pipewire/spa/plugins/bluez5/media-sink.c
Pauli Virtanen 8277bf6b36 bluez5: improve error messages when connection drops
Log something less confusing when connection to remote device drops
unexpectedly.

Silence logging transport Release() error in cases where the transport
was simultaneously deleted.
2025-10-02 01:25:56 +03:00

2715 lines
71 KiB
C

/* Spa Media Sink */
/* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <unistd.h>
#include <stddef.h>
#include <stdio.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <spa/support/plugin.h>
#include <spa/support/loop.h>
#include <spa/support/log.h>
#include <spa/support/system.h>
#include <spa/utils/list.h>
#include <spa/utils/keys.h>
#include <spa/utils/names.h>
#include <spa/utils/result.h>
#include <spa/utils/string.h>
#include <spa/monitor/device.h>
#include <spa/node/node.h>
#include <spa/node/utils.h>
#include <spa/node/io.h>
#include <spa/node/keys.h>
#include <spa/param/param.h>
#include <spa/param/latency-utils.h>
#include <spa/param/audio/format.h>
#include <spa/param/audio/format-utils.h>
#include <spa/pod/filter.h>
#include <spa/debug/mem.h>
#include <spa/debug/log.h>
#include <bluetooth/bluetooth.h>
#include <sbc/sbc.h>
#include "defs.h"
#include "rtp.h"
#include "media-codecs.h"
#include "rate-control.h"
#include "iso-io.h"
SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.bluez5.sink.media");
#undef SPA_LOG_TOPIC_DEFAULT
#define SPA_LOG_TOPIC_DEFAULT &log_topic
#include "bt-latency.h"
#define DEFAULT_CLOCK_NAME "clock.system.monotonic"
struct props {
int64_t latency_offset;
char clock_name[64];
};
#define FILL_FRAMES 4
#define MIN_BUFFERS 3
#define MAX_BUFFERS 32
#define BUFFER_SIZE (8192*8)
#define RATE_CTL_DIFF_MAX 0.01
#define LATENCY_PERIOD (200 * SPA_NSEC_PER_MSEC)
/* Wait for two cycles before trying to sync ISO. On start/driver reassign,
* first cycle may have strange number of samples. */
#define RESYNC_CYCLES 2
struct buffer {
uint32_t id;
#define BUFFER_FLAG_OUT (1<<0)
uint32_t flags;
struct spa_buffer *buf;
struct spa_meta_header *h;
struct spa_list link;
};
struct port {
struct spa_audio_info current_format;
uint32_t frame_size;
unsigned int have_format:1;
uint64_t info_all;
struct spa_port_info info;
struct spa_io_buffers *io;
struct spa_io_rate_match *rate_match;
struct spa_latency_info latency;
#define IDX_EnumFormat 0
#define IDX_Meta 1
#define IDX_IO 2
#define IDX_Format 3
#define IDX_Buffers 4
#define IDX_Latency 5
#define N_PORT_PARAMS 6
struct spa_param_info params[N_PORT_PARAMS];
struct buffer buffers[MAX_BUFFERS];
uint32_t n_buffers;
struct spa_list free;
struct spa_list ready;
size_t ready_offset;
struct spa_bt_rate_control ratectl;
};
#define ASHA_ENCODED_PKT_SZ 161 /* 160 bytes encoded + 1 byte sequence number */
#define ASHA_CONN_INTERVAL (20 * SPA_NSEC_PER_MSEC)
struct spa_bt_asha {
struct spa_source flush_source;
struct spa_source timer_source;
int timerfd;
uint8_t buf[512];
uint64_t ref_t0;
uint64_t next_time;
unsigned int flush_pending:1;
unsigned int set_timer:1;
};
struct impl {
struct spa_handle handle;
struct spa_node node;
struct spa_log *log;
struct spa_loop *data_loop;
struct spa_system *data_system;
struct spa_loop_utils *loop_utils;
struct spa_hook_list hooks;
struct spa_callbacks callbacks;
uint32_t quantum_limit;
uint64_t info_all;
struct spa_node_info info;
#define IDX_PropInfo 0
#define IDX_Props 1
#define N_NODE_PARAMS 2
struct spa_param_info params[N_NODE_PARAMS];
struct props props;
struct spa_bt_transport *transport;
struct spa_hook transport_listener;
struct port port;
unsigned int started:1;
unsigned int start_ready:1;
unsigned int transport_started:1;
unsigned int following:1;
unsigned int is_output:1;
unsigned int flush_pending:1;
unsigned int iso_pending:1;
unsigned int own_codec_data:1;
unsigned int is_duplex:1;
unsigned int is_internal:1;
struct spa_source source;
int timerfd;
struct spa_source flush_source;
struct spa_source flush_timer_source;
int flush_timerfd;
struct spa_io_clock *clock;
struct spa_io_position *position;
uint64_t current_time;
uint64_t next_time;
uint64_t last_error;
uint64_t process_time;
uint64_t process_duration;
uint64_t process_rate;
double process_rate_diff;
uint64_t prev_flush_time;
uint64_t next_flush_time;
uint64_t packet_delay_ns;
struct spa_source *update_delay_event;
uint32_t encoder_delay;
const struct media_codec *codec;
bool codec_props_changed;
void *codec_props;
void *codec_data;
struct spa_audio_info codec_format;
int need_flush;
bool fragment;
uint32_t resync;
uint32_t block_size;
uint8_t buffer[BUFFER_SIZE];
uint32_t buffer_used;
uint32_t header_size;
uint32_t block_count;
uint16_t seqnum;
uint64_t last_seqnum;
uint32_t timestamp;
uint64_t sample_count;
uint8_t tmp_buffer[BUFFER_SIZE];
uint32_t tmp_buffer_used;
uint32_t fd_buffer_size;
struct spa_bt_asha *asha;
struct spa_list asha_link;
struct spa_bt_latency tx_latency;
};
#define CHECK_PORT(this,d,p) ((d) == SPA_DIRECTION_INPUT && (p) == 0)
static struct spa_list asha_sinks = SPA_LIST_INIT(&asha_sinks);
static void drop_frames(struct impl *this, uint32_t req);
static uint64_t get_reference_time(struct impl *this, uint64_t *duration_ns_ret);
static struct impl *find_other_asha(struct impl *this)
{
struct impl *other;
spa_list_for_each(other, &asha_sinks, asha_link) {
if (this == other)
continue;
if (this->transport->hisyncid == other->transport->hisyncid) {
return other;
}
}
return NULL;
}
static void reset_props(struct impl *this, struct props *props)
{
props->latency_offset = 0;
strncpy(props->clock_name, DEFAULT_CLOCK_NAME, sizeof(props->clock_name));
}
static int impl_node_enum_params(void *object, int seq,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[1024];
struct spa_result_node_params result;
uint32_t count = 0, index_offset = 0;
bool enum_codec = false;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
switch (id) {
case SPA_PARAM_PropInfo:
{
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_latencyOffsetNsec),
SPA_PROP_INFO_description, SPA_POD_String("Latency offset (ns)"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(0LL, INT64_MIN, INT64_MAX));
break;
default:
enum_codec = true;
index_offset = 1;
}
break;
}
case SPA_PARAM_Props:
{
struct props *p = &this->props;
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_Props, id,
SPA_PROP_latencyOffsetNsec, SPA_POD_Long(p->latency_offset));
break;
default:
enum_codec = true;
index_offset = 1;
}
break;
}
default:
return -ENOENT;
}
if (enum_codec) {
int res;
if (this->codec->enum_props == NULL || this->codec_props == NULL ||
this->transport == NULL)
return 0;
else if ((res = this->codec->enum_props(this->codec_props,
this->transport->device->settings,
id, result.index - index_offset, &b, &param)) != 1)
return res;
}
if (spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int set_timeout(struct impl *this, uint64_t time)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
return spa_system_timerfd_settime(this->data_system,
this->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
}
static int set_timers(struct impl *this)
{
struct timespec now;
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now);
this->next_time = SPA_TIMESPEC_TO_NSEC(&now);
return set_timeout(this, this->following ? 0 : this->next_time);
}
static int set_asha_timeout(struct impl *this, uint64_t time)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
return spa_system_timerfd_settime(this->data_system,
this->asha->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
}
static int set_asha_timer(struct impl *this, struct impl *other)
{
uint64_t time;
if (other) {
/* Try to line up our timer with the other side, and drop samples so we're sending
* the same sample position on both sides */
uint64_t other_samples = (get_reference_time(other, NULL) - other->asha->ref_t0) *
this->port.current_format.info.raw.rate / SPA_NSEC_PER_SEC;
if (other->asha->next_time < this->process_time) {
/* Other side has not yet been scheduled in this graph cycle, we expect
* there might be one packet left from the previous cycle at most */
time = other->asha->next_time + ASHA_CONN_INTERVAL;
other_samples += ASHA_CONN_INTERVAL *
this->port.current_format.info.raw.rate / SPA_NSEC_PER_SEC;
} else {
/* Other side has set up its next cycle, catch up */
time = other->asha->next_time;
}
/* Since the quantum and packet size aren't correlated, drop any samples from this
* cycle that might have been used to send a packet starting in the previous cycle */
drop_frames(this, other_samples % this->process_duration);
} else {
time = this->process_time;
}
this->asha->next_time = time;
return set_asha_timeout(this, this->asha->next_time);
}
static inline bool is_following(struct impl *this)
{
return this->position && this->clock && this->position->clock.id != this->clock->id;
}
struct reassign_io_info {
struct impl *this;
struct spa_io_position *position;
struct spa_io_clock *clock;
};
static int do_reassign_io(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct reassign_io_info *info = user_data;
struct impl *this = info->this;
bool following;
if (this->position != info->position || this->clock != info->clock)
this->resync = RESYNC_CYCLES;
this->position = info->position;
this->clock = info->clock;
following = is_following(this);
if (following != this->following) {
spa_log_debug(this->log, "%p: reassign follower %d->%d", this, this->following, following);
this->following = following;
set_timers(this);
}
return 0;
}
static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size)
{
struct impl *this = object;
struct reassign_io_info info = { .this = this, .position = this->position, .clock = this->clock };
spa_return_val_if_fail(this != NULL, -EINVAL);
switch (id) {
case SPA_IO_Clock:
info.clock = data;
if (info.clock != NULL) {
spa_scnprintf(info.clock->name,
sizeof(info.clock->name),
"%s", this->props.clock_name);
}
break;
case SPA_IO_Position:
info.position = data;
break;
default:
return -ENOENT;
}
if (this->started) {
spa_loop_locked(this->data_loop, do_reassign_io, 0, NULL, 0, &info);
} else {
this->clock = info.clock;
this->position = info.position;
}
return 0;
}
static void emit_node_info(struct impl *this, bool full);
static void emit_port_info(struct impl *this, struct port *port, bool full);
static void set_latency(struct impl *this, bool emit_latency)
{
struct port *port = &this->port;
int64_t delay;
/* in main loop */
if (this->transport == NULL || !port->have_format)
return;
/*
* We start flushing data immediately, so the delay is:
*
* (packet delay) + (codec internal delay) + (transport delay) + (latency offset)
*
* and doesn't depend on the quantum. Kernel knows the latency due to
* socket/controller queue, but doesn't tell us, so not included but
* hopefully in < 10 ms range.
*/
delay = __atomic_load_n(&this->packet_delay_ns, __ATOMIC_RELAXED);
delay += (int64_t)this->encoder_delay * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate;
delay += spa_bt_transport_get_delay_nsec(this->transport);
delay += SPA_CLAMP(this->props.latency_offset, -delay, INT64_MAX / 2);
delay = SPA_MAX(delay, 0);
port->latency.min_ns = port->latency.max_ns = delay;
port->latency.min_rate = port->latency.max_rate = 0;
if (this->codec->kind == MEDIA_CODEC_BAP) {
/* ISO has different delay */
port->latency.min_quantum = port->latency.max_quantum = 1.0f;
} else {
port->latency.min_quantum = port->latency.max_quantum = 0.0f;
}
spa_log_info(this->log, "%p: total latency:%d ms", this, (int)(delay / SPA_NSEC_PER_MSEC));
if (emit_latency) {
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL;
emit_port_info(this, port, false);
}
}
static void update_delay_event(void *data, uint64_t count)
{
struct impl *this = data;
/* in main loop */
set_latency(this, true);
}
static void update_packet_delay(struct impl *this, uint64_t delay)
{
uint64_t old_delay = this->packet_delay_ns;
/* in data thread */
delay = SPA_MAX(delay, old_delay);
if (delay == old_delay)
return;
__atomic_store_n(&this->packet_delay_ns, delay, __ATOMIC_RELAXED);
if (this->update_delay_event)
spa_loop_utils_signal_event(this->loop_utils, this->update_delay_event);
}
static int apply_props(struct impl *this, const struct spa_pod *param)
{
struct props new_props = this->props;
int changed = 0;
if (param == NULL) {
reset_props(this, &new_props);
} else {
spa_pod_parse_object(param,
SPA_TYPE_OBJECT_Props, NULL,
SPA_PROP_latencyOffsetNsec, SPA_POD_OPT_Long(&new_props.latency_offset));
}
changed = (memcmp(&new_props, &this->props, sizeof(struct props)) != 0);
this->props = new_props;
if (changed)
set_latency(this, true);
return changed;
}
static int impl_node_set_param(void *object, uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
switch (id) {
case SPA_PARAM_Props:
{
int res, codec_res = 0;
res = apply_props(this, param);
if (this->codec_props && this->codec->set_props) {
codec_res = this->codec->set_props(this->codec_props, param);
if (codec_res > 0)
this->codec_props_changed = true;
}
if (res > 0 || codec_res > 0) {
this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
this->params[IDX_Props].flags ^= SPA_PARAM_INFO_SERIAL;
emit_node_info(this, false);
}
break;
}
default:
return -ENOENT;
}
return 0;
}
static uint32_t get_queued_frames(struct impl *this)
{
struct port *port = &this->port;
uint32_t bytes = 0;
struct buffer *b;
spa_list_for_each(b, &port->ready, link) {
struct spa_data *d = b->buf->datas;
bytes += d[0].chunk->size;
}
if (bytes > port->ready_offset)
bytes -= port->ready_offset;
else
bytes = 0;
/* Count (partially) encoded packet */
bytes += this->tmp_buffer_used;
bytes += this->block_count * this->block_size;
return bytes / port->frame_size;
}
static uint64_t get_reference_time(struct impl *this, uint64_t *duration_ns_ret)
{
struct port *port = &this->port;
uint64_t duration_ns;
int64_t t;
bool resampling;
if (!this->process_rate || !this->process_duration) {
if (this->position) {
this->process_duration = this->position->clock.duration;
this->process_rate = this->position->clock.rate.denom;
this->process_rate_diff = this->position->clock.rate_diff;
} else {
this->process_duration = 1024;
this->process_rate = 48000;
this->process_rate_diff = 1.0;
}
}
duration_ns = ((uint64_t)this->process_duration * SPA_NSEC_PER_SEC / this->process_rate);
if (duration_ns_ret)
*duration_ns_ret = duration_ns;
/* Time at the first sample in the current packet. */
t = duration_ns;
t -= ((uint64_t)get_queued_frames(this) * SPA_NSEC_PER_SEC
/ port->current_format.info.raw.rate);
/* Account for resampling delay */
resampling = (port->current_format.info.raw.rate != this->process_rate) || this->following;
if (port->rate_match && this->position && resampling) {
t -= (port->rate_match->delay * SPA_NSEC_PER_SEC + port->rate_match->delay_frac)
/ port->current_format.info.raw.rate;
}
if (this->process_rate_diff > 0)
t = (int64_t)(t / this->process_rate_diff);
return this->process_time + t;
}
static int reset_buffer(struct impl *this)
{
if (this->codec_props_changed && this->codec_props
&& this->codec->update_props) {
this->codec->update_props(this->codec_data, this->codec_props);
this->codec_props_changed = false;
}
this->need_flush = 0;
this->block_count = 0;
this->fragment = false;
if (this->codec->kind == MEDIA_CODEC_BAP || this->codec->kind == MEDIA_CODEC_ASHA)
this->timestamp = get_reference_time(this, NULL) / SPA_NSEC_PER_USEC;
else
this->timestamp = this->sample_count;
this->buffer_used = this->codec->start_encode(this->codec_data,
this->buffer, sizeof(this->buffer),
++this->seqnum, this->timestamp);
this->header_size = this->buffer_used;
return 0;
}
static int setup_matching(struct impl *this)
{
struct port *port = &this->port;
if (!this->transport_started)
port->ratectl.corr = 1.0;
if (port->rate_match) {
port->rate_match->rate = 1 / port->ratectl.corr;
/* We rate match in the system clock domain. If driver ticks at a
* different rate, we as follower must compensate.
*/
if (this->following && SPA_LIKELY(this->position &&
this->position->clock.rate_diff > 0))
port->rate_match->rate /= this->position->clock.rate_diff;
SPA_FLAG_UPDATE(port->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, this->following);
}
return 0;
}
static int get_transport_unsent_size(struct impl *this)
{
int res, value;
if (this->tx_latency.enabled) {
res = 0;
value = this->tx_latency.unsent;
} else if (this->codec->kind == MEDIA_CODEC_HFP) {
value = 0;
} else {
res = ioctl(this->flush_source.fd, TIOCOUTQ, &value);
if (res < 0) {
spa_log_error(this->log, "%p: ioctl fail: %m", this);
return -errno;
}
if ((unsigned int)value > this->fd_buffer_size)
return -EIO;
value = this->fd_buffer_size - value;
}
spa_log_trace(this->log, "%p: fd unsent size:%d/%d", this, value, this->fd_buffer_size);
return value;
}
static int send_buffer(struct impl *this)
{
int written, unsent;
struct timespec ts_pre;
if (this->codec->abr_process) {
unsent = get_transport_unsent_size(this);
if (unsent >= 0)
this->codec->abr_process(this->codec_data, unsent);
}
spa_system_clock_gettime(this->data_system, CLOCK_REALTIME, &ts_pre);
if (this->codec->kind == MEDIA_CODEC_HFP) {
written = spa_bt_sco_io_write(this->transport->sco_io, this->buffer, this->buffer_used);
} else {
written = spa_bt_send(this->flush_source.fd, this->buffer, this->buffer_used,
&this->tx_latency, SPA_TIMESPEC_TO_NSEC(&ts_pre));
}
if (SPA_UNLIKELY(spa_log_level_topic_enabled(this->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_TRACE))) {
struct timespec ts;
uint64_t now;
uint64_t dt;
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts);
now = SPA_TIMESPEC_TO_NSEC(&ts);
dt = now - this->prev_flush_time;
this->prev_flush_time = now;
spa_log_trace(this->log,
"%p: send blocks:%d block:%u seq:%u ts:%u size:%u "
"wrote:%d dt:%"PRIu64,
this, this->block_count, this->block_size, this->seqnum,
this->timestamp, this->buffer_used, written, dt);
}
if (written < 0) {
spa_log_debug(this->log, "%p: %m", this);
return -errno;
}
return written;
}
static int encode_buffer(struct impl *this, const void *data, uint32_t size)
{
int processed;
size_t out_encoded;
struct port *port = &this->port;
const void *from_data = data;
int from_size = size;
spa_log_trace(this->log, "%p: encode %d used %d, %d %d %d",
this, size, this->buffer_used, port->frame_size, this->block_size,
this->block_count);
if (this->need_flush)
return 0;
if (this->buffer_used >= sizeof(this->buffer))
return -ENOSPC;
if (size < this->block_size - this->tmp_buffer_used) {
memcpy(this->tmp_buffer + this->tmp_buffer_used, data, size);
this->tmp_buffer_used += size;
return size;
} else if (this->tmp_buffer_used > 0) {
memcpy(this->tmp_buffer + this->tmp_buffer_used, data, this->block_size - this->tmp_buffer_used);
from_data = this->tmp_buffer;
from_size = this->block_size;
this->tmp_buffer_used = this->block_size - this->tmp_buffer_used;
}
processed = this->codec->encode(this->codec_data,
from_data, from_size,
this->buffer + this->buffer_used,
sizeof(this->buffer) - this->buffer_used,
&out_encoded, &this->need_flush);
if (processed < 0)
return processed;
this->sample_count += processed / port->frame_size;
this->block_count += processed / this->block_size;
this->buffer_used += out_encoded;
spa_log_trace(this->log, "%p: processed %d %zd used %d",
this, processed, out_encoded, this->buffer_used);
if (this->tmp_buffer_used) {
processed = this->tmp_buffer_used;
this->tmp_buffer_used = 0;
}
return processed;
}
static int encode_fragment(struct impl *this)
{
int res;
size_t out_encoded;
struct port *port = &this->port;
spa_log_trace(this->log, "%p: encode fragment used %d, %d %d %d",
this, this->buffer_used, port->frame_size, this->block_size,
this->block_count);
if (this->need_flush)
return 0;
res = this->codec->encode(this->codec_data,
NULL, 0,
this->buffer + this->buffer_used,
sizeof(this->buffer) - this->buffer_used,
&out_encoded, &this->need_flush);
if (res < 0)
return res;
if (res != 0)
return -EINVAL;
this->buffer_used += out_encoded;
spa_log_trace(this->log, "%p: processed fragment %zd used %d",
this, out_encoded, this->buffer_used);
return 0;
}
static int flush_buffer(struct impl *this)
{
spa_log_trace(this->log, "%p: used:%d block_size:%d need_flush:%d", this,
this->buffer_used, this->block_size, this->need_flush);
if (this->need_flush)
return send_buffer(this);
return 0;
}
static int add_data(struct impl *this, const void *data, uint32_t size)
{
int processed, total = 0;
while (size > 0) {
processed = encode_buffer(this, data, size);
if (processed <= 0)
return total > 0 ? total : processed;
data = SPA_PTROFF(data, processed, void);
size -= processed;
total += processed;
}
return total;
}
static void enable_flush_timer(struct impl *this, bool enabled)
{
struct itimerspec ts;
if (!enabled)
this->next_flush_time = 0;
ts.it_value.tv_sec = this->next_flush_time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = this->next_flush_time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
spa_system_timerfd_settime(this->data_system,
this->flush_timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
this->flush_pending = enabled;
}
static int flush_data(struct impl *this, uint64_t now_time)
{
struct port *port = &this->port;
bool is_asha = this->codec->kind == MEDIA_CODEC_ASHA;
bool is_sco = this->codec->kind == MEDIA_CODEC_HFP;
uint32_t total_frames;
int written;
int unsent_buffer;
spa_assert(this->transport_started);
/* I/O in error state? */
if (this->transport == NULL || (!this->flush_source.loop && !is_asha && !is_sco))
return -EIO;
if (!this->flush_timer_source.loop && !this->transport->iso_io && !is_asha)
return -EIO;
if (!this->transport->sco_io && is_sco)
return -EIO;
if (this->transport->iso_io && !this->iso_pending)
return 0;
total_frames = 0;
again:
written = 0;
if (this->fragment && !this->need_flush) {
int res;
this->fragment = false;
if ((res = encode_fragment(this)) < 0) {
/* Error */
reset_buffer(this);
return res;
}
}
while (!spa_list_is_empty(&port->ready) && !this->need_flush) {
uint8_t *src;
uint32_t n_bytes, n_frames;
struct buffer *b;
struct spa_data *d;
uint32_t index, offs, avail, l0, l1;
b = spa_list_first(&port->ready, struct buffer, link);
d = b->buf->datas;
src = d[0].data;
index = d[0].chunk->offset + port->ready_offset;
avail = d[0].chunk->size - port->ready_offset;
avail /= port->frame_size;
offs = index % d[0].maxsize;
n_frames = avail;
n_bytes = n_frames * port->frame_size;
l0 = SPA_MIN(n_bytes, d[0].maxsize - offs);
l1 = n_bytes - l0;
written = add_data(this, src + offs, l0);
if (written > 0 && l1 > 0)
written += add_data(this, src, l1);
if (written <= 0) {
if (written < 0 && written != -ENOSPC) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
this->port.io->buffer_id = b->id;
spa_log_warn(this->log, "%p: error %s, reuse buffer %u",
this, spa_strerror(written), b->id);
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
port->ready_offset = 0;
}
break;
}
n_frames = written / port->frame_size;
port->ready_offset += written;
if (port->ready_offset >= d[0].chunk->size) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_log_trace(this->log, "%p: reuse buffer %u", this, b->id);
this->port.io->buffer_id = b->id;
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
port->ready_offset = 0;
}
total_frames += n_frames;
spa_log_trace(this->log, "%p: written %u frames", this, total_frames);
}
if (this->transport->iso_io) {
struct spa_bt_iso_io *iso_io = this->transport->iso_io;
if (this->need_flush) {
size_t avail = SPA_MIN(this->buffer_used, sizeof(iso_io->buf));
uint64_t delay = 0;
spa_log_trace(this->log, "%p: ISO put fd:%d size:%u sn:%u ts:%u now:%"PRIu64,
this, this->transport->fd, (unsigned)avail,
(unsigned)this->seqnum, (unsigned)this->timestamp,
iso_io->now);
memcpy(iso_io->buf, this->buffer, avail);
iso_io->size = avail;
iso_io->timestamp = this->timestamp;
this->iso_pending = false;
reset_buffer(this);
if (this->process_rate) {
/* Match target delay in media_iso_pull() */
delay = this->process_duration * SPA_NSEC_PER_SEC / this->process_rate;
if (delay < iso_io->duration*3/2)
delay = iso_io->duration*3/2 - delay;
else
delay = 0;
}
update_packet_delay(this, delay);
}
return 0;
}
if (is_asha) {
struct spa_bt_asha *asha = this->asha;
if (this->need_flush && !asha->flush_pending) {
/*
* For ASHA, we cannot send more than one encoded
* packet at a time and can only send them spaced
* 20 ms apart which is the ASHA connection interval.
* All encoded packets will be 160 bytes + 1 byte
* sequence number.
*
* Unlike the A2DP flow below, we cannot delay the
* output by 1 packet. While that might work for the
* mono case, for stereo that make the two sides be
* out of sync with each other and if the two sides
* differ by more than 3 credits, we would have to
* drop packets or the devices themselves might drop
* the connection.
*/
memcpy(asha->buf, this->buffer, this->buffer_used);
asha->flush_pending = true;
reset_buffer(this);
}
return 0;
}
if (this->flush_pending) {
spa_log_trace(this->log, "%p: wait for flush timer", this);
return 0;
}
/*
* Get packet queue size before writing to it. This should be zero to increase
* bitpool. Bitpool shouldn't be increased when there is unsent data.
*/
unsent_buffer = get_transport_unsent_size(this);
written = flush_buffer(this);
if (written == -EAGAIN) {
spa_log_trace(this->log, "%p: fail flush", this);
if (now_time - this->last_error > SPA_NSEC_PER_SEC / 2) {
int res = 0;
if (this->codec->reduce_bitpool)
res = this->codec->reduce_bitpool(this->codec_data);
spa_log_debug(this->log, "%p: reduce bitpool: %i", this, res);
this->last_error = now_time;
}
/*
* The socket buffer is full, and the device is not processing data
* fast enough, so should just skip this packet. There will be a sound
* glitch in any case.
*/
written = this->buffer_used;
}
if (written < 0) {
spa_log_trace(this->log, "%p: error flushing %s", this,
spa_strerror(written));
reset_buffer(this);
enable_flush_timer(this, false);
return written;
}
else if (written > 0) {
/*
* We cannot write all data we have at once, since this can exceed device
* buffers (esp. for the A2DP low-latency codecs) and socket buffers, so
* flush needs to be delayed.
*/
uint32_t packet_samples = this->block_count * this->block_size
/ port->frame_size;
uint64_t packet_time = (uint64_t)packet_samples * SPA_NSEC_PER_SEC
/ port->current_format.info.raw.rate;
if (SPA_LIKELY(this->position)) {
uint64_t duration_ns;
/*
* Flush at the time position of the next buffered sample.
*/
this->next_flush_time = get_reference_time(this, &duration_ns)
+ packet_time;
/*
* We can delay the output by one packet to avoid waiting
* for the next buffer and so make send intervals exactly regular.
* However, this is not needed for A2DP or BAP. The controller
* will do the scheduling for us, and there's also the socket buffer
* in between.
*
* Although in principle this should not be needed, we
* do it regardless in case it helps.
*/
#if 1
this->next_flush_time += SPA_MIN(packet_time,
duration_ns * (SPA_MAX(port->n_buffers, 2u) - 2));
#endif
} else {
if (this->next_flush_time == 0)
this->next_flush_time = this->process_time;
this->next_flush_time += packet_time;
}
update_packet_delay(this, packet_time);
if (this->need_flush == NEED_FLUSH_FRAGMENT) {
reset_buffer(this);
this->fragment = true;
goto again;
}
if (now_time - this->last_error > SPA_NSEC_PER_SEC) {
if (unsent_buffer == 0) {
int res = 0;
if (this->codec->increase_bitpool)
res = this->codec->increase_bitpool(this->codec_data);
spa_log_debug(this->log, "%p: increase bitpool: %i", this, res);
}
this->last_error = now_time;
}
spa_log_trace(this->log, "%p: flush at:%"PRIu64" process:%"PRIu64, this,
this->next_flush_time, this->process_time);
reset_buffer(this);
enable_flush_timer(this, true);
/* Encode next packet already now; it will be flushed later on timer */
goto again;
}
else {
/* Don't want to flush yet, or failed to write anything */
spa_log_trace(this->log, "%p: skip flush", this);
enable_flush_timer(this, false);
}
return 0;
}
static void drop_frames(struct impl *this, uint32_t req)
{
struct port *port = &this->port;
while (req > 0 && !spa_list_is_empty(&port->ready)) {
struct buffer *b;
struct spa_data *d;
uint32_t avail;
b = spa_list_first(&port->ready, struct buffer, link);
d = b->buf->datas;
avail = d[0].chunk->size - port->ready_offset;
avail /= port->frame_size;
avail = SPA_MIN(avail, req);
port->ready_offset += avail * port->frame_size;
req -= avail;
if (port->ready_offset >= d[0].chunk->size) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_log_trace(this->log, "%p: reuse buffer %u", this, b->id);
this->port.io->buffer_id = b->id;
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
port->ready_offset = 0;
}
spa_log_trace(this->log, "%p: skipped %u frames", this, avail);
}
}
static void media_iso_rate_match(struct impl *this)
{
struct spa_bt_iso_io *iso_io = this->transport ? this->transport->iso_io : NULL;
struct port *port = &this->port;
const double period = 0.05 * SPA_NSEC_PER_SEC;
uint64_t ref_time;
uint64_t duration_ns;
double value, target, err, max_err;
if (!iso_io || !this->transport_started)
return;
if (this->resync || !this->position) {
spa_bt_rate_control_init(&port->ratectl, 0);
return;
}
/*
* Rate match sample position so that the graph is max(ISO interval*3/2, quantum)
* ahead of the time instant we have to send data.
*
* Being 1 ISO interval ahead is unavoidable otherwise we underrun, and the
* rest is safety margin for the graph to deliver data in time.
*
* This is then the part of the TX latency on PipeWire side. There is
* another part of TX latency on kernel/controller side before the
* controller starts processing the packet.
*/
ref_time = get_reference_time(this, &duration_ns);
if (iso_io->size)
ref_time -= iso_io->duration;
value = (int64_t)iso_io->now - (int64_t)ref_time;
if (this->process_rate)
target = this->process_duration * SPA_NSEC_PER_SEC / this->process_rate;
else
target = 0;
target = SPA_MAX(target, iso_io->duration*3/2);
err = value - target;
max_err = SPA_MAX(40 * SPA_NSEC_PER_MSEC, target);
if (iso_io->resync && err >= 0) {
unsigned int req = (unsigned int)(err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC);
if (req > 0) {
spa_bt_rate_control_init(&port->ratectl, 0);
drop_frames(this, req);
}
spa_log_debug(this->log, "%p: ISO sync skip frames:%u", this, req);
} else if (iso_io->resync && -err >= 0) {
unsigned int req = (unsigned int)(-err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC);
static const uint8_t empty[8192] = {0};
if (req > 0) {
spa_bt_rate_control_init(&port->ratectl, 0);
req = SPA_MIN(req, sizeof(empty) / port->frame_size);
add_data(this, empty, req * port->frame_size);
}
spa_log_debug(this->log, "%p: ISO sync pad frames:%u", this, req);
} else if (err > max_err || -err > max_err) {
iso_io->need_resync = true;
spa_log_debug(this->log, "%p: ISO sync need resync err:%+.3f",
this, err / SPA_NSEC_PER_MSEC);
} else {
spa_bt_rate_control_update(&port->ratectl, err, 0,
duration_ns, period, RATE_CTL_DIFF_MAX);
spa_log_trace(this->log, "%p: ISO sync err:%+.3g value:%.6f target:%.6f (ms) corr:%g",
this,
port->ratectl.avg / SPA_NSEC_PER_MSEC,
value / SPA_NSEC_PER_MSEC,
target / SPA_NSEC_PER_MSEC,
port->ratectl.corr);
}
iso_io->resync = false;
}
static void media_iso_pull(struct spa_bt_iso_io *iso_io)
{
struct impl *this = iso_io->user_data;
this->iso_pending = true;
flush_data(this, this->current_time);
}
static void media_on_flush_error(struct spa_source *source)
{
struct impl *this = source->data;
if (source->rmask & SPA_IO_ERR) {
/* TX timestamp info? */
if (this->transport && this->transport->iso_io) {
if (spa_bt_iso_io_recv_errqueue(this->transport->iso_io) == 0)
return;
} else {
if (spa_bt_latency_recv_errqueue(&this->tx_latency, this->flush_source.fd, this->log) == 0)
return;
}
/* Otherwise: actual error */
}
spa_log_trace(this->log, "%p: flush event", this);
if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) {
spa_log_warn(this->log, "%p: connection (%s) terminated unexpectedly",
this, this->transport ? this->transport->path : "");
if (this->flush_source.loop) {
spa_bt_latency_flush(&this->tx_latency, this->flush_source.fd, this->log);
spa_loop_remove_source(this->data_loop, &this->flush_source);
}
enable_flush_timer(this, false);
if (this->flush_timer_source.loop)
spa_loop_remove_source(this->data_loop, &this->flush_timer_source);
if (this->transport && this->transport->iso_io)
spa_bt_iso_io_set_cb(this->transport->iso_io, NULL, NULL);
return;
}
}
static void media_on_flush_timeout(struct spa_source *source)
{
struct impl *this = source->data;
uint64_t exp;
int res;
spa_log_trace(this->log, "%p: flush on timeout", this);
if ((res = spa_system_timerfd_read(this->data_system, this->flush_timerfd, &exp)) < 0) {
if (res != -EAGAIN)
spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res));
return;
}
if (this->transport == NULL) {
enable_flush_timer(this, false);
return;
}
while (exp-- > 0) {
this->flush_pending = false;
flush_data(this, this->current_time);
}
}
static void media_on_timeout(struct spa_source *source)
{
struct impl *this = source->data;
struct port *port = &this->port;
uint64_t exp, duration;
uint32_t rate;
struct spa_io_buffers *io = port->io;
uint64_t prev_time, now_time;
int status, res;
if (this->started) {
if ((res = spa_system_timerfd_read(this->data_system, this->timerfd, &exp)) < 0) {
if (res != -EAGAIN)
spa_log_warn(this->log, "error reading timerfd: %s",
spa_strerror(res));
return;
}
}
prev_time = this->current_time;
now_time = this->current_time = this->next_time;
spa_log_debug(this->log, "%p: timer %"PRIu64" %"PRIu64"", this,
now_time, now_time - prev_time);
if (SPA_LIKELY(this->position)) {
duration = this->position->clock.target_duration;
rate = this->position->clock.target_rate.denom;
} else {
duration = 1024;
rate = 48000;
}
setup_matching(this);
this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / rate * port->ratectl.corr);
if (SPA_LIKELY(this->clock)) {
this->clock->nsec = now_time;
this->clock->rate = this->clock->target_rate;
this->clock->position += this->clock->duration;
this->clock->duration = duration;
this->clock->rate_diff = 1 / port->ratectl.corr;
this->clock->next_nsec = this->next_time;
this->clock->delay = 0;
}
status = this->transport_started ? SPA_STATUS_NEED_DATA : SPA_STATUS_HAVE_DATA;
spa_log_trace(this->log, "%p: %d -> %d", this, io->status, status);
io->status = status;
io->buffer_id = SPA_ID_INVALID;
spa_node_call_ready(&this->callbacks, status);
set_timeout(this, this->next_time);
}
static uint64_t asha_seqnum(struct impl *this)
{
uint64_t tn = get_reference_time(this, NULL);
uint64_t dt = tn - this->asha->ref_t0;
uint64_t num_packets = (dt + ASHA_CONN_INTERVAL / 2) / ASHA_CONN_INTERVAL;
spa_log_trace(this->log, "%" PRIu64 " - %" PRIu64 " / 20ms = %"PRIu64,
tn, this->asha->ref_t0, num_packets);
if (this->asha->ref_t0 > tn)
return 0;
return num_packets % 256;
}
static void media_asha_flush_timeout(struct spa_source *source)
{
struct impl *this = source->data;
struct port *port = &this->port;
struct spa_bt_asha *asha = this->asha;
const char *address = this->transport->device->address;
struct timespec ts;
int res, written;
uint64_t exp, now;
if (this->started) {
if ((res = spa_system_timerfd_read(this->data_system, asha->timerfd, &exp)) < 0) {
if (res != -EAGAIN)
spa_log_warn(this->log, "error reading ASHA timerfd: %s",
spa_strerror(res));
return;
}
}
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts);
now = SPA_TIMESPEC_TO_NSEC(&ts);
asha->next_time += (uint64_t)(ASHA_CONN_INTERVAL * port->ratectl.corr);
if (asha->flush_pending) {
asha->buf[0] = this->seqnum;
written = send(asha->flush_source.fd, asha->buf,
ASHA_ENCODED_PKT_SZ, MSG_DONTWAIT | MSG_NOSIGNAL);
/*
* For ASHA, when we are out of LE credits and cannot write to
* the socket, return value of `send` will be -EAGAIN.
*/
if (written < 0) {
asha->flush_pending = false;
spa_log_warn(this->log, "%p: ASHA failed to flush %d seqnum on timer for %s, written:%d",
this, this->seqnum, address, -errno);
goto skip_flush;
}
if (written > 0) {
asha->flush_pending = false;
spa_log_trace(this->log, "%p: ASHA flush %d seqnum for %s, ts:%u",
this, this->seqnum, address, this->timestamp);
}
}
this->seqnum = asha_seqnum(this);
flush_data(this, now);
skip_flush:
set_asha_timeout(this, asha->next_time);
}
static void media_asha_cb(struct spa_source *source)
{
struct impl *this = source->data;
struct spa_bt_asha *asha = this->asha;
const char *address = this->transport->device->address;
if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) {
spa_log_error(this->log, "%p: ASHA source error %d on %s", this, source->rmask, address);
if (asha->flush_source.loop)
spa_loop_remove_source(this->data_loop, &asha->flush_source);
return;
}
}
static int do_start_transport(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
struct impl *this = user_data;
this->transport_started = true;
if (this->transport->iso_io)
spa_bt_iso_io_set_cb(this->transport->iso_io, media_iso_pull, this);
return 0;
}
static int transport_start(struct impl *this)
{
int val, size;
struct port *port;
socklen_t len;
uint8_t *conf;
uint32_t flags;
bool is_asha;
bool is_sco;
if (this->transport_started)
return 0;
if (!this->start_ready)
return -EIO;
spa_return_val_if_fail(this->transport, -EIO);
spa_log_debug(this->log, "%p: start transport", this);
port = &this->port;
conf = this->transport->configuration;
size = this->transport->configuration_len;
is_asha = this->codec->kind == MEDIA_CODEC_ASHA;
is_sco = this->codec->kind == MEDIA_CODEC_HFP;
spa_log_debug(this->log, "Transport configuration:");
spa_debug_log_mem(this->log, SPA_LOG_LEVEL_DEBUG, 2, conf, (size_t)size);
flags = this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0;
if (!this->transport->iso_io) {
this->own_codec_data = true;
this->codec_data = this->codec->init(this->codec,
flags,
this->transport->configuration,
this->transport->configuration_len,
&port->current_format,
this->codec_props,
this->transport->write_mtu);
if (this->codec_data == NULL) {
spa_log_error(this->log, "%p: codec %s initialization failed", this,
this->codec->description);
return -EIO;
}
} else {
this->own_codec_data = false;
this->codec_data = this->transport->iso_io->codec_data;
this->codec_props_changed = true;
}
this->encoder_delay = 0;
if (this->codec->get_delay)
this->codec->get_delay(this->codec_data, &this->encoder_delay, NULL);
const char *codec_profile = media_codec_kind_str(this->codec);
spa_log_info(this->log, "%p: using %s codec %s, delay:%.2f ms, codec-delay:%.2f ms", this,
codec_profile, this->codec->description,
(double)spa_bt_transport_get_delay_nsec(this->transport) / SPA_NSEC_PER_MSEC,
(double)this->encoder_delay * SPA_MSEC_PER_SEC / port->current_format.info.raw.rate);
this->seqnum = UINT16_MAX;
this->block_size = this->codec->get_block_size(this->codec_data);
if (this->block_size > sizeof(this->tmp_buffer)) {
spa_log_error(this->log, "block-size %d > %zu",
this->block_size, sizeof(this->tmp_buffer));
goto fail;
}
spa_log_debug(this->log, "%p: block_size %d", this, this->block_size);
val = this->codec->send_buf_size > 0
/* The kernel doubles the SO_SNDBUF option value set by setsockopt(). */
? this->codec->send_buf_size / 2 + this->codec->send_buf_size % 2
: FILL_FRAMES * this->transport->write_mtu;
if (setsockopt(this->transport->fd, SOL_SOCKET, SO_SNDBUF, &val, sizeof(val)) < 0)
spa_log_warn(this->log, "%p: SO_SNDBUF %m", this);
len = sizeof(val);
if (getsockopt(this->transport->fd, SOL_SOCKET, SO_SNDBUF, &val, &len) < 0) {
spa_log_warn(this->log, "%p: SO_SNDBUF %m", this);
}
else {
spa_log_debug(this->log, "%p: SO_SNDBUF: %d", this, val);
}
this->fd_buffer_size = val;
val = 6;
if (setsockopt(this->transport->fd, SOL_SOCKET, SO_PRIORITY, &val, sizeof(val)) < 0)
spa_log_warn(this->log, "SO_PRIORITY failed: %m");
reset_buffer(this);
spa_bt_rate_control_init(&port->ratectl, 0);
this->update_delay_event = spa_loop_utils_add_event(this->loop_utils, update_delay_event, this);
spa_zero(this->tx_latency);
if (is_sco) {
int res;
if ((res = spa_bt_transport_ensure_sco_io(this->transport, this->data_loop, this->data_system)) < 0)
goto fail;
spa_bt_sco_io_write_start(this->transport->sco_io);
}
if (!this->transport->iso_io && !is_asha) {
this->flush_timer_source.data = this;
this->flush_timer_source.fd = this->flush_timerfd;
this->flush_timer_source.func = media_on_flush_timeout;
this->flush_timer_source.mask = SPA_IO_IN;
this->flush_timer_source.rmask = 0;
spa_loop_add_source(this->data_loop, &this->flush_timer_source);
if (!is_sco)
spa_bt_latency_init(&this->tx_latency, this->transport, LATENCY_PERIOD, this->log);
}
if (!is_asha && !is_sco) {
this->flush_source.data = this;
this->flush_source.fd = this->transport->fd;
this->flush_source.func = media_on_flush_error;
this->flush_source.mask = SPA_IO_ERR | SPA_IO_HUP;
this->flush_source.rmask = 0;
spa_loop_add_source(this->data_loop, &this->flush_source);
}
this->resync = RESYNC_CYCLES;
this->flush_pending = false;
this->iso_pending = false;
spa_loop_locked(this->data_loop, do_start_transport, 0, NULL, 0, this);
if (is_asha) {
struct spa_bt_asha *asha = this->asha;
asha->flush_pending = false;
asha->set_timer = false;
asha->timer_source.data = this;
asha->timer_source.fd = this->asha->timerfd;
asha->timer_source.func = media_asha_flush_timeout;
asha->timer_source.mask = SPA_IO_IN;
asha->timer_source.rmask = 0;
spa_loop_add_source(this->data_loop, &asha->timer_source);
asha->flush_source.data = this;
asha->flush_source.fd = this->transport->fd;
asha->flush_source.func = media_asha_cb;
asha->flush_source.mask = SPA_IO_ERR | SPA_IO_HUP;
asha->flush_source.rmask = 0;
spa_loop_add_source(this->data_loop, &asha->flush_source);
spa_list_append(&asha_sinks, &this->asha_link);
}
set_latency(this, true);
return 0;
fail:
if (this->codec_data) {
if (this->own_codec_data)
this->codec->deinit(this->codec_data);
this->own_codec_data = false;
this->codec_data = NULL;
}
return -EIO;
}
static int do_start(struct impl *this)
{
int res;
if (this->started)
return 0;
spa_return_val_if_fail(this->transport, -EIO);
this->following = is_following(this);
spa_log_debug(this->log, "%p: start following:%d", this, this->following);
this->start_ready = true;
bool do_accept = this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY;
if ((res = spa_bt_transport_acquire(this->transport, do_accept)) < 0) {
this->start_ready = false;
return res;
}
this->packet_delay_ns = 0;
this->source.data = this;
this->source.fd = this->timerfd;
this->source.func = media_on_timeout;
this->source.mask = SPA_IO_IN;
this->source.rmask = 0;
spa_loop_add_source(this->data_loop, &this->source);
setup_matching(this);
set_timers(this);
this->started = true;
return 0;
}
static int do_remove_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct impl *this = user_data;
if (this->source.loop)
spa_loop_remove_source(this->data_loop, &this->source);
set_timeout(this, 0);
if (this->update_delay_event) {
spa_loop_utils_destroy_source(this->loop_utils, this->update_delay_event);
this->update_delay_event = NULL;
}
return 0;
}
static int do_remove_transport_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct impl *this = user_data;
this->transport_started = false;
if (this->flush_source.loop) {
spa_bt_latency_flush(&this->tx_latency, this->flush_source.fd, this->log);
spa_loop_remove_source(this->data_loop, &this->flush_source);
}
if (this->flush_timer_source.loop)
spa_loop_remove_source(this->data_loop, &this->flush_timer_source);
if (this->codec->kind == MEDIA_CODEC_ASHA) {
if (this->asha->timer_source.loop)
spa_loop_remove_source(this->data_loop, &this->asha->timer_source);
if (this->asha->flush_source.loop)
spa_loop_remove_source(this->data_loop, &this->asha->flush_source);
spa_list_remove(&this->asha_link);
}
enable_flush_timer(this, false);
if (this->transport->iso_io)
spa_bt_iso_io_set_cb(this->transport->iso_io, NULL, NULL);
/* Drop queued data */
drop_frames(this, UINT32_MAX);
return 0;
}
static void transport_stop(struct impl *this)
{
if (!this->transport_started)
return;
spa_log_trace(this->log, "%p: stop transport", this);
spa_loop_locked(this->data_loop, do_remove_transport_source, 0, NULL, 0, this);
if (this->codec_data && this->own_codec_data)
this->codec->deinit(this->codec_data);
this->codec_data = NULL;
}
static int do_stop(struct impl *this)
{
int res = 0;
if (!this->started)
return 0;
spa_log_debug(this->log, "%p: stop", this);
this->start_ready = false;
spa_loop_locked(this->data_loop, do_remove_source, 0, NULL, 0, this);
transport_stop(this);
if (this->transport)
res = spa_bt_transport_release(this->transport);
this->started = false;
return res;
}
static int impl_node_send_command(void *object, const struct spa_command *command)
{
struct impl *this = object;
struct port *port;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(command != NULL, -EINVAL);
port = &this->port;
switch (SPA_NODE_COMMAND_ID(command)) {
case SPA_NODE_COMMAND_Start:
if (!port->have_format)
return -EIO;
if (port->n_buffers == 0)
return -EIO;
if ((res = do_start(this)) < 0)
return res;
break;
case SPA_NODE_COMMAND_Suspend:
case SPA_NODE_COMMAND_Pause:
if ((res = do_stop(this)) < 0)
return res;
break;
default:
return -ENOTSUP;
}
return 0;
}
static void emit_node_info(struct impl *this, bool full)
{
char node_group_buf[256];
char *node_group = NULL;
const char *media_role = NULL;
const char *codec_profile = media_codec_kind_str(this->codec);
if (this->transport && (this->transport->profile & SPA_BT_PROFILE_BAP_SINK)) {
spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-iso-%s-cig-%d\"]",
this->transport->device->adapter->address,
this->transport->bap_cig);
node_group = node_group_buf;
} else if (this->transport && (this->transport->profile & SPA_BT_PROFILE_BAP_BROADCAST_SINK)) {
spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-iso-%s-big-%d\"]",
this->transport->device->adapter->address,
this->transport->bap_big);
node_group = node_group_buf;
} else if (this->transport && (this->transport->profile & SPA_BT_PROFILE_ASHA_SINK)) {
spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-asha-%" PRIu64 "d\"]",
this->transport->hisyncid);
node_group = node_group_buf;
}
if (!this->is_output && this->transport &&
(this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY))
media_role = "Communication";
struct spa_dict_item node_info_items[] = {
{ SPA_KEY_DEVICE_API, "bluez5" },
{ SPA_KEY_MEDIA_CLASS, this->is_internal ? "Audio/Sink/Internal" :
this->is_output ? "Audio/Sink" : "Stream/Input/Audio" },
{ "media.name", ((this->transport && this->transport->device->name) ?
this->transport->device->name : codec_profile ) },
{ SPA_KEY_NODE_DRIVER, this->is_output ? "true" : "false" },
{ "node.group", node_group },
{ SPA_KEY_MEDIA_ROLE, media_role },
};
uint64_t old = full ? this->info.change_mask : 0;
if (full)
this->info.change_mask = this->info_all;
if (this->info.change_mask) {
this->info.props = &SPA_DICT_INIT_ARRAY(node_info_items);
spa_node_emit_info(&this->hooks, &this->info);
this->info.change_mask = old;
}
}
static void emit_port_info(struct impl *this, struct port *port, bool full)
{
uint64_t old = full ? port->info.change_mask : 0;
if (full)
port->info.change_mask = port->info_all;
if (port->info.change_mask) {
spa_node_emit_port_info(&this->hooks,
SPA_DIRECTION_INPUT, 0, &port->info);
port->info.change_mask = old;
}
}
static int
impl_node_add_listener(void *object,
struct spa_hook *listener,
const struct spa_node_events *events,
void *data)
{
struct impl *this = object;
struct spa_hook_list save;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_hook_list_isolate(&this->hooks, &save, listener, events, data);
emit_node_info(this, true);
emit_port_info(this, &this->port, true);
spa_hook_list_join(&this->hooks, &save);
return 0;
}
static int
impl_node_set_callbacks(void *object,
const struct spa_node_callbacks *callbacks,
void *data)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
this->callbacks = SPA_CALLBACKS_INIT(callbacks, data);
return 0;
}
static int impl_node_sync(void *object, int seq)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_node_emit_result(&this->hooks, seq, 0, 0, NULL);
return 0;
}
static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id,
const struct spa_dict *props)
{
return -ENOTSUP;
}
static int impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id)
{
return -ENOTSUP;
}
static int
impl_node_port_enum_params(void *object, int seq,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct port *port;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[1024];
struct spa_result_node_params result;
uint32_t count = 0;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = &this->port;
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
switch (id) {
case SPA_PARAM_EnumFormat:
if (this->codec == NULL)
return -EIO;
if (this->transport == NULL)
return -EIO;
if ((res = this->codec->enum_config(this->codec,
this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0,
this->transport->configuration,
this->transport->configuration_len,
id, result.index, &b, &param)) != 1)
return res;
break;
case SPA_PARAM_Format:
if (!port->have_format)
return -EIO;
if (result.index > 0)
return 0;
param = spa_format_audio_raw_build(&b, id, &port->current_format.info.raw);
break;
case SPA_PARAM_Buffers:
if (!port->have_format)
return -EIO;
if (result.index > 0)
return 0;
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamBuffers, id,
SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int(
MIN_BUFFERS,
MIN_BUFFERS,
MAX_BUFFERS),
SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(1),
SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int(
this->quantum_limit * port->frame_size,
16 * port->frame_size,
INT32_MAX),
SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->frame_size));
break;
case SPA_PARAM_Meta:
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamMeta, id,
SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header),
SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header)));
break;
default:
return 0;
}
break;
case SPA_PARAM_IO:
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamIO, id,
SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers),
SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers)));
break;
case 1:
if (this->codec->kind != MEDIA_CODEC_BAP)
return 0;
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamIO, id,
SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_RateMatch),
SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_rate_match)));
break;
default:
return 0;
}
break;
case SPA_PARAM_Latency:
switch (result.index) {
case 0:
param = spa_latency_build(&b, id, &port->latency);
break;
default:
return 0;
}
break;
default:
return -ENOENT;
}
if (spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int clear_buffers(struct impl *this, struct port *port)
{
do_stop(this);
if (port->n_buffers > 0) {
spa_list_init(&port->ready);
port->n_buffers = 0;
}
return 0;
}
static int port_set_format(struct impl *this, struct port *port,
uint32_t flags,
const struct spa_pod *format)
{
int err;
if (format == NULL) {
spa_log_debug(this->log, "clear format");
clear_buffers(this, port);
port->have_format = false;
} else {
struct spa_audio_info info = { 0 };
if ((err = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0)
return err;
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_raw)
return -EINVAL;
if (spa_format_audio_raw_parse(format, &info.info.raw) < 0)
return -EINVAL;
if (info.info.raw.rate == 0 ||
info.info.raw.channels == 0 ||
info.info.raw.channels > SPA_AUDIO_MAX_CHANNELS)
return -EINVAL;
if (this->transport && this->transport->iso_io) {
if (memcmp(&info.info.raw, &this->transport->iso_io->format.info.raw,
sizeof(info.info.raw))) {
spa_log_error(this->log, "unexpected incompatible "
"BAP audio format");
return -EINVAL;
}
}
port->frame_size = info.info.raw.channels;
switch (info.info.raw.format) {
case SPA_AUDIO_FORMAT_S16_LE:
case SPA_AUDIO_FORMAT_S16_BE:
port->frame_size *= 2;
break;
case SPA_AUDIO_FORMAT_S24:
port->frame_size *= 3;
break;
case SPA_AUDIO_FORMAT_S24_32:
case SPA_AUDIO_FORMAT_S32:
case SPA_AUDIO_FORMAT_F32:
port->frame_size *= 4;
break;
default:
return -EINVAL;
}
port->current_format = info;
port->have_format = true;
}
set_latency(this, false);
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
if (port->have_format) {
port->info.change_mask |= SPA_PORT_CHANGE_MASK_RATE;
port->info.rate = SPA_FRACTION(1, port->current_format.info.raw.rate);
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ);
port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL;
} else {
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
}
emit_port_info(this, port, false);
return 0;
}
static int
impl_node_port_set_param(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
struct port *port;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(node, direction, port_id), -EINVAL);
port = &this->port;
switch (id) {
case SPA_PARAM_Format:
res = port_set_format(this, port, flags, param);
break;
case SPA_PARAM_Latency:
res = 0;
break;
default:
res = -ENOENT;
break;
}
return res;
}
static int
impl_node_port_use_buffers(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t flags,
struct spa_buffer **buffers, uint32_t n_buffers)
{
struct impl *this = object;
struct port *port;
uint32_t i;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = &this->port;
spa_log_debug(this->log, "%p: use buffers %d", this, n_buffers);
clear_buffers(this, port);
if (n_buffers > 0 && !port->have_format)
return -EIO;
if (n_buffers > MAX_BUFFERS)
return -ENOSPC;
for (i = 0; i < n_buffers; i++) {
struct buffer *b = &port->buffers[i];
b->buf = buffers[i];
b->id = i;
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
b->h = spa_buffer_find_meta_data(buffers[i], SPA_META_Header, sizeof(*b->h));
if (buffers[i]->datas[0].data == NULL) {
spa_log_error(this->log, "%p: need mapped memory", this);
return -EINVAL;
}
}
port->n_buffers = n_buffers;
return 0;
}
static int
impl_node_port_set_io(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t id,
void *data, size_t size)
{
struct impl *this = object;
struct port *port;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = &this->port;
switch (id) {
case SPA_IO_Buffers:
port->io = data;
break;
case SPA_IO_RateMatch:
if (this->codec->kind != MEDIA_CODEC_BAP)
return -ENOENT;
port->rate_match = data;
break;
default:
return -ENOENT;
}
return 0;
}
static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id)
{
return -ENOTSUP;
}
static int impl_node_process(void *object)
{
struct impl *this = object;
struct port *port;
struct spa_io_buffers *io;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
port = &this->port;
if ((io = port->io) == NULL)
return -EIO;
if (this->position && this->position->clock.flags & SPA_IO_CLOCK_FLAG_FREEWHEEL) {
io->status = SPA_STATUS_NEED_DATA;
return SPA_STATUS_HAVE_DATA;
}
if (!this->started || !this->transport_started) {
if (io->status != SPA_STATUS_HAVE_DATA) {
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = SPA_ID_INVALID;
}
return SPA_STATUS_HAVE_DATA;
}
if (io->status == SPA_STATUS_HAVE_DATA && io->buffer_id < port->n_buffers) {
struct buffer *b = &port->buffers[io->buffer_id];
struct spa_data *d = b->buf->datas;
unsigned int frames;
if (!SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) {
spa_log_warn(this->log, "%p: buffer %u in use", this, io->buffer_id);
io->status = -EINVAL;
return -EINVAL;
}
frames = d ? d[0].chunk->size / port->frame_size : 0;
spa_log_trace(this->log, "%p: queue buffer %u frames:%u", this, io->buffer_id, frames);
spa_list_append(&port->ready, &b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT);
io->buffer_id = SPA_ID_INVALID;
io->status = SPA_STATUS_OK;
}
if (this->following) {
if (this->position) {
this->current_time = this->position->clock.nsec;
} else {
struct timespec now;
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now);
this->current_time = SPA_TIMESPEC_TO_NSEC(&now);
}
}
/* Make copies of current position values, so that they can be used later at any
* time without shared memory races
*/
if (this->position) {
this->process_duration = this->position->clock.duration;
this->process_rate = this->position->clock.rate.denom;
this->process_rate_diff = this->position->clock.rate_diff;
} else {
this->process_duration = 1024;
this->process_rate = 48000;
this->process_rate_diff = 1.0;
}
this->process_time = this->current_time;
if (this->resync)
--this->resync;
setup_matching(this);
media_iso_rate_match(this);
if (this->codec->kind == MEDIA_CODEC_ASHA && !this->asha->set_timer) {
struct impl *other = find_other_asha(this);
if (other && other->asha->ref_t0 != 0) {
this->asha->ref_t0 = other->asha->ref_t0;
this->seqnum = asha_seqnum(this);
set_asha_timer(this, other);
} else {
this->asha->ref_t0 = get_reference_time(this, NULL);
this->seqnum = 0;
set_asha_timer(this, NULL);
}
this->asha->set_timer = true;
}
spa_log_trace(this->log, "%p: on process time:%"PRIu64, this, this->process_time);
if ((res = flush_data(this, this->current_time)) < 0) {
io->status = res;
return SPA_STATUS_STOPPED;
}
return SPA_STATUS_HAVE_DATA;
}
static const struct spa_node_methods impl_node = {
SPA_VERSION_NODE_METHODS,
.add_listener = impl_node_add_listener,
.set_callbacks = impl_node_set_callbacks,
.sync = impl_node_sync,
.enum_params = impl_node_enum_params,
.set_param = impl_node_set_param,
.set_io = impl_node_set_io,
.send_command = impl_node_send_command,
.add_port = impl_node_add_port,
.remove_port = impl_node_remove_port,
.port_enum_params = impl_node_port_enum_params,
.port_set_param = impl_node_port_set_param,
.port_use_buffers = impl_node_port_use_buffers,
.port_set_io = impl_node_port_set_io,
.port_reuse_buffer = impl_node_port_reuse_buffer,
.process = impl_node_process,
};
static void transport_delay_changed(void *data)
{
struct impl *this = data;
spa_log_debug(this->log, "transport %p delay changed", this->transport);
set_latency(this, true);
}
static int do_transport_destroy(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct impl *this = user_data;
this->transport = NULL;
return 0;
}
static void transport_destroy(void *data)
{
struct impl *this = data;
spa_log_debug(this->log, "transport %p destroy", this->transport);
spa_loop_locked(this->data_loop, do_transport_destroy, 0, NULL, 0, this);
}
static void transport_state_changed(void *data,
enum spa_bt_transport_state old,
enum spa_bt_transport_state state)
{
struct impl *this = data;
bool was_started = this->transport_started;
spa_log_debug(this->log, "%p: transport %p state %d->%d", this, this->transport, old, state);
if (state == SPA_BT_TRANSPORT_STATE_ACTIVE)
transport_start(this);
else
transport_stop(this);
if (state < SPA_BT_TRANSPORT_STATE_ACTIVE && was_started && !this->is_duplex && this->is_output) {
/*
* If establishing connection fails due to remote end not activating
* the transport, we won't get a write error, but instead see a transport
* state change.
*
* Treat this as a transport error, so that upper levels don't try to
* retry too often.
*/
spa_log_debug(this->log, "%p: transport %p becomes inactive: stop and indicate error",
this, this->transport);
spa_bt_transport_set_state(this->transport, SPA_BT_TRANSPORT_STATE_ERROR);
return;
}
if (state == SPA_BT_TRANSPORT_STATE_ERROR) {
uint8_t buffer[1024];
struct spa_pod_builder b = { 0 };
spa_pod_builder_init(&b, buffer, sizeof(buffer));
spa_node_emit_event(&this->hooks,
spa_pod_builder_add_object(&b,
SPA_TYPE_EVENT_Node, SPA_NODE_EVENT_Error));
}
}
static const struct spa_bt_transport_events transport_events = {
SPA_VERSION_BT_TRANSPORT_EVENTS,
.delay_changed = transport_delay_changed,
.state_changed = transport_state_changed,
.destroy = transport_destroy,
};
static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface)
{
struct impl *this;
spa_return_val_if_fail(handle != NULL, -EINVAL);
spa_return_val_if_fail(interface != NULL, -EINVAL);
this = (struct impl *) handle;
if (spa_streq(type, SPA_TYPE_INTERFACE_Node))
*interface = &this->node;
else
return -ENOENT;
return 0;
}
static int impl_clear(struct spa_handle *handle)
{
struct impl *this = (struct impl *) handle;
do_stop(this);
if (this->codec_props && this->codec->clear_props)
this->codec->clear_props(this->codec_props);
if (this->transport)
spa_hook_remove(&this->transport_listener);
spa_system_close(this->data_system, this->timerfd);
spa_system_close(this->data_system, this->flush_timerfd);
if (this->codec->kind == MEDIA_CODEC_ASHA) {
spa_system_close(this->data_system, this->asha->timerfd);
free(this->asha);
}
return 0;
}
static size_t
impl_get_size(const struct spa_handle_factory *factory,
const struct spa_dict *params)
{
return sizeof(struct impl);
}
static int
impl_init(const struct spa_handle_factory *factory,
struct spa_handle *handle,
const struct spa_dict *info,
const struct spa_support *support,
uint32_t n_support)
{
struct impl *this;
struct port *port;
const char *str;
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(handle != NULL, -EINVAL);
handle->get_interface = impl_get_interface;
handle->clear = impl_clear;
this = (struct impl *) handle;
this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log);
this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop);
this->data_system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataSystem);
this->loop_utils = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_LoopUtils);
spa_log_topic_init(this->log, &log_topic);
if (this->data_loop == NULL) {
spa_log_error(this->log, "a data loop is needed");
return -EINVAL;
}
if (this->data_system == NULL) {
spa_log_error(this->log, "a data system is needed");
return -EINVAL;
}
if (this->loop_utils == NULL) {
spa_log_error(this->log, "loop utils are needed");
return -EINVAL;
}
this->node.iface = SPA_INTERFACE_INIT(
SPA_TYPE_INTERFACE_Node,
SPA_VERSION_NODE,
&impl_node, this);
spa_hook_list_init(&this->hooks);
this->info_all = SPA_NODE_CHANGE_MASK_FLAGS |
SPA_NODE_CHANGE_MASK_PARAMS |
SPA_NODE_CHANGE_MASK_PROPS;
this->info = SPA_NODE_INFO_INIT();
this->info.max_input_ports = 1;
this->info.max_output_ports = 0;
this->info.flags = SPA_NODE_FLAG_RT;
this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ);
this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE);
this->info.params = this->params;
this->info.n_params = N_NODE_PARAMS;
port = &this->port;
port->info_all = SPA_PORT_CHANGE_MASK_FLAGS |
SPA_PORT_CHANGE_MASK_PARAMS;
port->info = SPA_PORT_INFO_INIT();
port->info.flags = SPA_PORT_FLAG_LIVE |
SPA_PORT_FLAG_PHYSICAL |
SPA_PORT_FLAG_TERMINAL;
port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ);
port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ);
port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ);
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE);
port->info.params = port->params;
port->info.n_params = N_PORT_PARAMS;
port->latency = SPA_LATENCY_INFO(SPA_DIRECTION_INPUT);
spa_list_init(&port->ready);
this->quantum_limit = 8192;
if (info && (str = spa_dict_lookup(info, "clock.quantum-limit")))
spa_atou32(str, &this->quantum_limit, 0);
if (info && (str = spa_dict_lookup(info, "api.bluez5.a2dp-duplex")) != NULL)
this->is_duplex = spa_atob(str);
if (info && (str = spa_dict_lookup(info, "api.bluez5.internal")) != NULL)
this->is_internal = spa_atob(str);
if (info && (str = spa_dict_lookup(info, SPA_KEY_API_BLUEZ5_TRANSPORT)))
sscanf(str, "pointer:%p", &this->transport);
if (this->transport == NULL) {
spa_log_error(this->log, "a transport is needed");
return -EINVAL;
}
if (this->transport->media_codec == NULL) {
spa_log_error(this->log, "a transport codec is needed");
return -EINVAL;
}
this->codec = this->transport->media_codec;
if (this->is_duplex) {
if (!this->codec->duplex_codec) {
spa_log_error(this->log, "transport codec doesn't support duplex");
return -EINVAL;
}
this->codec = this->codec->duplex_codec;
}
if (this->codec->init_props != NULL)
this->codec_props = this->codec->init_props(this->codec,
this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0,
this->transport->device->settings);
if (this->codec->kind == MEDIA_CODEC_BAP)
this->is_output = this->transport->bap_initiator;
else if (this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY)
this->is_output = false;
else
this->is_output = true;
reset_props(this, &this->props);
set_latency(this, false);
spa_bt_transport_add_listener(this->transport,
&this->transport_listener, &transport_events, this);
this->timerfd = spa_system_timerfd_create(this->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK);
this->flush_timerfd = spa_system_timerfd_create(this->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK);
if (this->codec->kind == MEDIA_CODEC_ASHA) {
this->asha = calloc(1, sizeof(struct spa_bt_asha));
if (this->asha == NULL)
return -ENOMEM;
this->asha->timerfd = spa_system_timerfd_create(this->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK);
}
return 0;
}
static const struct spa_interface_info impl_interfaces[] = {
{SPA_TYPE_INTERFACE_Node,},
};
static int
impl_enum_interface_info(const struct spa_handle_factory *factory,
const struct spa_interface_info **info, uint32_t *index)
{
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(info != NULL, -EINVAL);
spa_return_val_if_fail(index != NULL, -EINVAL);
switch (*index) {
case 0:
*info = &impl_interfaces[*index];
break;
default:
return 0;
}
(*index)++;
return 1;
}
static const struct spa_dict_item info_items[] = {
{ SPA_KEY_FACTORY_AUTHOR, "Wim Taymans <wim.taymans@gmail.com>" },
{ SPA_KEY_FACTORY_DESCRIPTION, "Play audio with the media" },
{ SPA_KEY_FACTORY_USAGE, SPA_KEY_API_BLUEZ5_TRANSPORT"=<transport>" },
};
static const struct spa_dict info = SPA_DICT_INIT_ARRAY(info_items);
const struct spa_handle_factory spa_media_sink_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_API_BLUEZ5_MEDIA_SINK,
&info,
impl_get_size,
impl_init,
impl_enum_interface_info,
};
/* Retained for backward compatibility: */
const struct spa_handle_factory spa_a2dp_sink_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_API_BLUEZ5_A2DP_SINK,
&info,
impl_get_size,
impl_init,
impl_enum_interface_info,
};
/* Retained for backward compatibility: */
const struct spa_handle_factory spa_sco_sink_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_API_BLUEZ5_SCO_SINK,
&info,
impl_get_size,
impl_init,
impl_enum_interface_info,
};