pipewire/spa/plugins/bluez5/decode-buffer.h
Pauli Virtanen 6e37110efd bluez5: adjust source rate control
Use different filter function than spa_dll for the rate control.
Also use a longer window for spike determination.
2022-07-12 13:55:54 +00:00

485 lines
14 KiB
C

/* Spa Bluez5 decode buffer
*
* Copyright © 2022 Pauli Virtanen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file decode-buffer.h Buffering for Bluetooth sources
*
* A linear buffer, which is compacted when it gets half full.
*
* Also contains buffering logic, which calculates a rate correction
* factor to maintain the buffer level at the target value.
*
* Consider typical packet intervals with nominal frame duration
* of 10ms:
*
* ... 5ms | 5ms | 20ms | 5ms | 5ms | 20ms ...
*
* ... 3ms | 3ms | 4ms | 30ms | 3ms | 3ms | 4ms | 30ms ...
*
* plus random jitter; 10ms nominal may occasionally have 20+ms interval.
* The regular timer cycle cannot be aligned with this, so process()
* may occur at any time.
*
* The buffer level is the difference between the number of samples in
* buffer immediately after receiving a packet, and the samples consumed
* before receiving the next packet.
*
* The buffer level indicates how much any packet can be delayed without
* underrun. If it is positive, there are no underruns.
*
* The rate correction aims to maintain the average level at a safety margin.
*/
#ifndef SPA_BLUEZ5_DECODE_BUFFER_H
#define SPA_BLUEZ5_DECODE_BUFFER_H
#include <stdlib.h>
#include <spa/utils/defs.h>
#include <spa/support/log.h>
#define BUFFERING_LONG_MSEC (2*60000)
#define BUFFERING_SHORT_MSEC 1000
#define BUFFERING_RATE_DIFF_MAX 0.005
/**
* Safety margin.
*
* The spike is the long-window maximum difference
* between minimum and average buffer level.
*/
#define BUFFERING_TARGET(spike,packet_size) \
SPA_CLAMP((spike)*3/2, (packet_size), 6*(packet_size))
/**
* Rate controller.
*
* It's here in a form, where it operates on the running average
* so it's compatible with the level spike determination, and
* clamping the rate to a range is easy. The impulse response
* is similar to spa_dll, and step response does not have sign changes.
*
* The controller iterates as
*
* avg(j+1) = (1 - beta) avg(j) + beta level(j)
* corr(j+1) = corr(j) + a [avg(j+1) - avg(j)] / duration
* + b [avg(j) - target] / duration
*
* with beta = duration/avg_period < 0.5 is the moving average parameter,
* and a = beta/3 + ..., b = beta^2/27 + ....
*
* This choice results to c(j) being low-pass filtered, and buffer level(j)
* converging towards target with stable damped evolution with eigenvalues
* real and close to each other around (1 - beta)^(1/3).
*
* Derivation:
*
* The deviation from the buffer level target evolves as
*
* delta(j) = level(j) - target
* delta(j+1) = delta(j) + r(j) - c(j+1)
*
* where r is samples received in one duration, and c corrected rate
* (samples per duration).
*
* The rate correction is in general determined by linear filter f
*
* c(j+1) = c(j) + \sum_{k=0}^\infty delta(j - k) f(k)
*
* If \sum_k f(k) is not zero, the only fixed point is c=r, delta=0,
* so this structure (if the filter is stable) rate matches and
* drives buffer level to target.
*
* The z-transform then is
*
* delta(z) = G(z) r(z)
* c(z) = F(z) delta(z)
* G(z) = (z - 1) / [(z - 1)^2 + z f(z)]
* F(z) = f(z) / (z - 1)
*
* We now want: poles of G(z) must be in |z|<1 for stability, F(z)
* should damp high frequencies, and f(z) is causal.
*
* To satisfy the conditions, take
*
* (z - 1)^2 + z f(z) = p(z) / q(z)
*
* where p(z) is polynomial with leading term z^n with wanted root
* structure, and q(z) is any polynomial with leading term z^{n-2}.
* This guarantees f(z) is causal, and G(z) = (z-1) q(z) / p(z).
* We can choose p(z) and q(z) to improve low-pass properties of F(z).
*
* Simplest choice is p(z)=(z-x)^2 and q(z)=1, but that gives flat
* high frequency response in F(z). Better choice is p(z) = (z-u)*(z-v)*(z-w)
* and q(z) = z - r. To make F(z) better lowpass, one can cancel
* a resulting 1/z pole in F(z) by setting r=u*v*w. Then,
*
* G(z) = (z - u*v*w)*(z - 1) / [(z - u)*(z - v)*(z - w)]
* F(z) = (a z + b - a) / (z - 1) * H(z)
* H(z) = beta / (z - 1 + beta)
* beta = 1 - u*v*w
* a = [(1-u) + (1-v) + (1-w) - beta] / beta
* b = (1-u)*(1-v)*(1-w) / beta
*
* which corresponds to iteration for c(j):
*
* avg(j+1) = (1 - beta) avg(j) + beta delta(j)
* c(j+1) = c(j) + a [avg(j+1) - avg(j)] + b avg(j)
*
* So the controller operates on the running average,
* which gives the low-pass property for c(j).
*
* The simplest filter is obtained by putting the poles at
* u=v=w=(1-beta)**(1/3). Since beta << 1, computing the root
* can be avoided by expanding in series.
*
* Overshoot in impulse response could be reduced by moving one of the
* poles closer to z=1, but this increases the step response time.
*/
struct spa_bt_rate_control
{
double avg;
double corr;
};
static void spa_bt_rate_control_init(struct spa_bt_rate_control *this, double level)
{
this->avg = level;
this->corr = 1.0;
}
static double spa_bt_rate_control_update(struct spa_bt_rate_control *this, double level,
double target, double duration, double period)
{
/*
* u = (1 - beta)^(1/3)
* x = a / beta
* y = b / beta
* a = (2 + u) * (1 - u)^2 / beta
* b = (1 - u)^3 / beta
* beta -> 0
*/
const double beta = SPA_CLAMP(duration / period, 0, 0.5);
const double x = 1.0/3;
const double y = beta/27;
double avg;
avg = beta * level + (1 - beta) * this->avg;
this->corr += x * (avg - this->avg) / period
+ y * (this->avg - target) / period;
this->avg = avg;
this->corr = SPA_CLAMP(this->corr,
1 - BUFFERING_RATE_DIFF_MAX,
1 + BUFFERING_RATE_DIFF_MAX);
return this->corr;
}
/** Windowed min/max */
struct spa_bt_ptp
{
union {
int32_t min;
int32_t mins[4];
};
union {
int32_t max;
int32_t maxs[4];
};
uint32_t pos;
uint32_t period;
};
struct spa_bt_decode_buffer
{
struct spa_log *log;
uint32_t frame_size;
uint32_t rate;
uint8_t *buffer_decoded;
uint32_t buffer_size;
uint32_t buffer_reserve;
uint32_t write_index;
uint32_t read_index;
struct spa_bt_ptp spike; /**< spikes (long window) */
struct spa_bt_ptp packet_size; /**< packet size (short window) */
struct spa_bt_rate_control ctl;
double corr;
uint32_t prev_consumed;
uint32_t prev_avail;
uint32_t prev_duration;
uint32_t underrun;
uint32_t pos;
uint8_t received:1;
uint8_t buffering:1;
};
static void spa_bt_ptp_init(struct spa_bt_ptp *p, int32_t period)
{
size_t i;
spa_zero(*p);
for (i = 0; i < SPA_N_ELEMENTS(p->mins); ++i) {
p->mins[i] = INT32_MAX;
p->maxs[i] = INT32_MIN;
}
p->period = period;
}
static void spa_bt_ptp_update(struct spa_bt_ptp *p, int32_t value, uint32_t duration)
{
const size_t n = SPA_N_ELEMENTS(p->mins);
size_t i;
for (i = 0; i < n; ++i) {
p->mins[i] = SPA_MIN(p->mins[i], value);
p->maxs[i] = SPA_MAX(p->maxs[i], value);
}
p->pos += duration;
if (p->pos >= p->period / (n - 1)) {
p->pos = 0;
for (i = 1; i < SPA_N_ELEMENTS(p->mins); ++i) {
p->mins[i-1] = p->mins[i];
p->maxs[i-1] = p->maxs[i];
}
p->mins[n-1] = INT32_MAX;
p->maxs[n-1] = INT32_MIN;
}
}
static int spa_bt_decode_buffer_init(struct spa_bt_decode_buffer *this, struct spa_log *log,
uint32_t frame_size, uint32_t rate, uint32_t quantum_limit, uint32_t reserve)
{
spa_zero(*this);
this->frame_size = frame_size;
this->rate = rate;
this->log = log;
this->buffer_reserve = this->frame_size * reserve;
this->buffer_size = this->frame_size * quantum_limit * 2;
this->buffer_size += this->buffer_reserve;
this->corr = 1.0;
this->buffering = true;
spa_bt_rate_control_init(&this->ctl, 0);
spa_bt_ptp_init(&this->spike, (uint64_t)this->rate * BUFFERING_LONG_MSEC / 1000);
spa_bt_ptp_init(&this->packet_size, (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000);
if ((this->buffer_decoded = malloc(this->buffer_size)) == NULL) {
this->buffer_size = 0;
return -ENOMEM;
}
return 0;
}
static void spa_bt_decode_buffer_clear(struct spa_bt_decode_buffer *this)
{
free(this->buffer_decoded);
spa_zero(*this);
}
static void spa_bt_decode_buffer_compact(struct spa_bt_decode_buffer *this)
{
uint32_t avail;
spa_assert(this->read_index <= this->write_index);
if (this->read_index == this->write_index) {
this->read_index = 0;
this->write_index = 0;
goto done;
}
if (this->write_index > this->read_index + this->buffer_size - this->buffer_reserve) {
/* Drop data to keep buffer reserve free */
spa_log_info(this->log, "%p buffer overrun: dropping data", this);
this->read_index = this->write_index + this->buffer_reserve - this->buffer_size;
}
if (this->write_index < (this->buffer_size - this->buffer_reserve) / 2
|| this->read_index == 0)
goto done;
avail = this->write_index - this->read_index;
spa_memmove(this->buffer_decoded,
SPA_PTROFF(this->buffer_decoded, this->read_index, void),
avail);
this->read_index = 0;
this->write_index = avail;
done:
spa_assert(this->buffer_size - this->write_index >= this->buffer_reserve);
}
static void *spa_bt_decode_buffer_get_write(struct spa_bt_decode_buffer *this, uint32_t *avail)
{
spa_bt_decode_buffer_compact(this);
spa_assert(this->buffer_size >= this->write_index);
*avail = this->buffer_size - this->write_index;
return SPA_PTROFF(this->buffer_decoded, this->write_index, void);
}
static void spa_bt_decode_buffer_write_packet(struct spa_bt_decode_buffer *this, uint32_t size)
{
spa_assert(size % this->frame_size == 0);
this->write_index += size;
this->received = true;
spa_bt_ptp_update(&this->packet_size, size / this->frame_size, size / this->frame_size);
}
static void *spa_bt_decode_buffer_get_read(struct spa_bt_decode_buffer *this, uint32_t *avail)
{
spa_assert(this->write_index >= this->read_index);
if (!this->buffering)
*avail = this->write_index - this->read_index;
else
*avail = 0;
return SPA_PTROFF(this->buffer_decoded, this->read_index, void);
}
static void spa_bt_decode_buffer_read(struct spa_bt_decode_buffer *this, uint32_t size)
{
spa_assert(size % this->frame_size == 0);
this->read_index += size;
}
static void spa_bt_decode_buffer_recover(struct spa_bt_decode_buffer *this)
{
int32_t size = (this->write_index - this->read_index) / this->frame_size;
int32_t level;
this->prev_avail = size * this->frame_size;
this->prev_consumed = this->prev_duration;
level = (int32_t)this->prev_avail/this->frame_size
- (int32_t)this->prev_duration;
this->corr = 1.0;
spa_bt_rate_control_init(&this->ctl, level);
}
static void spa_bt_decode_buffer_process(struct spa_bt_decode_buffer *this, uint32_t samples, uint32_t duration)
{
const uint32_t data_size = samples * this->frame_size;
const int32_t max_level = SPA_MAX(8 * this->packet_size.max, (int32_t)duration);
uint32_t avail;
if (SPA_UNLIKELY(duration != this->prev_duration)) {
this->prev_duration = duration;
spa_bt_decode_buffer_recover(this);
}
if (SPA_UNLIKELY(this->buffering)) {
int32_t size = (this->write_index - this->read_index) / this->frame_size;
this->corr = 1.0;
spa_log_trace(this->log, "%p buffering size:%d", this, (int)size);
if (this->received &&
this->packet_size.max > 0 &&
size >= SPA_MAX(3*this->packet_size.max, (int32_t)duration))
this->buffering = false;
else
return;
spa_bt_decode_buffer_recover(this);
}
spa_bt_decode_buffer_get_read(this, &avail);
if (this->received) {
const uint32_t avg_period = (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000;
int32_t level, target;
/* Track buffer level */
level = (int32_t)(this->prev_avail/this->frame_size) - (int32_t)this->prev_consumed;
level = SPA_MAX(level, -max_level);
this->prev_consumed = SPA_MIN(this->prev_consumed, avg_period);
spa_bt_ptp_update(&this->spike, this->ctl.avg - level, this->prev_consumed);
/* Update target level */
target = BUFFERING_TARGET(this->spike.max, this->packet_size.max);
if (level > SPA_MAX(4 * target, 2*(int32_t)duration) &&
avail > data_size) {
/* Lagging too much: drop data */
uint32_t size = SPA_MIN(avail - data_size,
(level - target*5/2) * this->frame_size);
spa_bt_decode_buffer_read(this, size);
spa_log_trace(this->log, "%p overrun samples:%d level:%d target:%d",
this, (int)size/this->frame_size,
(int)level, (int)target);
spa_bt_decode_buffer_recover(this);
}
this->pos += this->prev_consumed;
if (this->pos > this->rate) {
spa_log_debug(this->log,
"%p avg:%d target:%d level:%d buffer:%d spike:%d corr:%f",
this,
(int)this->ctl.avg,
(int)target,
(int)level,
(int)(avail / this->frame_size),
(int)this->spike.max,
(double)this->corr);
this->pos = 0;
}
this->corr = spa_bt_rate_control_update(&this->ctl,
level, target, this->prev_consumed, avg_period);
spa_bt_decode_buffer_get_read(this, &avail);
this->prev_consumed = 0;
this->prev_avail = avail;
this->underrun = 0;
this->received = false;
}
if (avail < data_size) {
spa_log_trace(this->log, "%p underrun samples:%d", this,
(data_size - avail) / this->frame_size);
this->underrun += samples;
if (this->underrun >= SPA_MIN((uint32_t)max_level, this->buffer_size / this->frame_size)) {
this->buffering = true;
spa_log_debug(this->log, "%p underrun too much: start buffering", this);
}
}
this->prev_consumed += samples;
}
#endif