pipewire/spa/plugins/audioconvert/channelmix-ops-sse.c
Wim Taymans 0868ff1ada math: improve denormal check
Use isnormal() when we can
2025-01-13 16:10:34 +01:00

691 lines
20 KiB
C

/* Spa */
/* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include "channelmix-ops.h"
#include <xmmintrin.h>
#include <float.h>
#include <math.h>
static inline void clear_sse(float *d, uint32_t n_samples)
{
memset(d, 0, n_samples * sizeof(float));
}
static inline void copy_sse(float *d, const float *s, uint32_t n_samples)
{
spa_memcpy(d, s, n_samples * sizeof(float));
}
static inline void vol_sse(float *d, const float *s, float vol, uint32_t n_samples)
{
uint32_t n, unrolled;
if (vol == 0.0f) {
clear_sse(d, n_samples);
} else if (vol == 1.0f) {
copy_sse(d, s, n_samples);
} else {
__m128 t[4];
const __m128 v = _mm_set1_ps(vol);
if (SPA_IS_ALIGNED(d, 16) &&
SPA_IS_ALIGNED(s, 16))
unrolled = n_samples & ~15;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 16) {
t[0] = _mm_load_ps(&s[n]);
t[1] = _mm_load_ps(&s[n+4]);
t[2] = _mm_load_ps(&s[n+8]);
t[3] = _mm_load_ps(&s[n+12]);
_mm_store_ps(&d[n], _mm_mul_ps(t[0], v));
_mm_store_ps(&d[n+4], _mm_mul_ps(t[1], v));
_mm_store_ps(&d[n+8], _mm_mul_ps(t[2], v));
_mm_store_ps(&d[n+12], _mm_mul_ps(t[3], v));
}
for(; n < n_samples; n++)
_mm_store_ss(&d[n], _mm_mul_ss(_mm_load_ss(&s[n]), v));
}
}
static inline void conv_sse(float *d, const float **s, float *c, uint32_t n_c, uint32_t n_samples)
{
__m128 mi[n_c], sum[2];
uint32_t n, j, unrolled;
bool aligned = true;
for (j = 0; j < n_c; j++) {
mi[j] = _mm_set1_ps(c[j]);
aligned &= SPA_IS_ALIGNED(s[j], 16);
}
if (aligned && SPA_IS_ALIGNED(d, 16))
unrolled = n_samples & ~7;
else
unrolled = 0;
for (n = 0; n < unrolled; n += 8) {
sum[0] = sum[1] = _mm_setzero_ps();
for (j = 0; j < n_c; j++) {
sum[0] = _mm_add_ps(sum[0], _mm_mul_ps(_mm_load_ps(&s[j][n + 0]), mi[j]));
sum[1] = _mm_add_ps(sum[1], _mm_mul_ps(_mm_load_ps(&s[j][n + 4]), mi[j]));
}
_mm_store_ps(&d[n + 0], sum[0]);
_mm_store_ps(&d[n + 4], sum[1]);
}
for (; n < n_samples; n++) {
sum[0] = _mm_setzero_ps();
for (j = 0; j < n_c; j++)
sum[0] = _mm_add_ss(sum[0], _mm_mul_ss(_mm_load_ss(&s[j][n]), mi[j]));
_mm_store_ss(&d[n], sum[0]);
}
}
static inline void avg_sse(float *d, const float *s0, const float *s1, uint32_t n_samples)
{
uint32_t n, unrolled;
__m128 half = _mm_set1_ps(0.5f);
if (SPA_IS_ALIGNED(d, 16) &&
SPA_IS_ALIGNED(s0, 16) &&
SPA_IS_ALIGNED(s1, 16))
unrolled = n_samples & ~7;
else
unrolled = 0;
for (n = 0; n < unrolled; n += 8) {
_mm_store_ps(&d[n + 0],
_mm_mul_ps(
_mm_add_ps(
_mm_load_ps(&s0[n + 0]),
_mm_load_ps(&s1[n + 0])),
half));
_mm_store_ps(&d[n + 4],
_mm_mul_ps(
_mm_add_ps(
_mm_load_ps(&s0[n + 4]),
_mm_load_ps(&s1[n + 4])),
half));
}
for (; n < n_samples; n++)
_mm_store_ss(&d[n],
_mm_mul_ss(
_mm_add_ss(
_mm_load_ss(&s0[n]),
_mm_load_ss(&s1[n])),
half));
}
static inline void sub_sse(float *d, const float *s0, const float *s1, uint32_t n_samples)
{
uint32_t n, unrolled;
if (SPA_IS_ALIGNED(d, 16) &&
SPA_IS_ALIGNED(s0, 16) &&
SPA_IS_ALIGNED(s1, 16))
unrolled = n_samples & ~7;
else
unrolled = 0;
for (n = 0; n < unrolled; n += 8) {
_mm_store_ps(&d[n + 0],
_mm_sub_ps(_mm_load_ps(&s0[n + 0]), _mm_load_ps(&s1[n + 0])));
_mm_store_ps(&d[n + 4],
_mm_sub_ps(_mm_load_ps(&s0[n + 4]), _mm_load_ps(&s1[n + 4])));
}
for (; n < n_samples; n++)
_mm_store_ss(&d[n],
_mm_sub_ss(_mm_load_ss(&s0[n]), _mm_load_ss(&s1[n])));
}
void channelmix_copy_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n_dst = mix->dst_chan;
float **d = (float **)dst;
const float **s = (const float **)src;
for (i = 0; i < n_dst; i++)
vol_sse(d[i], s[i], mix->matrix[i][i], n_samples);
}
static void lr4_process_sse(struct lr4 *lr4, float *dst, const float *src, const float vol, int samples)
{
__m128 x, y, z;
__m128 b012;
__m128 a12;
__m128 x12, y12, v;
int i;
if (vol == 0.0f || !lr4->active) {
vol_sse(dst, src, vol, samples);
return;
}
b012 = _mm_setr_ps(lr4->bq.b0, lr4->bq.b1, lr4->bq.b2, 0.0f); /* b0 b1 b2 0 */
a12 = _mm_setr_ps(0.0f, lr4->bq.a1, lr4->bq.a2, 0.0f); /* 0 a1 a2 0 */
x12 = _mm_setr_ps(lr4->x1, lr4->x2, 0.0f, 0.0f); /* x1 x2 0 0 */
y12 = _mm_setr_ps(lr4->y1, lr4->y2, 0.0f, 0.0f); /* y1 y2 0 0 */
v = _mm_setr_ps(vol, vol, 0.0f, 0.0f);
for (i = 0; i < samples; i++) {
x = _mm_load1_ps(&src[i]); /* x x x x */
z = _mm_mul_ps(x, b012); /* b0*x b1*x b2*x 0 */
z = _mm_add_ps(z, x12); /* b0*x+x1 b1*x+x2 b2*x 0 */
y = _mm_shuffle_ps(z, z, _MM_SHUFFLE(0,0,0,0)); /* b0*x+x1 b0*x+x1 b0*x+x1 b0*x+x1 = y*/
x = _mm_mul_ps(y, a12); /* 0 a1*y a2*y 0 */
x = _mm_sub_ps(z, x); /* y x1 x2 0 */
x12 = _mm_shuffle_ps(x, x, _MM_SHUFFLE(3,3,2,1)); /* x1 x2 0 0*/
z = _mm_mul_ps(y, b012);
z = _mm_add_ps(z, y12);
x = _mm_shuffle_ps(z, z, _MM_SHUFFLE(0,0,0,0));
y = _mm_mul_ps(x, a12);
y = _mm_sub_ps(z, y);
y12 = _mm_shuffle_ps(y, y, _MM_SHUFFLE(3,3,2,1));
x = _mm_mul_ps(x, v);
_mm_store_ss(&dst[i], x);
}
#define F(x) (isnormal(x) ? (x) : 0.0f)
lr4->x1 = F(x12[0]);
lr4->x2 = F(x12[1]);
lr4->y1 = F(y12[0]);
lr4->y2 = F(y12[1]);
#undef F
}
static void lr4_process_2_sse(struct lr4 *lr40, struct lr4 *lr41, float *dst0, float *dst1,
const float *src0, const float *src1, const float vol0, const float vol1, uint32_t samples)
{
__m128 x, y, z;
__m128 b0, b1, b2;
__m128 a1, a2;
__m128 x1, x2;
__m128 y1, y2, v;
uint32_t i;
b0 = _mm_setr_ps(lr40->bq.b0, lr41->bq.b0, 0.0f, 0.0f);
b1 = _mm_setr_ps(lr40->bq.b1, lr41->bq.b1, 0.0f, 0.0f);
b2 = _mm_setr_ps(lr40->bq.b2, lr41->bq.b2, 0.0f, 0.0f);
a1 = _mm_setr_ps(lr40->bq.a1, lr41->bq.a1, 0.0f, 0.0f);
a2 = _mm_setr_ps(lr40->bq.a2, lr41->bq.a2, 0.0f, 0.0f);
x1 = _mm_setr_ps(lr40->x1, lr41->x1, 0.0f, 0.0f);
x2 = _mm_setr_ps(lr40->x2, lr41->x2, 0.0f, 0.0f);
y1 = _mm_setr_ps(lr40->y1, lr41->y1, 0.0f, 0.0f);
y2 = _mm_setr_ps(lr40->y2, lr41->y2, 0.0f, 0.0f);
v = _mm_setr_ps(vol0, vol1, 0.0f, 0.0f);
for (i = 0; i < samples; i++) {
x = _mm_setr_ps(src0[i], src1[i], 0.0f, 0.0f);
y = _mm_mul_ps(x, b0); /* y = x * b0 */
y = _mm_add_ps(y, x1); /* y = x * b0 + x1*/
z = _mm_mul_ps(y, a1); /* z = a1 * y */
x1 = _mm_mul_ps(x, b1); /* x1 = x * b1 */
x1 = _mm_add_ps(x1, x2); /* x1 = x * b1 + x2*/
x1 = _mm_sub_ps(x1, z); /* x1 = x * b1 + x2 - a1 * y*/
z = _mm_mul_ps(y, a2); /* z = a2 * y */
x2 = _mm_mul_ps(x, b2); /* x2 = x * b2 */
x2 = _mm_sub_ps(x2, z); /* x2 = x * b2 - a2 * y*/
x = _mm_mul_ps(y, b0); /* y = x * b0 */
x = _mm_add_ps(x, y1); /* y = x * b0 + x1*/
z = _mm_mul_ps(x, a1); /* z = a1 * y */
y1 = _mm_mul_ps(y, b1); /* x1 = x * b1 */
y1 = _mm_add_ps(y1, y2); /* x1 = x * b1 + x2*/
y1 = _mm_sub_ps(y1, z); /* x1 = x * b1 + x2 - a1 * y*/
z = _mm_mul_ps(x, a2); /* z = a2 * y */
y2 = _mm_mul_ps(y, b2); /* x2 = x * b2 */
y2 = _mm_sub_ps(y2, z); /* x2 = x * b2 - a2 * y*/
x = _mm_mul_ps(x, v);
dst0[i] = x[0];
dst1[i] = x[1];
}
#define F(x) (isnormal(x) ? (x) : 0.0f)
lr40->x1 = F(x1[0]);
lr40->x2 = F(x2[0]);
lr40->y1 = F(y1[0]);
lr40->y2 = F(y2[0]);
lr41->x1 = F(x1[1]);
lr41->x2 = F(x2[1]);
lr41->y1 = F(y1[1]);
lr41->y2 = F(y2[1]);
#undef F
}
static inline void convolver_run(const float *src, float *dst,
const float *taps, uint32_t n_taps, const __m128 vol)
{
__m128 t[1], sum[4];
uint32_t i;
sum[0] = _mm_setzero_ps();
for(i = 0; i < n_taps; i+=4) {
t[0] = _mm_loadu_ps(&src[i]);
sum[0] = _mm_add_ps(sum[0], _mm_mul_ps(_mm_load_ps(&taps[i]), t[0]));
}
sum[0] = _mm_add_ps(sum[0], _mm_movehl_ps(sum[0], sum[0]));
sum[0] = _mm_add_ss(sum[0], _mm_shuffle_ps(sum[0], sum[0], 0x55));
t[0] = _mm_mul_ss(sum[0], vol);
_mm_store_ss(dst, t[0]);
}
static inline void delay_convolve_run_sse(float *buffer, uint32_t *pos,
uint32_t n_buffer, uint32_t delay,
const float *taps, uint32_t n_taps,
float *dst, const float *src, const float vol, uint32_t n_samples)
{
__m128 t[1];
const __m128 v = _mm_set1_ps(vol);
uint32_t i;
uint32_t w = *pos;
uint32_t o = n_buffer - delay - n_taps-1;
uint32_t n, unrolled;
if (SPA_IS_ALIGNED(src, 16) &&
SPA_IS_ALIGNED(dst, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
if (n_taps == 1) {
for(n = 0; n < unrolled; n += 4) {
t[0] = _mm_load_ps(&src[n]);
_mm_storeu_ps(&buffer[w], t[0]);
_mm_storeu_ps(&buffer[w+n_buffer], t[0]);
t[0] = _mm_loadu_ps(&buffer[w+o]);
t[0] = _mm_mul_ps(t[0], v);
_mm_store_ps(&dst[n], t[0]);
w += 4;
if (w >= n_buffer) {
w -= n_buffer;
t[0] = _mm_load_ps(&buffer[n_buffer]);
_mm_store_ps(&buffer[0], t[0]);
}
}
for(; n < n_samples; n++) {
t[0] = _mm_load_ss(&src[n]);
_mm_store_ss(&buffer[w], t[0]);
_mm_store_ss(&buffer[w+n_buffer], t[0]);
t[0] = _mm_load_ss(&buffer[w+o]);
t[0] = _mm_mul_ss(t[0], v);
_mm_store_ss(&dst[n], t[0]);
w = w + 1 >= n_buffer ? 0 : w + 1;
}
} else {
for(n = 0; n < unrolled; n += 4) {
t[0] = _mm_load_ps(&src[n]);
_mm_storeu_ps(&buffer[w], t[0]);
_mm_storeu_ps(&buffer[w+n_buffer], t[0]);
for(i = 0; i < 4; i++)
convolver_run(&buffer[w+o+i], &dst[n+i], taps, n_taps, v);
w += 4;
if (w >= n_buffer) {
w -= n_buffer;
t[0] = _mm_load_ps(&buffer[n_buffer]);
_mm_store_ps(&buffer[0], t[0]);
}
}
for(; n < n_samples; n++) {
t[0] = _mm_load_ss(&src[n]);
_mm_store_ss(&buffer[w], t[0]);
_mm_store_ss(&buffer[w+n_buffer], t[0]);
convolver_run(&buffer[w+o], &dst[n], taps, n_taps, v);
w = w + 1 >= n_buffer ? 0 : w + 1;
}
}
*pos = w;
}
void
channelmix_f32_n_m_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
float **d = (float **) dst;
const float **s = (const float **) src;
uint32_t i, j, n_dst = mix->dst_chan, n_src = mix->src_chan;
for (i = 0; i < n_dst; i++) {
float *di = d[i];
float mj[n_src];
const float *sj[n_src];
uint32_t n_j = 0;
for (j = 0; j < n_src; j++) {
if (mix->matrix[i][j] == 0.0f)
continue;
mj[n_j] = mix->matrix[i][j];
sj[n_j++] = s[j];
}
if (n_j == 0) {
clear_sse(di, n_samples);
} else if (n_j == 1) {
lr4_process_sse(&mix->lr4[i], di, sj[0], mj[0], n_samples);
} else {
conv_sse(di, sj, mj, n_j, n_samples);
lr4_process_sse(&mix->lr4[i], di, di, 1.0f, n_samples);
}
}
}
void
channelmix_f32_2_3p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n, unrolled, n_dst = mix->dst_chan;
float **d = (float **)dst;
const float **s = (const float **)src;
const float v0 = mix->matrix[0][0];
const float v1 = mix->matrix[1][1];
const float v2 = (mix->matrix[2][0] + mix->matrix[2][1]) * 0.5f;
const float v3 = (mix->matrix[3][0] + mix->matrix[3][1]) * 0.5f;
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
for (i = 0; i < n_dst; i++)
clear_sse(d[i], n_samples);
}
else {
if (mix->widen == 0.0f) {
vol_sse(d[0], s[0], v0, n_samples);
vol_sse(d[1], s[1], v1, n_samples);
avg_sse(d[2], s[0], s[1], n_samples);
} else {
const __m128 mv0 = _mm_set1_ps(mix->matrix[0][0]);
const __m128 mv1 = _mm_set1_ps(mix->matrix[1][1]);
const __m128 mw = _mm_set1_ps(mix->widen);
const __m128 mh = _mm_set1_ps(0.5f);
__m128 t0[1], t1[1], w[1], c[1];
if (SPA_IS_ALIGNED(s[0], 16) &&
SPA_IS_ALIGNED(s[1], 16) &&
SPA_IS_ALIGNED(d[0], 16) &&
SPA_IS_ALIGNED(d[1], 16) &&
SPA_IS_ALIGNED(d[2], 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
t0[0] = _mm_load_ps(&s[0][n]);
t1[0] = _mm_load_ps(&s[1][n]);
c[0] = _mm_add_ps(t0[0], t1[0]);
w[0] = _mm_mul_ps(c[0], mw);
_mm_store_ps(&d[0][n], _mm_mul_ps(_mm_sub_ps(t0[0], w[0]), mv0));
_mm_store_ps(&d[1][n], _mm_mul_ps(_mm_sub_ps(t1[0], w[0]), mv1));
_mm_store_ps(&d[2][n], _mm_mul_ps(c[0], mh));
}
for (; n < n_samples; n++) {
t0[0] = _mm_load_ss(&s[0][n]);
t1[0] = _mm_load_ss(&s[1][n]);
c[0] = _mm_add_ss(t0[0], t1[0]);
w[0] = _mm_mul_ss(c[0], mw);
_mm_store_ss(&d[0][n], _mm_mul_ss(_mm_sub_ss(t0[0], w[0]), mv0));
_mm_store_ss(&d[1][n], _mm_mul_ss(_mm_sub_ss(t1[0], w[0]), mv1));
_mm_store_ss(&d[2][n], _mm_mul_ss(c[0], mh));
}
}
lr4_process_2_sse(&mix->lr4[3], &mix->lr4[2], d[3], d[2], d[2], d[2], v3, v2, n_samples);
}
}
void
channelmix_f32_2_5p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n_dst = mix->dst_chan;
float **d = (float **)dst;
const float **s = (const float **)src;
const float v4 = mix->matrix[4][0];
const float v5 = mix->matrix[5][1];
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
for (i = 0; i < n_dst; i++)
clear_sse(d[i], n_samples);
}
else {
channelmix_f32_2_3p1_sse(mix, dst, src, n_samples);
if (mix->upmix != CHANNELMIX_UPMIX_PSD) {
vol_sse(d[4], s[0], v4, n_samples);
vol_sse(d[5], s[1], v5, n_samples);
} else {
sub_sse(d[4], s[0], s[1], n_samples);
delay_convolve_run_sse(mix->buffer[1], &mix->pos[1], BUFFER_SIZE, mix->delay,
mix->taps, mix->n_taps, d[5], d[4], -v5, n_samples);
delay_convolve_run_sse(mix->buffer[0], &mix->pos[0], BUFFER_SIZE, mix->delay,
mix->taps, mix->n_taps, d[4], d[4], v4, n_samples);
}
}
}
void
channelmix_f32_2_7p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n_dst = mix->dst_chan;
float **d = (float **)dst;
const float **s = (const float **)src;
const float v4 = mix->matrix[4][0];
const float v5 = mix->matrix[5][1];
const float v6 = mix->matrix[6][0];
const float v7 = mix->matrix[7][1];
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
for (i = 0; i < n_dst; i++)
clear_sse(d[i], n_samples);
}
else {
channelmix_f32_2_3p1_sse(mix, dst, src, n_samples);
vol_sse(d[4], s[0], v4, n_samples);
vol_sse(d[5], s[1], v5, n_samples);
if (mix->upmix != CHANNELMIX_UPMIX_PSD) {
vol_sse(d[6], s[0], v6, n_samples);
vol_sse(d[7], s[1], v7, n_samples);
} else {
sub_sse(d[6], s[0], s[1], n_samples);
delay_convolve_run_sse(mix->buffer[1], &mix->pos[1], BUFFER_SIZE, mix->delay,
mix->taps, mix->n_taps, d[7], d[6], -v7, n_samples);
delay_convolve_run_sse(mix->buffer[0], &mix->pos[0], BUFFER_SIZE, mix->delay,
mix->taps, mix->n_taps, d[6], d[6], v6, n_samples);
}
}
}
/* FL+FR+FC+LFE -> FL+FR */
void
channelmix_f32_3p1_2_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
float **d = (float **) dst;
const float **s = (const float **) src;
const float m0 = mix->matrix[0][0];
const float m1 = mix->matrix[1][1];
const float m2 = (mix->matrix[0][2] + mix->matrix[1][2]) * 0.5f;
const float m3 = (mix->matrix[0][3] + mix->matrix[1][3]) * 0.5f;
if (m0 == 0.0f && m1 == 0.0f && m2 == 0.0f && m3 == 0.0f) {
clear_sse(d[0], n_samples);
clear_sse(d[1], n_samples);
}
else {
uint32_t n, unrolled;
const __m128 v0 = _mm_set1_ps(m0);
const __m128 v1 = _mm_set1_ps(m1);
const __m128 clev = _mm_set1_ps(m2);
const __m128 llev = _mm_set1_ps(m3);
__m128 ctr;
if (SPA_IS_ALIGNED(s[0], 16) &&
SPA_IS_ALIGNED(s[1], 16) &&
SPA_IS_ALIGNED(s[2], 16) &&
SPA_IS_ALIGNED(s[3], 16) &&
SPA_IS_ALIGNED(d[0], 16) &&
SPA_IS_ALIGNED(d[1], 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&s[2][n]), clev),
_mm_mul_ps(_mm_load_ps(&s[3][n]), llev));
_mm_store_ps(&d[0][n], _mm_add_ps(_mm_mul_ps(_mm_load_ps(&s[0][n]), v0), ctr));
_mm_store_ps(&d[1][n], _mm_add_ps(_mm_mul_ps(_mm_load_ps(&s[1][n]), v1), ctr));
}
for(; n < n_samples; n++) {
ctr = _mm_add_ss(_mm_mul_ss(_mm_load_ss(&s[2][n]), clev),
_mm_mul_ss(_mm_load_ss(&s[3][n]), llev));
_mm_store_ss(&d[0][n], _mm_add_ss(_mm_mul_ss(_mm_load_ss(&s[0][n]), v0), ctr));
_mm_store_ss(&d[1][n], _mm_add_ss(_mm_mul_ss(_mm_load_ss(&s[1][n]), v1), ctr));
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
void
channelmix_f32_5p1_2_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
const float m00 = mix->matrix[0][0];
const float m11 = mix->matrix[1][1];
const __m128 clev = _mm_set1_ps((mix->matrix[0][2] + mix->matrix[1][2]) * 0.5f);
const __m128 llev = _mm_set1_ps((mix->matrix[0][3] + mix->matrix[1][3]) * 0.5f);
const __m128 slev0 = _mm_set1_ps(mix->matrix[0][4]);
const __m128 slev1 = _mm_set1_ps(mix->matrix[1][5]);
__m128 in, ctr;
if (SPA_IS_ALIGNED(s[0], 16) &&
SPA_IS_ALIGNED(s[1], 16) &&
SPA_IS_ALIGNED(s[2], 16) &&
SPA_IS_ALIGNED(s[3], 16) &&
SPA_IS_ALIGNED(s[4], 16) &&
SPA_IS_ALIGNED(s[5], 16) &&
SPA_IS_ALIGNED(d[0], 16) &&
SPA_IS_ALIGNED(d[1], 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
clear_sse(d[0], n_samples);
clear_sse(d[1], n_samples);
}
else {
const __m128 v0 = _mm_set1_ps(m00);
const __m128 v1 = _mm_set1_ps(m11);
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_add_ps(_mm_mul_ps(_mm_load_ps(&s[2][n]), clev),
_mm_mul_ps(_mm_load_ps(&s[3][n]), llev));
in = _mm_mul_ps(_mm_load_ps(&s[4][n]), slev0);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_mul_ps(_mm_load_ps(&s[0][n]), v0));
_mm_store_ps(&d[0][n], in);
in = _mm_mul_ps(_mm_load_ps(&s[5][n]), slev1);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_mul_ps(_mm_load_ps(&s[1][n]), v1));
_mm_store_ps(&d[1][n], in);
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&s[2][n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&s[3][n]), llev));
in = _mm_mul_ss(_mm_load_ss(&s[4][n]), slev0);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_mul_ss(_mm_load_ss(&s[0][n]), v0));
_mm_store_ss(&d[0][n], in);
in = _mm_mul_ss(_mm_load_ss(&s[5][n]), slev1);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_mul_ss(_mm_load_ss(&s[1][n]), v1));
_mm_store_ss(&d[1][n], in);
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR+FC+LFE*/
void
channelmix_f32_5p1_3p1_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n, unrolled, n_dst = mix->dst_chan;
float **d = (float **) dst;
const float **s = (const float **) src;
if (SPA_IS_ALIGNED(s[0], 16) &&
SPA_IS_ALIGNED(s[1], 16) &&
SPA_IS_ALIGNED(s[2], 16) &&
SPA_IS_ALIGNED(s[3], 16) &&
SPA_IS_ALIGNED(s[4], 16) &&
SPA_IS_ALIGNED(s[5], 16) &&
SPA_IS_ALIGNED(d[0], 16) &&
SPA_IS_ALIGNED(d[1], 16) &&
SPA_IS_ALIGNED(d[2], 16) &&
SPA_IS_ALIGNED(d[3], 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
for (i = 0; i < n_dst; i++)
clear_sse(d[i], n_samples);
}
else {
const __m128 v0 = _mm_set1_ps(mix->matrix[0][0]);
const __m128 v1 = _mm_set1_ps(mix->matrix[1][1]);
const __m128 slev0 = _mm_set1_ps(mix->matrix[0][4]);
const __m128 slev1 = _mm_set1_ps(mix->matrix[1][5]);
for(n = 0; n < unrolled; n += 4) {
_mm_store_ps(&d[0][n], _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&s[0][n]), v0),
_mm_mul_ps(_mm_load_ps(&s[4][n]), slev0)));
_mm_store_ps(&d[1][n], _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&s[1][n]), v1),
_mm_mul_ps(_mm_load_ps(&s[5][n]), slev1)));
}
for(; n < n_samples; n++) {
_mm_store_ss(&d[0][n], _mm_add_ss(
_mm_mul_ss(_mm_load_ss(&s[0][n]), v0),
_mm_mul_ss(_mm_load_ss(&s[4][n]), slev0)));
_mm_store_ss(&d[1][n], _mm_add_ss(
_mm_mul_ss(_mm_load_ss(&s[1][n]), v1),
_mm_mul_ss(_mm_load_ss(&s[5][n]), slev1)));
}
vol_sse(d[2], s[2], mix->matrix[2][2], n_samples);
vol_sse(d[3], s[3], mix->matrix[3][3], n_samples);
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
void
channelmix_f32_5p1_4_sse(struct channelmix *mix, void * SPA_RESTRICT dst[],
const void * SPA_RESTRICT src[], uint32_t n_samples)
{
uint32_t i, n_dst = mix->dst_chan;
float **d = (float **) dst;
const float **s = (const float **) src;
const float v4 = mix->matrix[2][4];
const float v5 = mix->matrix[3][5];
if (SPA_FLAG_IS_SET(mix->flags, CHANNELMIX_FLAG_ZERO)) {
for (i = 0; i < n_dst; i++)
clear_sse(d[i], n_samples);
}
else {
channelmix_f32_3p1_2_sse(mix, dst, src, n_samples);
vol_sse(d[2], s[4], v4, n_samples);
vol_sse(d[3], s[5], v5, n_samples);
}
}