pipewire/spa/plugins/alsa/alsa-utils.c
2018-10-31 15:21:23 +00:00

937 lines
27 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <sys/time.h>
#include <math.h>
#include <limits.h>
#include <sys/timerfd.h>
#include <spa/pod/filter.h>
#include "alsa-utils.h"
#define CHECK(s,msg) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", snd_strerror(err)); return err; }
static int spa_alsa_open(struct state *state)
{
int err;
struct props *props = &state->props;
if (state->opened)
return 0;
CHECK(snd_output_stdio_attach(&state->output, stderr, 0), "attach failed");
spa_log_info(state->log, "ALSA device open '%s'", props->device);
CHECK(snd_pcm_open(&state->hndl,
props->device,
state->stream,
SND_PCM_NONBLOCK |
SND_PCM_NO_AUTO_RESAMPLE |
SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "open failed");
state->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK);
state->opened = true;
state->sample_count = 0;
return 0;
}
int spa_alsa_close(struct state *state)
{
int err = 0;
if (!state->opened)
return 0;
spa_log_info(state->log, "Device '%s' closing", state->props.device);
CHECK(snd_pcm_close(state->hndl), "close failed");
close(state->timerfd);
state->opened = false;
return err;
}
struct format_info {
uint32_t spa_format;
uint32_t spa_pformat;
snd_pcm_format_t format;
};
static const struct format_info format_info[] = {
{ SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN},
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8},
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8},
{ SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE},
{ SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE},
{ SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE},
{ SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE},
{ SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE},
{ SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE},
{ SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE},
{ SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE},
{ SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE},
{ SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE},
{ SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE},
{ SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE},
{ SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE},
{ SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE},
{ SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE},
{ SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE},
{ SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE},
{ SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE},
{ SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE},
{ SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE},
};
static snd_pcm_format_t spa_format_to_alsa(uint32_t format)
{
int i;
for (i = 0; i < SPA_N_ELEMENTS(format_info); i++) {
if (format_info[i].spa_format == format)
return format_info[i].format;
}
return SND_PCM_FORMAT_UNKNOWN;
}
struct chmap_info {
enum snd_pcm_chmap_position pos;
enum spa_audio_channel channel;
};
static const struct chmap_info chmap_info[] = {
[SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN },
[SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA },
[SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO },
[SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL },
[SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR },
[SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL },
[SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR },
[SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC },
[SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE },
[SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL },
[SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR },
[SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC },
[SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC },
[SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC },
[SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC },
[SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC },
[SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW },
[SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW },
[SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH },
[SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH },
[SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH },
[SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC },
[SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL },
[SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR },
[SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC },
[SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL },
[SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR },
[SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC },
[SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC },
[SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC },
[SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL },
[SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR },
[SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE },
[SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE },
[SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC },
[SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC },
[SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC },
};
#define _M(ch) (1LL << SND_CHMAP_ ##ch)
struct def_mask {
int channels;
uint64_t mask;
};
static const struct def_mask default_layouts[] = {
{ 0, 0 },
{ 1, _M(MONO) },
{ 2, _M(FL) | _M(FR) },
{ 3, _M(FL) | _M(FR) | _M(LFE) },
{ 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) },
{ 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) },
{ 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) },
{ 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) },
{ 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) },
};
static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos)
{
return chmap_info[pos].channel;
}
static void sanitize_map(snd_pcm_chmap_t* map)
{
uint64_t mask = 0, p, dup = 0;
const struct def_mask *def;
int i, j, pos;
for (i = 0; i < map->channels; i++) {
if (map->pos[i] < 0 || map->pos[i] > SND_CHMAP_LAST)
map->pos[i] = SND_CHMAP_UNKNOWN;
p = 1LL << map->pos[i];
if (mask & p) {
/* duplicate channel */
for (j = 0; j <= i; j++)
if (map->pos[j] == map->pos[i])
map->pos[j] = SND_CHMAP_UNKNOWN;
dup |= p;
p = 1LL << SND_CHMAP_UNKNOWN;
}
mask |= p;
}
if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0)
return;
def = &default_layouts[map->channels];
/* remove duplicates */
mask &= ~dup;
/* keep unassigned channels */
mask = def->mask & ~mask;
pos = 0;
for (i = 0; i < map->channels; i++) {
if (map->pos[i] == SND_CHMAP_UNKNOWN) {
do {
mask >>= 1;
pos++;
}
while (mask != 0 && (mask & 1) == 0);
map->pos[i] = mask ? pos : 0;
}
}
}
int
spa_alsa_enum_format(struct state *state, uint32_t *index,
const struct spa_pod *filter,
struct spa_pod **result,
struct spa_pod_builder *builder)
{
snd_pcm_t *hndl;
snd_pcm_hw_params_t *params;
snd_pcm_format_mask_t *fmask;
snd_pcm_access_mask_t *amask;
snd_pcm_chmap_query_t **maps;
int err, i, j, dir;
unsigned int min, max;
uint8_t buffer[4096];
struct spa_pod_builder b = { 0 };
struct spa_pod_choice *choice;
struct spa_pod *fmt;
int res;
bool opened;
opened = state->opened;
if ((err = spa_alsa_open(state)) < 0)
return err;
next:
spa_pod_builder_init(&b, buffer, sizeof(buffer));
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available");
spa_pod_builder_push_object(&b, SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_props(&b,
SPA_FORMAT_mediaType, &SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, &SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
0);
snd_pcm_format_mask_alloca(&fmask);
snd_pcm_hw_params_get_format_mask(params, fmask);
snd_pcm_access_mask_alloca(&amask);
snd_pcm_hw_params_get_access_mask(params, amask);
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_format, 0);
choice = spa_pod_builder_deref(&b,
spa_pod_builder_push_choice(&b, SPA_CHOICE_None, 0));
for (i = 1, j = 0; i < SPA_N_ELEMENTS(format_info); i++) {
const struct format_info *fi = &format_info[i];
if (snd_pcm_format_mask_test(fmask, fi->format)) {
if (snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED)) {
if (j++ == 0)
spa_pod_builder_id(&b, fi->spa_format);
spa_pod_builder_id(&b, fi->spa_format);
}
if (snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) &&
fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN) {
if (j++ == 0)
spa_pod_builder_id(&b, fi->spa_pformat);
spa_pod_builder_id(&b, fi->spa_pformat);
}
}
}
if (j > 1)
choice->body.type = SPA_CHOICE_Enum;
spa_pod_builder_pop(&b);
CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min");
CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max");
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_rate, 0);
choice = spa_pod_builder_deref(&b,
spa_pod_builder_push_choice(&b, SPA_CHOICE_None, 0));
spa_pod_builder_int(&b, SPA_CLAMP(DEFAULT_RATE, min, max));
if (min != max) {
spa_pod_builder_int(&b, min);
spa_pod_builder_int(&b, max);
choice->body.type = SPA_CHOICE_Range;
}
spa_pod_builder_pop(&b);
CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min");
CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max");
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_channels, 0);
if ((maps = snd_pcm_query_chmaps(hndl)) != NULL) {
uint32_t channel;
snd_pcm_chmap_t* map;
if (maps[*index] == NULL) {
res = 0;
goto exit;
}
map = &maps[*index]->map;
spa_log_debug(state->log, "map %d channels", map->channels);
sanitize_map(map);
spa_pod_builder_int(&b, map->channels);
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_position, 0);
spa_pod_builder_push_array(&b);
for (j = 0; j < map->channels; j++) {
spa_log_debug(state->log, "position %d %d", j, map->pos[j]);
channel = chmap_position_to_channel(map->pos[j]);
spa_pod_builder_id(&b, channel);
}
spa_pod_builder_pop(&b);
snd_pcm_free_chmaps(maps);
}
else {
if (*index > 0) {
res = 0;
goto exit;
}
choice = spa_pod_builder_deref(&b,
spa_pod_builder_push_choice(&b, SPA_CHOICE_None, 0));
spa_pod_builder_int(&b, SPA_CLAMP(DEFAULT_CHANNELS, min, max));
if (min != max) {
spa_pod_builder_int(&b, min);
spa_pod_builder_int(&b, max);
choice->body.type = SPA_CHOICE_Range;
}
spa_pod_builder_pop(&b);
}
fmt = spa_pod_builder_pop(&b);
(*index)++;
if ((res = spa_pod_filter(builder, result, fmt, filter)) < 0)
goto next;
res = 1;
exit:
if (!opened)
spa_alsa_close(state);
return res;
}
int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags)
{
unsigned int rrate, rchannels;
snd_pcm_uframes_t period_size;
int err, dir;
snd_pcm_hw_params_t *params;
snd_pcm_format_t format;
struct spa_audio_info_raw *info = &fmt->info.raw;
snd_pcm_t *hndl;
unsigned int periods;
if ((err = spa_alsa_open(state)) < 0)
return err;
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
/* choose all parameters */
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available");
/* set hardware resampling */
CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample");
/* set the interleaved read/write format */
CHECK(snd_pcm_hw_params_set_access(hndl, params, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set_access");
/* disable ALSA wakeups, we use a timer */
if (snd_pcm_hw_params_can_disable_period_wakeup(params))
CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup");
/* set the sample format */
format = spa_format_to_alsa(info->format);
if (format == SND_PCM_FORMAT_UNKNOWN)
return -EINVAL;
spa_log_info(state->log, "Stream parameters are %iHz, %s, %i channels", info->rate, snd_pcm_format_name(format),
info->channels);
CHECK(snd_pcm_hw_params_set_format(hndl, params, format), "set_format");
/* set the count of channels */
rchannels = info->channels;
CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels");
if (rchannels != info->channels) {
spa_log_warn(state->log, "Channels doesn't match (requested %u, get %u", info->channels, rchannels);
if (flags & SPA_NODE_PARAM_FLAG_NEAREST)
info->channels = rchannels;
else
return -EINVAL;
}
/* set the stream rate */
rrate = info->rate;
CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near");
if (rrate != info->rate) {
spa_log_warn(state->log, "Rate doesn't match (requested %iHz, get %iHz)", info->rate, rrate);
if (flags & SPA_NODE_PARAM_FLAG_NEAREST)
info->rate = rrate;
else
return -EINVAL;
}
state->format = format;
state->channels = info->channels;
state->rate = info->rate;
state->frame_size = info->channels * (snd_pcm_format_physical_width(format) / 8);
CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max");
CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near");
dir = 0;
period_size = state->buffer_frames;
CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near");
state->period_frames = period_size;
periods = state->buffer_frames / state->period_frames;
spa_log_info(state->log, "buffer frames %zd, period frames %zd, periods %u, frame_size %zd",
state->buffer_frames, state->period_frames, periods, state->frame_size);
/* write the parameters to device */
CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params");
return 0;
}
static int set_swparams(struct state *state)
{
snd_pcm_t *hndl = state->hndl;
int err = 0;
snd_pcm_sw_params_t *params;
snd_pcm_uframes_t boundary;
snd_pcm_sw_params_alloca(&params);
/* get the current params */
CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current");
CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode");
/* start the transfer */
CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold");
CHECK(snd_pcm_sw_params_get_boundary(params, &boundary), "get_boundary");
CHECK(snd_pcm_sw_params_set_stop_threshold(hndl, params, boundary), "set_stop_threshold");
CHECK(snd_pcm_sw_params_set_period_event(hndl, params, 0), "set_period_event");
/* write the parameters to the playback device */
CHECK(snd_pcm_sw_params(hndl, params), "sw_params");
return 0;
}
static inline void calc_timeout(size_t target, size_t current,
size_t rate, snd_htimestamp_t *now,
struct timespec *ts)
{
ts->tv_sec = now->tv_sec;
ts->tv_nsec = now->tv_nsec;
if (target > current)
ts->tv_nsec += ((target - current) * SPA_NSEC_PER_SEC) / rate;
while (ts->tv_nsec >= SPA_NSEC_PER_SEC) {
ts->tv_sec++;
ts->tv_nsec -= SPA_NSEC_PER_SEC;
}
}
static int set_timeout(struct state *state, size_t extra)
{
struct itimerspec ts;
calc_timeout(state->filled + extra, state->threshold, state->rate, &state->now, &ts.it_value);
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = ((size_t)state->threshold * SPA_NSEC_PER_SEC) / state->rate;
timerfd_settime(state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL);
return 0;
}
static int get_status(struct state *state, snd_pcm_sframes_t *avail, snd_htimestamp_t *now)
{
snd_pcm_status_t *status;
int res;
snd_pcm_status_alloca(&status);
if ((res = snd_pcm_status(state->hndl, status)) < 0) {
spa_log_error(state->log, "snd_pcm_status error: %s", snd_strerror(res));
return res;
}
if (avail) {
*avail = snd_pcm_status_get_avail(status);
if (*avail > state->buffer_frames)
*avail = state->buffer_frames;
}
if (now)
snd_pcm_status_get_htstamp(status, now);
return 0;
}
int spa_alsa_write(struct state *state, snd_pcm_uframes_t silence)
{
snd_pcm_t *hndl = state->hndl;
const snd_pcm_channel_area_t *my_areas;
snd_pcm_uframes_t written, frames = state->buffer_frames, offset, off, to_write;
int res;
if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res));
return res;
}
spa_log_trace(state->log, "begin %ld %ld %d", offset, frames, state->threshold);
silence = SPA_MIN(silence, frames);
to_write = frames;
off = offset;
written = 0;
while (!spa_list_is_empty(&state->ready) && to_write > 0) {
uint8_t *dst, *src;
size_t n_bytes, n_frames;
struct buffer *b;
struct spa_data *d;
uint32_t index, offs, avail, size, maxsize, l0, l1;
b = spa_list_first(&state->ready, struct buffer, link);
d = b->buf->datas;
dst = SPA_MEMBER(my_areas[0].addr, off * state->frame_size, uint8_t);
src = d[0].data;
size = d[0].chunk->size;
maxsize = d[0].maxsize;
index = d[0].chunk->offset + state->ready_offset;
avail = size - state->ready_offset;
avail /= state->frame_size;
n_frames = SPA_MIN(avail, to_write);
n_bytes = n_frames * state->frame_size;
offs = index % maxsize;
l0 = SPA_MIN(n_bytes, maxsize - offs);
l1 = n_bytes - l0;
memcpy(dst, src + offs, l0);
if (l1 > 0)
memcpy(dst + l0, src, l1);
state->ready_offset += n_bytes;
if (state->ready_offset >= size) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_log_trace(state->log, "alsa-util %p: reuse buffer %u", state, b->buf->id);
state->callbacks->reuse_buffer(state->callbacks_data, 0, b->buf->id);
state->ready_offset = 0;
}
written += n_frames;
off += n_frames;
to_write -= n_frames;
if (silence > n_frames)
silence -= n_frames;
else
silence = 0;
}
if (written == 0)
silence = SPA_MIN(to_write, state->threshold);
if (silence > 0) {
spa_log_trace(state->log, "silence %ld", silence);
snd_pcm_areas_silence(my_areas, off, state->channels, silence, state->format);
written += silence;
}
spa_log_trace(state->log, "commit %ld %ld", offset, written);
if ((res = snd_pcm_mmap_commit(hndl, offset, written)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res));
if (res != -EPIPE && res != -ESTRPIPE)
return res;
}
state->sample_count += written;
state->filled += written;
if (!state->alsa_started && written > 0) {
spa_log_trace(state->log, "snd_pcm_start");
if ((res = snd_pcm_start(hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(res));
return res;
}
state->alsa_started = true;
}
set_timeout(state, 0);
return 0;
}
static snd_pcm_uframes_t
push_frames(struct state *state,
const snd_pcm_channel_area_t *my_areas,
snd_pcm_uframes_t offset,
snd_pcm_uframes_t frames)
{
snd_pcm_uframes_t total_frames = 0;
if (spa_list_is_empty(&state->free)) {
spa_log_trace(state->log, "no more buffers");
} else {
uint8_t *src;
size_t n_bytes;
struct buffer *b;
struct spa_data *d;
uint32_t index, offs, avail, l0, l1;
b = spa_list_first(&state->free, struct buffer, link);
spa_list_remove(&b->link);
if (b->h) {
b->h->seq = state->sample_count;
b->h->pts = SPA_TIMESPEC_TO_TIME(&state->now);
b->h->dts_offset = 0;
}
d = b->buf->datas;
src = SPA_MEMBER(my_areas[0].addr, offset * state->frame_size, uint8_t);
avail = d[0].maxsize / state->frame_size;
index = 0;
total_frames = SPA_MIN(avail, frames);
n_bytes = total_frames * state->frame_size;
offs = index % d[0].maxsize;
l0 = SPA_MIN(n_bytes, d[0].maxsize - offs);
l1 = n_bytes - l0;
memcpy(d[0].data + offs, src, l0);
if (l1 > 0)
memcpy(d[0].data, src + l0, l1);
d[0].chunk->offset = index;
d[0].chunk->size = n_bytes;
d[0].chunk->stride = state->frame_size;
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_list_append(&state->ready, &b->link);
state->callbacks->process(state->callbacks_data, SPA_STATUS_HAVE_BUFFER);
}
return total_frames;
}
static int alsa_try_resume(struct state *state)
{
int res;
while ((res = snd_pcm_resume(state->hndl)) == -EAGAIN)
usleep(250000);
if (res < 0) {
spa_log_error(state->log, "suspended, failed to resume %s", snd_strerror(res));
res = snd_pcm_prepare(state->hndl);
if (res < 0)
spa_log_error(state->log, "suspended, failed to prepare %s", snd_strerror(res));
}
return res;
}
static void alsa_on_playback_timeout_event(struct spa_source *source)
{
uint64_t exp;
int res;
struct state *state = source->data;
snd_pcm_t *hndl = state->hndl;
snd_pcm_sframes_t avail;
if (state->started && read(state->timerfd, &exp, sizeof(uint64_t)) != sizeof(uint64_t))
spa_log_warn(state->log, "error reading timerfd: %s", strerror(errno));
if ((res = get_status(state, &avail, &state->now)) < 0)
return;
if (avail > state->buffer_frames)
avail = state->buffer_frames;
if (state->now.tv_sec == 0 && state->now.tv_nsec == 0) {
spa_log_warn(state->log, "0 from snd_pcm_status_get_htstamp %ld", avail);
clock_gettime(CLOCK_MONOTONIC, &state->now);
}
state->filled = state->buffer_frames - avail;
if (state->clock) {
state->clock->nsec = SPA_TIMESPEC_TO_TIME(&state->now);
state->clock->rate = SPA_FRACTION(1, state->rate);
state->clock->position = state->sample_count;
state->clock->delay = state->filled;
}
spa_log_trace(state->log, "timeout %ld %d %ld %ld %ld", state->filled, state->threshold,
state->sample_count, state->now.tv_sec, state->now.tv_nsec);
if (state->filled > state->threshold * 2) {
if (snd_pcm_state(hndl) == SND_PCM_STATE_SUSPENDED) {
spa_log_error(state->log, "suspended: try resume");
if ((res = alsa_try_resume(state)) < 0)
return;
}
set_timeout(state, 0);
} else {
if (spa_list_is_empty(&state->ready)) {
struct spa_io_buffers *io = state->io;
if (state->filled == 0) {
if (state->alsa_started)
spa_log_warn(state->log,
"alsa-util %p: underrun", state);
spa_alsa_write(state, state->threshold);
}
spa_log_trace(state->log, "alsa-util %p: %d %lu", state, io->status,
state->filled);
io->status = SPA_STATUS_NEED_BUFFER;
if (state->range) {
state->range->offset = state->sample_count * state->frame_size;
state->range->min_size = state->threshold * state->frame_size;
state->range->max_size = avail * state->frame_size;
}
state->callbacks->process(state->callbacks_data, SPA_STATUS_NEED_BUFFER);
}
else {
spa_alsa_write(state, 0);
}
}
}
static void alsa_on_capture_timeout_event(struct spa_source *source)
{
uint64_t exp;
int res;
struct state *state = source->data;
snd_pcm_t *hndl = state->hndl;
snd_pcm_sframes_t avail;
snd_pcm_uframes_t total_read = 0;
struct itimerspec ts;
const snd_pcm_channel_area_t *my_areas;
snd_pcm_status_t *status;
struct timespec now;
if (state->started && read(state->timerfd, &exp, sizeof(uint64_t)) != sizeof(uint64_t))
spa_log_warn(state->log, "error reading timerfd: %s", strerror(errno));
snd_pcm_status_alloca(&status);
if ((res = snd_pcm_status(hndl, status)) < 0) {
spa_log_error(state->log, "snd_pcm_status error: %s", snd_strerror(res));
return;
}
if (state->position) {
state->threshold = state->position->size;
}
avail = snd_pcm_status_get_avail(status);
snd_pcm_status_get_htstamp(status, &state->now);
clock_gettime(CLOCK_MONOTONIC, &now);
if (state->clock) {
state->clock->nsec = SPA_TIMESPEC_TO_TIME(&state->now);
state->clock->rate = SPA_FRACTION(1, state->rate);
state->clock->position = state->sample_count;
state->clock->delay = avail;
}
spa_log_trace(state->log, "timeout %ld %d %ld %ld %ld %ld %ld", avail, state->threshold,
state->sample_count, state->now.tv_sec, state->now.tv_nsec,
now.tv_sec, now.tv_nsec);
state->now = now;
if (avail < state->threshold) {
if (snd_pcm_state(hndl) == SND_PCM_STATE_SUSPENDED) {
spa_log_error(state->log, "suspended: try resume");
if ((res = alsa_try_resume(state)) < 0)
return;
}
} else {
snd_pcm_uframes_t to_read = SPA_MIN(avail, state->threshold);
while (total_read < to_read) {
snd_pcm_uframes_t read, frames, offset;
frames = to_read - total_read;
if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res));
return;
}
read = push_frames(state, my_areas, offset, frames);
if (read < frames)
to_read = 0;
if ((res = snd_pcm_mmap_commit(hndl, offset, read)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res));
if (res != -EPIPE && res != -ESTRPIPE)
return;
}
total_read += read;
}
state->sample_count += total_read;
}
calc_timeout(state->threshold, avail - total_read, state->rate, &state->now, &ts.it_value);
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
timerfd_settime(state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL);
}
int spa_alsa_start(struct state *state, bool xrun_recover)
{
int err;
struct itimerspec ts;
if (state->started)
return 0;
spa_log_debug(state->log, "alsa %p: start %d", state, state->threshold);
CHECK(set_swparams(state), "swparams");
if (!xrun_recover)
snd_pcm_dump(state->hndl, state->output);
if ((err = snd_pcm_prepare(state->hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_prepare error: %s", snd_strerror(err));
return err;
}
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
state->source.func = alsa_on_playback_timeout_event;
} else {
state->source.func = alsa_on_capture_timeout_event;
}
state->source.data = state;
state->source.fd = state->timerfd;
state->source.mask = SPA_IO_IN;
state->source.rmask = 0;
spa_loop_add_source(state->data_loop, &state->source);
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
state->alsa_started = false;
} else {
if ((err = snd_pcm_start(state->hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(err));
return err;
}
state->alsa_started = true;
}
clock_gettime(CLOCK_MONOTONIC, &state->now);
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 1;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
timerfd_settime(state->timerfd, 0, &ts, NULL);
state->io->status = SPA_STATUS_OK;
state->io->buffer_id = SPA_ID_INVALID;
state->started = true;
return 0;
}
static int do_remove_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct state *state = user_data;
struct itimerspec ts;
spa_loop_remove_source(state->data_loop, &state->source);
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 0;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
timerfd_settime(state->timerfd, 0, &ts, NULL);
return 0;
}
int spa_alsa_pause(struct state *state, bool xrun_recover)
{
int err;
if (!state->started)
return 0;
spa_log_debug(state->log, "alsa %p: pause", state);
spa_loop_invoke(state->data_loop, do_remove_source, 0, NULL, 0, true, state);
if ((err = snd_pcm_drop(state->hndl)) < 0)
spa_log_error(state->log, "snd_pcm_drop %s", snd_strerror(err));
state->started = false;
return 0;
}