pipewire/spa/plugins/audioconvert/benchmark-fmt-ops.c
Wim Taymans 13bf70a8dd mem: align memory to requested alignment
Improve the allocators to always align the buffer memory to the
requested alignment
Use aligned read and writes for sse functions and check alignment,
optionally falling back to unaligned path.
Add more tests and benchmark cases
Check and warn for misaligned memory in plugins.
2019-01-24 18:28:52 +01:00

192 lines
5.7 KiB
C

/* Spa
*
* Copyright © 2019 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include "fmt-ops.c"
#define MAX_SAMPLES 4096
#define MAX_CHANNELS 11
#define MAX_COUNT 1000
static uint8_t samp_in[MAX_SAMPLES * MAX_CHANNELS * 4];
static uint8_t samp_out[MAX_SAMPLES * MAX_CHANNELS * 4];
static const int sample_sizes[] = { 0, 1, 128, 513, 4096 };
static const int channel_counts[] = { 1, 2, 4, 6, 8, 11 };
static void run_test1(const char *name, bool in_packed, bool out_packed, convert_func_t func,
int n_channels, int n_samples)
{
int i, j;
const void *ip[n_channels];
void *op[n_channels];
struct timespec ts;
uint64_t count, t1, t2;
for (j = 0; j < n_channels; j++) {
ip[j] = &samp_in[j * n_samples * 4];
op[j] = &samp_out[j * n_samples * 4];
}
clock_gettime(CLOCK_MONOTONIC, &ts);
t1 = SPA_TIMESPEC_TO_NSEC(&ts);
count = 0;
for (i = 0; i < MAX_COUNT; i++) {
func(NULL, op, ip, n_channels, n_samples);
count++;
}
clock_gettime(CLOCK_MONOTONIC, &ts);
t2 = SPA_TIMESPEC_TO_NSEC(&ts);
fprintf(stderr, "%s: samples %d, channels %d: elapsed %"PRIu64" count %"
PRIu64" = %"PRIu64"/sec\n", name, n_samples, n_channels,
t2 - t1, count, count * (uint64_t)SPA_NSEC_PER_SEC / (t2 - t1));
}
static void run_test(const char *name, bool in_packed, bool out_packed, convert_func_t func)
{
size_t i, j;
for (i = 0; i < SPA_N_ELEMENTS(sample_sizes); i++) {
for (j = 0; j < SPA_N_ELEMENTS(channel_counts); j++) {
run_test1(name, in_packed, out_packed, func, channel_counts[j],
(sample_sizes[i] + (channel_counts[j] -1)) / channel_counts[j]);
}
}
}
static void test_f32_u8(void)
{
run_test("test_f32_u8", true, true, conv_f32_to_u8);
run_test("test_f32d_u8", false, true, conv_f32d_to_u8);
run_test("test_f32_u8d", true, false, conv_f32_to_u8d);
run_test("test_f32d_u8d", false, false, conv_f32d_to_u8d);
}
static void test_u8_f32(void)
{
run_test("test_u8_f32", true, true, conv_u8_to_f32);
run_test("test_u8d_f32", false, true, conv_u8d_to_f32);
run_test("test_u8_f32d", true, false, conv_u8_to_f32d);
}
static void test_f32_s16(void)
{
run_test("test_f32_s16", true, true, conv_f32_to_s16);
run_test("test_f32d_s16", false, true, conv_f32d_to_s16);
run_test("test_f32_s16d", true, false, conv_f32_to_s16d);
}
static void test_s16_f32(void)
{
run_test("test_s16_f32", true, true, conv_s16_to_f32);
run_test("test_s16d_f32", false, true, conv_s16d_to_f32);
run_test("test_s16_f32d", true, false, conv_s16_to_f32d);
}
static void test_f32_s32(void)
{
run_test("test_f32_s32", true, true, conv_f32_to_s32);
run_test("test_f32d_s32", false, true, conv_f32d_to_s32);
run_test("test_f32_s32d", true, false, conv_f32_to_s32d);
}
static void test_s32_f32(void)
{
run_test("test_s32_f32", true, true, conv_s32_to_f32);
run_test("test_s32d_f32", false, true, conv_s32d_to_f32);
run_test("test_s32_f32d", true, false, conv_s32_to_f32d);
}
static void test_f32_s24(void)
{
run_test("test_f32_s24", true, true, conv_f32_to_s24);
run_test("test_f32d_s24", false, true, conv_f32d_to_s24);
run_test("test_f32_s24d", true, false, conv_f32_to_s24d);
}
static void test_s24_f32(void)
{
run_test("test_s24_f32", true, true, conv_s24_to_f32);
run_test("test_s24d_f32", false, true, conv_s24d_to_f32);
run_test("test_s24_f32d", true, false, conv_s24_to_f32d);
}
static void test_f32_s24_32(void)
{
run_test("test_f32_s24_32", true, true, conv_f32_to_s24_32);
run_test("test_f32d_s24_32", false, true, conv_f32d_to_s24_32);
run_test("test_f32_s24_32d", true, false, conv_f32_to_s24_32d);
}
static void test_s24_32_f32(void)
{
run_test("test_s24_32_f32", true, true, conv_s24_32_to_f32);
run_test("test_s24_32d_f32", false, true, conv_s24_32d_to_f32);
run_test("test_s24_32_f32d", true, false, conv_s24_32_to_f32d);
}
static void test_interleave(void)
{
run_test("test_interleave_8", false, true, interleave_8);
run_test("test_interleave_16", false, true, interleave_16);
run_test("test_interleave_24", false, true, interleave_24);
run_test("test_interleave_32", false, true, interleave_32);
}
static void test_deinterleave(void)
{
run_test("test_deinterleave_8", true, false, deinterleave_8);
run_test("test_deinterleave_16", true, false, deinterleave_16);
run_test("test_deinterleave_24", true, false, deinterleave_24);
run_test("test_deinterleave_32", true, false, deinterleave_32);
}
int main(int argc, char *argv[])
{
find_conv_info(0, 0, 0);
test_f32_u8();
test_u8_f32();
test_f32_s16();
test_s16_f32();
test_f32_s32();
test_s32_f32();
test_f32_s24();
test_s24_f32();
test_f32_s24_32();
test_s24_32_f32();
test_interleave();
test_deinterleave();
return 0;
}