mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-11-01 22:58:50 -04:00
Pass some state to convert and channelmix functions. This makes it possible to select per channel optimized convert functions but also makes it possible to implement noise shaping later. Pass the channelmix matrix and volume in the state. Handle specialized 2 channel s16 -> f32 conversion
385 lines
13 KiB
C
385 lines
13 KiB
C
/* Spa
|
|
*
|
|
* Copyright © 2018 Wim Taymans
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "channelmix-ops.h"
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
void channelmix_copy_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
|
|
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n, unrolled;
|
|
float **d = (float **)dst;
|
|
const float **s = (const float **)src;
|
|
float v = mix->volume;
|
|
const __m128 vol = _mm_set1_ps(v);
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for (i = 0; i < n_dst; i++)
|
|
spa_memcpy(d[i], s[i], n_samples * sizeof(float));
|
|
}
|
|
else {
|
|
for (i = 0; i < n_dst; i++) {
|
|
float *di = d[i];
|
|
const float *si = s[i];
|
|
__m128 t[4];
|
|
|
|
if (SPA_IS_ALIGNED(di, 16) &&
|
|
SPA_IS_ALIGNED(si, 16))
|
|
unrolled = n_samples & ~15;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 16) {
|
|
t[0] = _mm_load_ps(&si[n]);
|
|
t[1] = _mm_load_ps(&si[n+4]);
|
|
t[2] = _mm_load_ps(&si[n+8]);
|
|
t[3] = _mm_load_ps(&si[n+12]);
|
|
_mm_store_ps(&di[n], _mm_mul_ps(t[0], vol));
|
|
_mm_store_ps(&di[n+4], _mm_mul_ps(t[1], vol));
|
|
_mm_store_ps(&di[n+8], _mm_mul_ps(t[2], vol));
|
|
_mm_store_ps(&di[n+12], _mm_mul_ps(t[3], vol));
|
|
}
|
|
for(; n < n_samples; n++)
|
|
_mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
channelmix_f32_2_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
|
|
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n, unrolled;
|
|
float **d = (float **)dst;
|
|
const float **s = (const float **)src;
|
|
float v = mix->volume;
|
|
const __m128 vol = _mm_set1_ps(v);
|
|
__m128 in;
|
|
const float *sFL = s[0], *sFR = s[1];
|
|
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16) &&
|
|
SPA_IS_ALIGNED(dRL, 16) &&
|
|
SPA_IS_ALIGNED(dRR, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_load_ps(&sFL[n]);
|
|
_mm_store_ps(&dFL[n], in);
|
|
_mm_store_ps(&dRL[n], in);
|
|
in = _mm_load_ps(&sFR[n]);
|
|
_mm_store_ps(&dFR[n], in);
|
|
_mm_store_ps(&dRR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in = _mm_load_ss(&sFL[n]);
|
|
_mm_store_ss(&dFL[n], in);
|
|
_mm_store_ss(&dRL[n], in);
|
|
in = _mm_load_ss(&sFR[n]);
|
|
_mm_store_ss(&dFR[n], in);
|
|
_mm_store_ss(&dRR[n], in);
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_mul_ps(_mm_load_ps(&sFL[n]), vol);
|
|
_mm_store_ps(&dFL[n], in);
|
|
_mm_store_ps(&dRL[n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&sFR[n]), vol);
|
|
_mm_store_ps(&dFR[n], in);
|
|
_mm_store_ps(&dRR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol);
|
|
_mm_store_ss(&dFL[n], in);
|
|
_mm_store_ss(&dRL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol);
|
|
_mm_store_ss(&dFR[n], in);
|
|
_mm_store_ss(&dRR[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
|
|
void
|
|
channelmix_f32_5p1_2_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
|
|
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
|
|
{
|
|
uint32_t n, unrolled;
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
float v = mix->volume;
|
|
const float *m = mix->matrix;
|
|
const __m128 clev = _mm_set1_ps(m[2]);
|
|
const __m128 llev = _mm_set1_ps(m[3]);
|
|
const __m128 slev = _mm_set1_ps(m[4]);
|
|
const __m128 vol = _mm_set1_ps(v);
|
|
__m128 in, ctr;
|
|
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
float *dFL = d[0], *dFR = d[1];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(sFC, 16) &&
|
|
SPA_IS_ALIGNED(sLFE, 16) &&
|
|
SPA_IS_ALIGNED(sSL, 16) &&
|
|
SPA_IS_ALIGNED(sSR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
memset(dFL, 0, n_samples * sizeof(float));
|
|
memset(dFR, 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
|
|
_mm_store_ps(&dFL[n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
|
|
_mm_store_ps(&dFR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
|
|
_mm_store_ss(&dFL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
|
|
_mm_store_ss(&dFR[n], in);
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_store_ps(&dFL[n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_store_ps(&dFR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&dFL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&dFR[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+FC+LFE*/
|
|
void
|
|
channelmix_f32_5p1_3p1_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
|
|
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n, unrolled;
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
float v = mix->volume;
|
|
const __m128 slev = _mm_set1_ps(v * 0.5f);
|
|
const __m128 vol = _mm_set1_ps(v);
|
|
__m128 avg[2];
|
|
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
float *dFL = d[0], *dFR = d[1], *dFC = d[2], *dLFE = d[3];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(sFC, 16) &&
|
|
SPA_IS_ALIGNED(sLFE, 16) &&
|
|
SPA_IS_ALIGNED(sSL, 16) &&
|
|
SPA_IS_ALIGNED(sSR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16) &&
|
|
SPA_IS_ALIGNED(dFC, 16) &&
|
|
SPA_IS_ALIGNED(dLFE, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
avg[0] = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
|
|
avg[1] = _mm_add_ps(_mm_load_ps(&sFL[n+4]), _mm_load_ps(&sSL[n+4]));
|
|
_mm_store_ps(&dFL[n], _mm_mul_ps(avg[0], slev));
|
|
_mm_store_ps(&dFL[n+4], _mm_mul_ps(avg[1], slev));
|
|
avg[0] = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
|
|
avg[1] = _mm_add_ps(_mm_load_ps(&sFR[n+4]), _mm_load_ps(&sSR[n+4]));
|
|
_mm_store_ps(&dFR[n], _mm_mul_ps(avg[0], slev));
|
|
_mm_store_ps(&dFR[n+4], _mm_mul_ps(avg[1], slev));
|
|
_mm_store_ps(&dFC[n], _mm_load_ps(&sFC[n]));
|
|
_mm_store_ps(&dFC[n+4], _mm_load_ps(&sFC[n+4]));
|
|
_mm_store_ps(&dLFE[n], _mm_load_ps(&sLFE[n]));
|
|
_mm_store_ps(&dLFE[n+4], _mm_load_ps(&sLFE[n+4]));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
avg[0] = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(avg[0], slev));
|
|
avg[0] = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(avg[0], slev));
|
|
_mm_store_ss(&dFC[n], _mm_load_ss(&sFC[n]));
|
|
_mm_store_ss(&dLFE[n], _mm_load_ss(&sLFE[n]));
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
avg[0] = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
|
|
avg[1] = _mm_add_ps(_mm_load_ps(&sFL[n+4]), _mm_load_ps(&sSL[n+4]));
|
|
_mm_store_ps(&dFL[n], _mm_mul_ps(avg[0], slev));
|
|
_mm_store_ps(&dFL[n+4], _mm_mul_ps(avg[1], slev));
|
|
avg[0] = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
|
|
avg[1] = _mm_add_ps(_mm_load_ps(&sFR[n+4]), _mm_load_ps(&sSR[n+4]));
|
|
_mm_store_ps(&dFR[n], _mm_mul_ps(avg[0], slev));
|
|
_mm_store_ps(&dFR[n+4], _mm_mul_ps(avg[1], slev));
|
|
_mm_store_ps(&dFC[n], _mm_mul_ps(_mm_load_ps(&sFC[n]), vol));
|
|
_mm_store_ps(&dFC[n+4], _mm_mul_ps(_mm_load_ps(&sFC[n+4]), vol));
|
|
_mm_store_ps(&dLFE[n], _mm_mul_ps(_mm_load_ps(&sLFE[n]), vol));
|
|
_mm_store_ps(&dLFE[n+4], _mm_mul_ps(_mm_load_ps(&sLFE[n+4]), vol));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
avg[0] = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(avg[0], slev));
|
|
avg[0] = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(avg[0], slev));
|
|
_mm_store_ss(&dFC[n], _mm_mul_ss(_mm_load_ss(&sFC[n]), vol));
|
|
_mm_store_ss(&dLFE[n], _mm_mul_ss(_mm_load_ss(&sLFE[n]), vol));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
|
|
void
|
|
channelmix_f32_5p1_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
|
|
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
|
|
{
|
|
uint32_t i, n, unrolled;
|
|
float **d = (float **) dst;
|
|
const float **s = (const float **) src;
|
|
const float *m = mix->matrix;
|
|
float v = mix->volume;
|
|
const __m128 clev = _mm_set1_ps(m[2]);
|
|
const __m128 llev = _mm_set1_ps(m[3]);
|
|
const __m128 vol = _mm_set1_ps(v);
|
|
__m128 ctr;
|
|
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(sFC, 16) &&
|
|
SPA_IS_ALIGNED(sLFE, 16) &&
|
|
SPA_IS_ALIGNED(sSL, 16) &&
|
|
SPA_IS_ALIGNED(sSR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16) &&
|
|
SPA_IS_ALIGNED(dRL, 16) &&
|
|
SPA_IS_ALIGNED(dRR, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
_mm_store_ps(&dFL[n], _mm_add_ps(_mm_load_ps(&sFL[n]), ctr));
|
|
_mm_store_ps(&dFR[n], _mm_add_ps(_mm_load_ps(&sFR[n]), ctr));
|
|
_mm_store_ps(&dRL[n], _mm_load_ps(&sSL[n]));
|
|
_mm_store_ps(&dRR[n], _mm_load_ps(&sSR[n]));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
_mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr));
|
|
_mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr));
|
|
_mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n]));
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
_mm_store_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFL[n]), ctr), vol));
|
|
_mm_store_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFR[n]), ctr), vol));
|
|
_mm_store_ps(&dRL[n], _mm_mul_ps(_mm_load_ps(&sSL[n]), vol));
|
|
_mm_store_ps(&dRR[n], _mm_mul_ps(_mm_load_ps(&sSR[n]), vol));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol));
|
|
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol));
|
|
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol));
|
|
}
|
|
}
|
|
}
|