw_global *global),
void *data)
{
struct pw_global *g, *t;
int res;
spa_list_for_each_safe(g, t, &context->global_list, link) {
if (!global_can_read(context, g))
continue;
if ((res = callback(data, g)) != 0)
return res;
}
return 0;
}
SPA_EXPORT
struct pw_global *pw_context_find_global(struct pw_context *context, uint32_t id)
{
struct pw_global *global;
global = pw_map_lookup(&context->globals, id);
if (global == NULL || !global->registered) {
errno = ENOENT;
return NULL;
}
if (!global_can_read(context, global)) {
errno = EACCES;
return NULL;
}
return global;
}
SPA_PRINTF_FUNC(7, 8) int pw_context_debug_port_params(struct pw_context *this,
struct spa_node *node, enum spa_direction direction,
uint32_t port_id, uint32_t id, int err, const char *debug, ...)
{
struct spa_pod_builder b = { 0 };
uint8_t buffer[4096];
uint32_t state;
struct spa_pod *param;
int res;
va_list args;
va_start(args, debug);
vsnprintf((char*)buffer, sizeof(buffer), debug, args);
va_end(args);
pw_log_error("params %s: %d:%d %s (%s)",
spa_debug_type_find_name(spa_type_param, id),
direction, port_id, spa_strerror(err), buffer);
if (err == -EBUSY)
return 0;
state = 0;
while (true) {
spa_pod_builder_init(&b, buffer, sizeof(buffer));
res = spa_node_port_enum_params_sync(node,
direction, port_id,
id, &state,
NULL, &param, &b);
if (res != 1) {
if (res < 0)
pw_log_error(" error: %s", spa_strerror(res));
break;
}
pw_log_pod(SPA_LOG_LEVEL_ERROR, param);
}
return 0;
}
/** Find a common format between two ports
*
* \param context a context object
* \param output an output port
* \param input an input port
* \param props extra properties
* \param n_format_filters number of format filters
* \param format_filters array of format filters
* \param[out] format the common format between the ports
* \param builder builder to use for processing
* \param[out] error an error when something is wrong
* \return a common format of NULL on error
*
* Find a common format between the given ports. The format will
* be restricted to a subset given with the format filters.
*/
int pw_context_find_format(struct pw_context *context,
struct pw_impl_port *output,
struct pw_impl_port *input,
struct pw_properties *props,
uint32_t n_format_filters,
struct spa_pod **format_filters,
struct spa_pod **format,
struct spa_pod_builder *builder,
char **error)
{
uint32_t out_state, in_state;
int res;
uint32_t iidx = 0, oidx = 0;
struct spa_pod_builder fb = { 0 };
uint8_t fbuf[4096];
struct spa_pod *filter;
out_state = output->state;
in_state = input->state;
pw_log_debug("%p: finding best format %d %d", context, out_state, in_state);
/* when a port is configured but the node is idle, we can reconfigure with a different format */
if (out_state > PW_IMPL_PORT_STATE_CONFIGURE && output->node->info.state == PW_NODE_STATE_IDLE)
out_state = PW_IMPL_PORT_STATE_CONFIGURE;
if (in_state > PW_IMPL_PORT_STATE_CONFIGURE && input->node->info.state == PW_NODE_STATE_IDLE)
in_state = PW_IMPL_PORT_STATE_CONFIGURE;
pw_log_debug("%p: states %d %d", context, out_state, in_state);
if (in_state == PW_IMPL_PORT_STATE_CONFIGURE && out_state > PW_IMPL_PORT_STATE_CONFIGURE) {
/* only input needs format */
spa_pod_builder_init(&fb, fbuf, sizeof(fbuf));
if ((res = spa_node_port_enum_params_sync(output->node->node,
output->direction, output->port_id,
SPA_PARAM_Format, &oidx,
NULL, &filter, &fb)) != 1) {
if (res < 0)
*error = spa_aprintf("error get output format: %s", spa_strerror(res));
else
*error = spa_aprintf("no output formats");
goto error;
}
pw_log_debug("%p: Got output format:", context);
pw_log_format(SPA_LOG_LEVEL_DEBUG, filter);
if ((res = spa_node_port_enum_params_sync(input->node->node,
input->direction, input->port_id,
SPA_PARAM_EnumFormat, &iidx,
filter, format, builder)) <= 0) {
if (res == -ENOENT || res == 0) {
pw_log_debug("%p: no input format filter, using output format: %s",
context, spa_strerror(res));
*format = filter;
} else {
*error = spa_aprintf("error input enum formats: %s", spa_strerror(res));
goto error;
}
}
} else if (out_state >= PW_IMPL_PORT_STATE_CONFIGURE && in_state > PW_IMPL_PORT_STATE_CONFIGURE) {
/* only output needs format */
spa_pod_builder_init(&fb, fbuf, sizeof(fbuf));
if ((res = spa_node_port_enum_params_sync(input->node->node,
input->direction, input->port_id,
SPA_PARAM_Format, &iidx,
NULL, &filter, &fb)) != 1) {
if (res < 0)
*error = spa_aprintf("error get input format: %s", spa_strerror(res));
else
*error = spa_aprintf("no input format");
goto error;
}
pw_log_debug("%p: Got input format:", context);
pw_log_format(SPA_LOG_LEVEL_DEBUG, filter);
if ((res = spa_node_port_enum_params_sync(output->node->node,
output->direction, output->port_id,
SPA_PARAM_EnumFormat, &oidx,
filter, format, builder)) <= 0) {
if (res == -ENOENT || res == 0) {
pw_log_debug("%p: no output format filter, using input format: %s",
context, spa_strerror(res));
*format = filter;
} else {
*error = spa_aprintf("error output enum formats: %s", spa_strerror(res));
goto error;
}
}
} else if (in_state == PW_IMPL_PORT_STATE_CONFIGURE && out_state == PW_IMPL_PORT_STATE_CONFIGURE) {
again:
/* both ports need a format */
pw_log_debug("%p: do enum input %d", context, iidx);
spa_pod_builder_init(&fb, fbuf, sizeof(fbuf));
if ((res = spa_node_port_enum_params_sync(input->node->node,
input->direction, input->port_id,
SPA_PARAM_EnumFormat, &iidx,
NULL, &filter, &fb)) != 1) {
if (res == -ENOENT) {
pw_log_debug("%p: no input filter", context);
filter = NULL;
} else {
if (res < 0)
*error = spa_aprintf("error input enum formats: %s", spa_strerror(res));
else
*error = spa_aprintf("no more input formats");
goto error;
}
}
pw_log_debug("%p: enum output %d with filter: %p", context, oidx, filter);
pw_log_format(SPA_LOG_LEVEL_DEBUG, filter);
if ((res = spa_node_port_enum_params_sync(output->node->node,
output->direction, output->port_id,
SPA_PARAM_EnumFormat, &oidx,
filter, format, builder)) != 1) {
if (res == 0 && filter != NULL) {
oidx = 0;
goto again;
}
*error = spa_aprintf("error output enum formats: %s", spa_strerror(res));
goto error;
}
pw_log_debug("%p: Got filtered:", context);
pw_log_format(SPA_LOG_LEVEL_DEBUG, *format);
} else {
res = -EBADF;
*error = spa_aprintf("error bad node state");
goto error;
}
return res;
error:
if (res == 0)
res = -EINVAL;
return res;
}
static int ensure_state(struct pw_impl_node *node, bool running)
{
enum pw_node_state state = node->info.state;
if (node->active && !SPA_FLAG_IS_SET(node->spa_flags, SPA_NODE_FLAG_NEED_CONFIGURE) && running)
state = PW_NODE_STATE_RUNNING;
else if (state > PW_NODE_STATE_IDLE)
state = PW_NODE_STATE_IDLE;
return pw_impl_node_set_state(node, state);
}
static int collect_nodes(struct pw_context *context, struct pw_impl_node *node, struct spa_list *collect)
{
struct spa_list queue;
struct pw_impl_node *n, *t;
struct pw_impl_port *p;
struct pw_impl_link *l;
pw_log_debug("node %p: '%s'", node, node->name);
/* start with node in the queue */
spa_list_init(&queue);
spa_list_append(&queue, &node->sort_link);
node->visited = true;
/* now follow all the links from the nodes in the queue
* and add the peers to the queue. */
spa_list_consume(n, &queue, sort_link) {
spa_list_remove(&n->sort_link);
spa_list_append(collect, &n->sort_link);
n->passive = !n->always_process;
pw_log_debug(" next node %p: '%s' passive:%u", n, n->name, n->passive);
if (!n->active)
continue;
spa_list_for_each(p, &n->input_ports, link) {
spa_list_for_each(l, &p->links, input_link) {
t = l->output->node;
if (!t->active)
continue;
pw_impl_link_prepare(l);
if (!l->prepared)
continue;
if (!l->passive)
n->passive = false;
if (!t->visited) {
t->visited = true;
spa_list_append(&queue, &t->sort_link);
}
}
}
spa_list_for_each(p, &n->output_ports, link) {
spa_list_for_each(l, &p->links, output_link) {
t = l->input->node;
if (!t->active)
continue;
pw_impl_link_prepare(l);
if (!l->prepared)
continue;
if (!l->passive)
n->passive = false;
if (!t->visited) {
t->visited = true;
spa_list_append(&queue, &t->sort_link);
}
}
}
/* now go through all the nodes that have the same group and
* that are not yet visited */
if (n->group != NULL) {
spa_list_for_each(t, &context->node_list, link) {
if (t->exported || !t->active || t->visited)
continue;
if (!spa_streq(t->group, n->group))
continue;
pw_log_debug("%p: %s join group %s",
t, t->name, t->group);
t->visited = true;
spa_list_append(&queue, &t->sort_link);
}
}
}
return 0;
}
static void move_to_driver(struct pw_context *context, struct spa_list *nodes,
struct pw_impl_node *driver)
{
struct pw_impl_node *n;
pw_log_debug("driver: %p %s", driver, driver->name);
spa_list_consume(n, nodes, sort_link) {
spa_list_remove(&n->sort_link);
if (!n->passive)
driver->passive = false;
pw_log_debug(" follower: %p %s passive:%u driver-passive:%u", n, n->name,
n->passive, driver->passive);
pw_impl_node_set_driver(n, driver);
}
}
static void remove_from_driver(struct pw_context *context, struct spa_list *nodes)
{
struct pw_impl_node *n;
spa_list_consume(n, nodes, sort_link) {
spa_list_remove(&n->sort_link);
pw_impl_node_set_driver(n, NULL);
ensure_state(n, false);
}
}
static inline void get_quantums(struct pw_context *context, uint32_t *def,
uint32_t *min, uint32_t *max, uint32_t *limit, uint32_t *rate)
{
struct settings *s = &context->settings;
if (s->clock_force_quantum != 0) {
*def = *min = *max = s->clock_force_quantum;
*rate = 0;
} else {
*def = s->clock_quantum;
*min = s->clock_min_quantum;
*max = s->clock_max_quantum;
*rate = s->clock_rate;
}
*limit = s->clock_quantum_limit;
}
static inline const uint32_t *get_rates(struct pw_context *context, uint32_t *def, uint32_t *n_rates,
bool *force)
{
struct settings *s = &context->settings;
if (s->clock_force_rate != 0) {
*force = true;
*n_rates = 1;
*def = s->clock_force_rate;
return &s->clock_force_rate;
} else {
*force = false;
*n_rates = s->n_clock_rates;
*def = s->clock_rate;
return s->clock_rates;
}
}
static void reconfigure_driver(struct pw_context *context, struct pw_impl_node *n)
{
struct pw_impl_node *s;
spa_list_for_each(s, &n->follower_list, follower_link) {
if (s == n)
continue;
pw_log_debug("%p: follower %p: '%s' suspend",
context, s, s->name);
pw_impl_node_set_state(s, PW_NODE_STATE_SUSPENDED);
}
pw_log_debug("%p: driver %p: '%s' suspend",
context, n, n->name);
if (n->info.state >= PW_NODE_STATE_IDLE)
n->reconfigure = true;
pw_impl_node_set_state(n, PW_NODE_STATE_SUSPENDED);
}
/* find smaller power of 2 */
static uint32_t flp2(uint32_t x)
{
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x - (x >> 1);
}
/* cmp fractions, avoiding overflows */
static int fraction_compare(const struct spa_fraction *a, const struct spa_fraction *b)
{
uint64_t fa = (uint64_t)a->num * (uint64_t)b->denom;
uint64_t fb = (uint64_t)b->num * (uint64_t)a->denom;
return fa < fb ? -1 : (fa > fb ? 1 : 0);
}
static inline uint32_t calc_gcd(uint32_t a, uint32_t b)
{
while (b != 0) {
uint32_t temp = a;
a = b;
b = temp % b;
}
return a;
}
struct rate_info {
uint32_t rate;
uint32_t gcd;
uint32_t diff;
};
static inline void update_highest_rate(struct rate_info *best, struct rate_info *current)
{
/* find highest rate */
if (best->rate == 0 || best->rate < current->rate)
*best = *current;
}
static inline void update_nearest_gcd(struct rate_info *best, struct rate_info *current)
{
/* find nearest GCD */
if (best->rate == 0 ||
(best->gcd < current->gcd) ||
(best->gcd == current->gcd && best->diff > current->diff))
*best = *current;
}
static inline void update_nearest_rate(struct rate_info *best, struct rate_info *current)
{
/* find nearest rate */
if (best->rate == 0 || best->diff > current->diff)
*best = *current;
}
static uint32_t find_best_rate(const uint32_t *rates, uint32_t n_rates, uint32_t rate, uint32_t def)
{
uint32_t i, limit;
struct rate_info best;
struct rate_info info[n_rates];
for (i = 0; i < n_rates; i++) {
info[i].rate = rates[i];
info[i].gcd = calc_gcd(rate, rates[i]);
info[i].diff = SPA_ABS((int32_t)rate - (int32_t)rates[i]);
}
/* first find higher nearest GCD. This tries to find next bigest rate that
* requires the least amount of resample filter banks. Usually these are
* rates that are multiples of eachother or multiples of a common rate.
*
* 44100 and [ 32000 56000 88200 96000 ] -> 88200
* 48000 and [ 32000 56000 88200 96000 ] -> 96000
* 88200 and [ 44100 48000 96000 192000 ] -> 96000
* 32000 and [ 44100 192000 ] -> 44100
* 8000 and [ 44100 48000 ] -> 48000
* 8000 and [ 44100 192000 ] -> 44100
* 11025 and [ 44100 48000 ] -> 44100
* 44100 and [ 48000 176400 ] -> 48000
*/
spa_zero(best);
/* Don't try to do excessive upsampling by limiting the max rate
* for desired < default to default*2. For other rates allow
* a x3 upsample rate max */
limit = rate < def ? def*2 : rate*3;
for (i = 0; i < n_rates; i++) {
if (info[i].rate >= rate && info[i].rate <= limit)
update_nearest_gcd(&best, &info[i]);
}
if (best.rate != 0)
return best.rate;
/* we would need excessive upsampling, pick a nearest higher rate */
spa_zero(best);
for (i = 0; i < n_rates; i++) {
if (info[i].rate >= rate)
update_nearest_rate(&best, &info[i]);
}
if (best.rate != 0)
return best.rate;
/* There is nothing above the rate, we need to downsample. Try to downsample
* but only to something that is from a common rate family. Also don't
* try to downsample to something that will sound worse (< 44100).
*
* 88200 and [ 22050 44100 48000 ] -> 44100
* 88200 and [ 22050 48000 ] -> 48000
*/
spa_zero(best);
for (i = 0; i < n_rates; i++) {
if (info[i].rate >= 44100)
update_nearest_gcd(&best, &info[i]);
}
if (best.rate != 0)
return best.rate;
/* There is nothing to downsample above our threshold. Downsample to whatever
* is the highest rate then. */
spa_zero(best);
for (i = 0; i < n_rates; i++)
update_highest_rate(&best, &info[i]);
if (best.rate != 0)
return best.rate;
return def;
}
/* here we evaluate the complete state of the graph.
*
* It roughly operates in 3 stages:
*
* 1. go over all drivers and collect the nodes that need to be scheduled with the
* driver. This include all nodes that have an active link with the driver or
* with a node already scheduled with the driver.
*
* 2. go over all nodes that are not assigned to a driver. The ones that require
* a driver are moved to some random active driver found in step 1.
*
* 3. go over all drivers again, collect the quantum/rate of all followers, select
* the desired final value and activate the followers and then the driver.
*
* A complete graph evaluation is performed for each change that is made to the
* graph, such as making/destroying links, adding/removing nodes, property changes such
* as quantum/rate changes or metadata changes.
*/
int pw_context_recalc_graph(struct pw_context *context, const char *reason)
{
struct impl *impl = SPA_CONTAINER_OF(context, struct impl, this);
struct settings *settings = &context->settings;
struct pw_impl_node *n, *s, *target, *fallback;
const uint32_t *rates;
uint32_t max_quantum, min_quantum, def_quantum, lim_quantum, rate_quantum;
uint32_t n_rates, def_rate;
bool freewheel = false, global_force_rate, global_force_quantum;
struct spa_list collect;
pw_log_info("%p: busy:%d reason:%s", context, impl->recalc, reason);
if (impl->recalc) {
impl->recalc_pending = true;
return -EBUSY;
}
again:
impl->recalc = true;
get_quantums(context, &def_quantum, &min_quantum, &max_quantum, &lim_quantum, &rate_quantum);
rates = get_rates(context, &def_rate, &n_rates, &global_force_rate);
global_force_quantum = rate_quantum == 0;
/* start from all drivers and group all nodes that are linked
* to it. Some nodes are not (yet) linked to anything and they
* will end up 'unassigned' to a driver. Other nodes are drivers
* and if they have active followers, we can use them to schedule
* the unassigned nodes. */
target = fallback = NULL;
spa_list_for_each(n, &context->driver_list, driver_link) {
if (n->exported)
continue;
if (!n->visited) {
spa_list_init(&collect);
collect_nodes(context, n, &collect);
move_to_driver(context, &collect, n);
}
/* from now on we are only interested in active driving nodes.
* We're going to see if there are active followers. */
if (!n->driving || !n->active)
continue;
/* first active driving node is fallback */
if (fallback == NULL)
fallback = n;
if (n->passive)
continue;
spa_list_for_each(s, &n->follower_list, follower_link) {
pw_log_debug("%p: driver %p: follower %p %s: active:%d",
context, n, s, s->name, s->active);
if (s != n && s->active) {
/* if the driving node has active followers, it
* is a target for our unassigned nodes */
if (target == NULL)
target = n;
if (n->freewheel)
freewheel = true;
break;
}
}
}
/* no active node, use fallback driving node */
if (target == NULL)
target = fallback;
/* update the freewheel status */
if (context->freewheeling != freewheel)
context_set_freewheel(context, freewheel);
/* now go through all available nodes. The ones we didn't visit
* in collect_nodes() are not linked to any driver. We assign them
* to either an active driver or the first driver if they are in a
* group that needs a driver. Else we remove them from a driver
* and stop them. */
spa_list_for_each(n, &context->node_list, link) {
struct pw_impl_node *t, *driver;
if (n->exported || n->visited)
continue;
pw_log_debug("%p: unassigned node %p: '%s' active:%d want_driver:%d target:%p",
context, n, n->name, n->active, n->want_driver, target);
/* collect all nodes in this group */
spa_list_init(&collect);
collect_nodes(context, n, &collect);
driver = NULL;
spa_list_for_each(t, &collect, sort_link) {
/* is any active and want a driver */
if (t->want_driver && t->active && !t->passive) {
driver = target;
break;
}
}
if (driver != NULL) {
/* driver needed for this group */
move_to_driver(context, &collect, driver);
} else {
/* no driver, make sure the nodes stops */
remove_from_driver(context, &collect);
}
}
/* clean up the visited flag now */
spa_list_for_each(n, &context->node_list, link)
n->visited = false;
/* assign final quantum and set state for followers and drivers */
spa_list_for_each(n, &context->driver_list, driver_link) {
bool running = false, lock_quantum = false, lock_rate = false;
struct spa_fraction latency = SPA_FRACTION(0, 0);
struct spa_fraction max_latency = SPA_FRACTION(0, 0);
struct spa_fraction rate = SPA_FRACTION(0, 0);
uint32_t quantum, target_rate, current_rate;
uint64_t quantum_stamp = 0, rate_stamp = 0;
bool force_rate, force_quantum;
const uint32_t *node_rates;
uint32_t node_n_rates, node_def_rate;
uint32_t node_max_quantum, node_min_quantum, node_def_quantum, node_rate_quantum;
if (!n->driving || n->exported)
continue;
node_def_quantum = def_quantum;
node_min_quantum = min_quantum;
node_max_quantum = max_quantum;
node_rate_quantum = rate_quantum;
force_quantum = global_force_quantum;
node_def_rate = def_rate;
node_n_rates = n_rates;
node_rates = rates;
force_rate = global_force_rate;
/* collect quantum and rate */
spa_list_for_each(s, &n->follower_list, follower_link) {
if (!s->moved) {
/* We only try to enforce the lock flags for nodes that
* are not recently moved between drivers. The nodes that
* are moved should try to enforce their quantum on the
* new driver. */
lock_quantum |= s->lock_quantum;
lock_rate |= s->lock_rate;
}
if (!global_force_quantum && s->force_quantum > 0 &&
s->stamp > quantum_stamp) {
node_def_quantum = node_min_quantum = node_max_quantum = s->force_quantum;
node_rate_quantum = 0;
quantum_stamp = s->stamp;
force_quantum = true;
}
if (!global_force_rate && s->force_rate > 0 &&
s->stamp > rate_stamp) {
node_def_rate = s->force_rate;
node_n_rates = 1;
node_rates = &s->force_rate;
force_rate = true;
rate_stamp = s->stamp;
}
/* smallest latencies */
if (latency.denom == 0 ||
(s->latency.denom > 0 &&
fraction_compare(&s->latency, &latency) < 0))
latency = s->latency;
if (max_latency.denom == 0 ||
(s->max_latency.denom > 0 &&
fraction_compare(&s->max_latency, &max_latency) < 0))
max_latency = s->max_latency;
/* largest rate */
if (rate.denom == 0 ||
(s->rate.denom > 0 &&
fraction_compare(&s->rate, &rate) > 0))
rate = s->rate;
if (s->active)
running = !n->passive;
pw_log_debug("%p: follower %p running:%d passive:%d rate:%u/%u latency %u/%u '%s'",
context, s, running, s->passive, rate.num, rate.denom,
latency.num, latency.denom, s->name);
s->moved = false;
}
if (force_quantum)
lock_quantum = false;
if (force_rate)
lock_rate = false;
if (n->reconfigure)
running = true;
current_rate = n->current_rate.denom;
if (lock_rate || n->reconfigure || !running ||
(!force_rate &&
(n->info.state > PW_NODE_STATE_IDLE)))
/* when someone wants us to lock the rate of this driver or
* when we are in the process of reconfiguring the driver or
* when we are not running any followers or
* when the driver is busy and we don't need to force a rate,
* keep the current rate */
target_rate = current_rate;
else {
/* Here we are allowed to change the rate of the driver.
* Start with the default rate. If the desired rate is
* allowed, switch to it */
target_rate = node_def_rate;
if (rate.denom != 0 && rate.num == 1)
target_rate = find_best_rate(node_rates, node_n_rates,
rate.denom, target_rate);
}
if (target_rate != current_rate) {
bool do_reconfigure = false;
/* we doing a rate switch */
pw_log_info("(%s-%u) state:%s new rate:%u->%u",
n->name, n->info.id,
pw_node_state_as_string(n->info.state),
n->current_rate.denom,
target_rate);
if (force_rate) {
if (settings->clock_rate_update_mode == CLOCK_RATE_UPDATE_MODE_HARD)
do_reconfigure = true;
} else {
if (n->info.state >= PW_NODE_STATE_SUSPENDED)
do_reconfigure = true;
}
if (do_reconfigure)
reconfigure_driver(context, n);
/* we're setting the pending rate. This will become the new
* current rate in the next iteration of the graph. */
n->current_rate = SPA_FRACTION(1, target_rate);
n->current_pending = true;
current_rate = target_rate;
/* we might be suspended now and the links need to be prepared again */
if (do_reconfigure)
goto again;
}
if (node_rate_quantum != 0 && current_rate != node_rate_quantum) {
/* the quantum values are scaled with the current rate */
node_def_quantum = node_def_quantum * current_rate / node_rate_quantum;
node_min_quantum = node_min_quantum * current_rate / node_rate_quantum;
node_max_quantum = node_max_quantum * current_rate / node_rate_quantum;
}
/* calculate desired quantum */
if (max_latency.denom != 0) {
uint32_t tmp = (max_latency.num * current_rate / max_latency.denom);
if (tmp < node_max_quantum)
node_max_quantum = tmp;
}
quantum = node_def_quantum;
if (latency.denom != 0)
quantum = (latency.num * current_rate / latency.denom);
quantum = SPA_CLAMP(quantum, node_min_quantum, node_max_quantum);
quantum = SPA_MIN(quantum, lim_quantum);
if (settings->clock_power_of_two_quantum)
quantum = flp2(quantum);
if (running && quantum != n->current_quantum && !lock_quantum) {
pw_log_info("(%s-%u) new quantum:%"PRIu64"->%u",
n->name, n->info.id,
n->current_quantum,
quantum);
/* this is the new pending quantum */
n->current_quantum = quantum;
n->current_pending = true;
}
if (n->info.state < PW_NODE_STATE_RUNNING && n->current_pending) {
/* the driver node is not actually running and we have a
* pending change. Apply the change to the position now so
* that we have the right values when we change the node
* states of the driver and followers to RUNNING below */
pw_log_debug("%p: apply duration:%"PRIu64" rate:%u/%u", context,
n->current_quantum, n->current_rate.num,
n->current_rate.denom);
n->rt.position->clock.duration = n->current_quantum;
n->rt.position->clock.rate = n->current_rate;
n->current_pending = false;
}
pw_log_debug("%p: driver %p running:%d passive:%d quantum:%u '%s'",
context, n, running, n->passive, quantum, n->name);
/* first change the node states of the followers to the new target */
spa_list_for_each(s, &n->follower_list, follower_link) {
if (s == n)
continue;
pw_log_debug("%p: follower %p: active:%d '%s'",
context, s, s->active, s->name);
ensure_state(s, running);
}
/* now that all the followers are ready, start the driver */
ensure_state(n, running);
}
impl->recalc = false;
if (impl->recalc_pending) {
impl->recalc_pending = false;
goto again;
}
return 0;
}
SPA_EXPORT
int pw_context_add_spa_lib(struct pw_context *context,
const char *factory_regexp, const char *lib)
{
struct factory_entry *entry;
int err;
entry = pw_array_add(&context->factory_lib, sizeof(*entry));
if (entry == NULL)
return -errno;
if ((err = regcomp(&entry->regex, factory_regexp, REG_EXTENDED | REG_NOSUB)) != 0) {
char errbuf[1024];
regerror(err, &entry->regex, errbuf, sizeof(errbuf));
pw_log_error("%p: can compile regex: %s", context, errbuf);
pw_array_remove(&context->factory_lib, entry);
return -EINVAL;
}
entry->lib = strdup(lib);
pw_log_debug("%p: map factory regex '%s' to '%s", context,
factory_regexp, lib);
return 0;
}
SPA_EXPORT
const char *pw_context_find_spa_lib(struct pw_context *context, const char *factory_name)
{
struct factory_entry *entry;
pw_array_for_each(entry, &context->factory_lib) {
if (regexec(&entry->regex, factory_name, 0, NULL, 0) == 0)
return entry->lib;
}
return NULL;
}
SPA_EXPORT
struct spa_handle *pw_context_load_spa_handle(struct pw_context *context,
const char *factory_name,
const struct spa_dict *info)
{
const char *lib;
const struct spa_support *support;
uint32_t n_support;
struct spa_handle *handle;
pw_log_debug("%p: load factory %s", context, factory_name);
lib = pw_context_find_spa_lib(context, factory_name);
if (lib == NULL && info != NULL)
lib = spa_dict_lookup(info, SPA_KEY_LIBRARY_NAME);
if (lib == NULL) {
errno = ENOENT;
pw_log_warn("%p: no library for %s: %m",
context, factory_name);
return NULL;
}
support = pw_context_get_support(context, &n_support);
handle = pw_load_spa_handle(lib, factory_name,
info, n_support, support);
return handle;
}
SPA_EXPORT
int pw_context_register_export_type(struct pw_context *context, struct pw_export_type *type)
{
if (pw_context_find_export_type(context, type->type)) {
pw_log_warn("context %p: duplicate export type %s", context, type->type);
return -EEXIST;
}
pw_log_debug("context %p: Add export type %s to context", context, type->type);
spa_list_append(&context->export_list, &type->link);
return 0;
}
SPA_EXPORT
const struct pw_export_type *pw_context_find_export_type(struct pw_context *context, const char *type)
{
const struct pw_export_type *t;
spa_list_for_each(t, &context->export_list, link) {
if (spa_streq(t->type, type))
return t;
}
return NULL;
}
struct object_entry {
const char *type;
void *value;
};
static struct object_entry *find_object(struct pw_context *context, const char *type)
{
struct object_entry *entry;
pw_array_for_each(entry, &context->objects) {
if (spa_streq(entry->type, type))
return entry;
}
return NULL;
}
SPA_EXPORT
int pw_context_set_object(struct pw_context *context, const char *type, void *value)
{
struct object_entry *entry;
entry = find_object(context, type);
if (value == NULL) {
if (entry)
pw_array_remove(&context->objects, entry);
} else {
if (entry == NULL) {
entry = pw_array_add(&context->objects, sizeof(*entry));
if (entry == NULL)
return -errno;
entry->type = type;
}
entry->value = value;
}
if (spa_streq(type, SPA_TYPE_INTERFACE_ThreadUtils)) {
context->thread_utils = value;
if (context->data_loop_impl)
pw_data_loop_set_thread_utils(context->data_loop_impl,
context->thread_utils);
}
return 0;
}
SPA_EXPORT
void *pw_context_get_object(struct pw_context *context, const char *type)
{
struct object_entry *entry;
if ((entry = find_object(context, type)) != NULL)
return entry->value;
return NULL;
}