pipewire/src/modules/module-rtp/stream.c

1117 lines
38 KiB
C

/* PipeWire */
/* SPDX-FileCopyrightText: Copyright © 2023 Wim Taymans <wim.taymans@gmail.com> */
/* SPDX-License-Identifier: MIT */
#include "config.h"
#include <sys/socket.h>
#include <arpa/inet.h>
#include <spa/utils/atomic.h>
#include <spa/utils/result.h>
#include <spa/utils/json.h>
#include <spa/utils/ringbuffer.h>
#include <spa/utils/dll.h>
#include <spa/param/audio/format-utils.h>
#include <spa/param/audio/raw-json.h>
#include <spa/param/latency-utils.h>
#include <spa/control/control.h>
#include <spa/control/ump-utils.h>
#include <spa/debug/types.h>
#include <spa/debug/mem.h>
#include <spa/debug/log.h>
#include <pipewire/pipewire.h>
#include <pipewire/impl.h>
#include <module-rtp/rtp.h>
#include <module-rtp/stream.h>
#include <module-rtp/apple-midi.h>
PW_LOG_TOPIC_EXTERN(mod_topic);
#define PW_LOG_TOPIC_DEFAULT mod_topic
#define BUFFER_SIZE (1u<<22)
#define BUFFER_MASK (BUFFER_SIZE-1)
#define BUFFER_SIZE2 (BUFFER_SIZE>>1)
#define BUFFER_MASK2 (BUFFER_SIZE2-1)
/* IMPORTANT: When using calls that have return values, like
* rtp_stream_emit_open_connection, callers must set the variables
* that receive the return values to a default value, because in
* cases where the callback is not actually set, no call is made,
* and thus, uninitialized return variables remain uninitialized.*/
#define rtp_stream_emit(s,m,v,...) spa_hook_list_call(&s->listener_list, \
struct rtp_stream_events, m, v, ##__VA_ARGS__)
#define rtp_stream_emit_destroy(s) rtp_stream_emit(s, destroy, 0)
#define rtp_stream_emit_report_error(s,e) rtp_stream_emit(s, report_error, 0,e)
#define rtp_stream_emit_open_connection(s,r) rtp_stream_emit(s, open_connection, 0,r)
#define rtp_stream_emit_close_connection(s,r) rtp_stream_emit(s, close_connection, 0,r)
#define rtp_stream_emit_param_changed(s,i,p) rtp_stream_emit(s, param_changed,0,i,p)
#define rtp_stream_emit_send_packet(s,i,l) rtp_stream_emit(s, send_packet,0,i,l)
#define rtp_stream_emit_send_feedback(s,seq) rtp_stream_emit(s, send_feedback,0,seq)
enum rtp_stream_internal_state {
/* The state when the stream is idle / stopped. The background
* timer that may be used for sending out buffered data
* must not be running in this state. If the separate PTP sender
* is being used, then that one must be inactive in this state.
* Set at the end of stream_stop() and when the stream is created. */
RTP_STREAM_INTERNAL_STATE_STOPPED,
/* Temporary state that is set at the beginning of stream_stop().
* If a full stop is possible, stream_stop() immediately moves on
* to the STOPPED state. However, if the timer is running (because it
* is still sending out buffered data), the state remains set to
* STOPPING until the timer has sent out all data, at which point
* the timer finishes the change to the STOPPED state. */
RTP_STREAM_INTERNAL_STATE_STOPPING,
/* Temporary state that is set at the beginning of stream_start().
* It is mainly used for preventing do_finish_stopping_state()
* from setting a stopped state. See do_finish_stopping_state()
* for details. */
RTP_STREAM_INTERNAL_STATE_STARTING,
/* The state when the stream has been started. It is set at the
* end of stream_start(). */
RTP_STREAM_INTERNAL_STATE_STARTED
};
struct impl {
struct spa_audio_info info;
struct spa_audio_info stream_info;
struct pw_context *context;
struct pw_stream *stream;
struct spa_hook stream_listener;
struct pw_stream_events stream_events;
struct spa_hook_list listener_list;
struct spa_hook listener;
const struct format_info *format_info;
enum spa_direction direction;
void *stream_data;
uint32_t rate;
uint32_t stride;
uint32_t actual_max_buffer_size;
uint8_t payload;
uint32_t ssrc;
uint16_t seq;
unsigned fixed_ssrc:1;
unsigned have_ssrc:1;
unsigned ignore_ssrc:1;
unsigned have_seq:1;
unsigned marker_on_first:1;
uint32_t ts_offset;
uint32_t psamples;
uint32_t mtu;
uint32_t header_size;
uint32_t payload_size;
struct spa_ringbuffer ring;
uint8_t buffer[BUFFER_SIZE];
uint64_t last_recv_timestamp;
struct spa_io_rate_match *io_rate_match;
struct spa_io_position *io_position;
struct spa_dll dll;
double corr;
uint32_t target_buffer;
double max_error;
float last_timestamp;
float last_time;
unsigned direct_timestamp:1;
unsigned always_process:1;
unsigned have_sync:1;
unsigned receiving:1;
unsigned first:1;
/* IMPORTANT: Do NOT access this value directly. Use the atomic
* set_internal_stream_state() / get_internal_stream_state() accessors,
* since the state is accessed by both the dataloop and mainloop. To
* prevent memory visibility issues, atomic accessors need to be used.
*
* Also, its type here is uint32_t. See the explanation about atomic
* access below for the reason why. */
uint32_t internal_state;
struct pw_loop *main_loop;
struct pw_loop *data_loop;
struct spa_source *timer;
/* IMPORTANT: Do NOT access this value directly. Use the atomic
* set_timer_running() / is_timer_running() accessors, since the
* flag is accessed by both the dataloop and mainloop. To prevent
* memory visibility issues, atomic accessors need to be used.
*
* Also, its type here is uint8_t. See the explanation about atomic
* access below for the reason why. */
uint8_t timer_running;
int (*receive_rtp)(struct impl *impl, uint8_t *buffer, ssize_t len);
/* Used for resetting the ring buffer before the stream starts, to prevent
* reading from uninitialized memory. This can otherwise happen in direct
* timestamp mode when the read index is set to an uninitialized location.
* This is a function pointer to allow customizations in case resetting
* requires filling the ring buffer with something other than nullbytes
* (this can happen with DSD for example). */
void (*reset_ringbuffer)(struct impl *impl);
/* Called by stream_start() to stop any running timer before continuing to
* start the stream. This is necessary, because by that point, any remaining
* buffered data is stale, and the timer would keep sending it out. */
void (*stop_timer)(struct impl *impl);
void (*flush_timeout)(struct impl *impl, uint64_t expirations);
void (*deinit)(struct impl *impl, enum spa_direction direction);
/*
* pw_filter where the filter would be driven at the PTP clock
* rate with RTP sink being driven at the sink driver clock rate
* or some ALSA clock rate.
*/
struct pw_filter *ptp_sender;
struct spa_hook ptp_sender_listener;
struct spa_dll ptp_dll;
double ptp_corr;
bool separate_sender;
bool refilling;
/* Track some variables we need from the sink driver */
uint64_t sink_next_nsec;
uint64_t sink_nsec;
uint64_t sink_resamp_delay;
uint64_t sink_quantum;
/* And some bookkeping for the sender processing */
uint64_t rtp_base_ts;
uint32_t rtp_last_ts;
/* The process latency, set by on_stream_param_changed(). */
struct spa_process_latency_info process_latency;
};
/* Atomic internal_state accessors.
*
* These are necessary because internal_state may be accessed by both
* the dataloop (in the flush_timeout and do_finish_stopping_state())
* and the mainloop (in stream_start() and stream_stop()). Even though
* stream_start() and stream_stop() may not necessarily run at the
* same time when the dataloop is active, there is still a potential
* memory visibility issue if the state is set in one loop but that
* change is not yet propagated to other CPU cores, causing the other
* loop (which runs in a separate thread) to still see the old state.
*
* Also, since GCC __atomic built-ins (which the SPA macros use) are
* designed to work with integral scalar or pointer type that is 1,
* 2, 4, or 8 bytes in length, impl->internal_state is of type uint33_t.
* This guarantee a correct size for the built-ins. The accessors take
* care of casting from/to rtp_stream_internal_state . The relevant
* GCC manual page for this is:
* https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
*/
static inline enum rtp_stream_internal_state get_internal_stream_state(struct impl *impl) {
return (enum rtp_stream_internal_state)SPA_ATOMIC_LOAD(impl->internal_state);
}
static inline void set_internal_stream_state(struct impl *impl, enum rtp_stream_internal_state state) {
SPA_ATOMIC_STORE(impl->internal_state, (uint32_t)state);
}
/* Similar to the atomic internal_state accessors, these safeguard
* the timer_running flag, which can be accessed both by stream_stop()
* and the flush_timeout, which are called in separate threads.
* Since timer_running and internal_state are accessed independently,
* they are treated as two independent atomic variables instead of two
* resources under a common mutex. */
static inline bool is_timer_running(struct impl *impl) {
return (bool)SPA_ATOMIC_LOAD(impl->timer_running);
}
static inline void set_timer_running(struct impl *impl, bool running) {
SPA_ATOMIC_STORE(impl->timer_running, (uint8_t)(running ? 1 : 0));
}
static int do_finish_stopping_state(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data)
{
int res = 0;
struct impl *impl = user_data;
enum rtp_stream_internal_state cur_state = get_internal_stream_state(impl);
/* The checks here cover a corner case that can happen when the
* following conditions are met (in order):
*
* 1. Stream is stopped via stream_stop(), but the timer is still
* running, meaning that internal_state stays at STOPPING.
* 2. The timer manages to invoke do_finish_stopping_state()
* asynchronously, meaning that the invocation is queued.
* 3. Immediately afterwards, the state is started again via
* stream_start(). That call stops the timer, but does not
* undo the do_finish_stopping_state() invocation.
* The internal_state is set to STARTED.
* 4. The queued do_finish_stopping_state() invocation takes
* place, and it tries to set the internal_state to STOPPED.
*
* In such a case, the STARTED state would be set again to STOPPED,
* even though the stream has been started and is running.
*
* To fix this, check if the current internal state is STOPPING.
* This is the only case where setting the state to STOPPED makes
* sense, since that is why this do_finish_stopping_state() exists -
* to finish a stopping procedure that could not be finished in
* stream_stop() immediately. If the stream is restarted, then this
* delayed stop is no longer needed. Canceling the queued invocation
* is not possible (PipeWire has no cancellation API for this),
* so this approach needs to be used instead. */
switch (cur_state) {
case RTP_STREAM_INTERNAL_STATE_STOPPING:
pw_log_debug("setting \"stopped\" state after timer expired");
break;
default:
pw_log_debug("\"stopped\" state change event emission was scheduled, "
"but the current state is not \"stopping\"; ignoring "
"scheduled request");
return 0;
}
rtp_stream_emit_close_connection(impl, &res);
if (res > 0)
pw_log_debug("closed connection");
else if (res < 0)
pw_log_error("error while closing connection: %s", spa_strerror(res));
return 0;
}
#include "module-rtp/audio.c"
#include "module-rtp/midi.c"
#include "module-rtp/opus.c"
struct format_info {
uint32_t media_subtype;
uint32_t format;
uint32_t size;
const char *mime;
const char *media_type;
};
static const struct format_info audio_format_info[] = {
{ SPA_MEDIA_SUBTYPE_raw, SPA_AUDIO_FORMAT_U8, 1, "L8", "audio" },
{ SPA_MEDIA_SUBTYPE_raw, SPA_AUDIO_FORMAT_ALAW, 1, "PCMA", "audio" },
{ SPA_MEDIA_SUBTYPE_raw, SPA_AUDIO_FORMAT_ULAW, 1, "PCMU", "audio" },
{ SPA_MEDIA_SUBTYPE_raw, SPA_AUDIO_FORMAT_S16_BE, 2, "L16", "audio" },
{ SPA_MEDIA_SUBTYPE_raw, SPA_AUDIO_FORMAT_S16_LE, 2, "L16", "audio" },
{ SPA_MEDIA_SUBTYPE_raw, SPA_AUDIO_FORMAT_S24_BE, 3, "L24", "audio" },
{ SPA_MEDIA_SUBTYPE_control, 0, 1, "rtp-midi", "audio" },
{ SPA_MEDIA_SUBTYPE_opus, 0, 4, "opus", "audio" },
};
static void stream_io_changed(void *data, uint32_t id, void *area, uint32_t size)
{
struct impl *impl = data;
switch (id) {
case SPA_IO_RateMatch:
impl->io_rate_match = area;
break;
case SPA_IO_Position:
impl->io_position = area;
break;
}
}
static void stream_destroy(void *d)
{
struct impl *impl = d;
spa_hook_remove(&impl->stream_listener);
impl->stream = NULL;
}
static int stream_start(struct impl *impl)
{
int res;
enum rtp_stream_internal_state cur_state;
cur_state = get_internal_stream_state(impl);
if (cur_state == RTP_STREAM_INTERNAL_STATE_STARTED)
return 0;
impl->first = true;
set_internal_stream_state(impl, RTP_STREAM_INTERNAL_STATE_STARTING);
/* Stop the timer now (if the timer is used). Any lingering timer
* will try to send data that is stale at this point, especially
* after the ring buffer contents get reset. Worse, the timer might
* emit a "stopped" state change after a "started" state change
* is emitted here, causing undefined behavior. */
if (impl->stop_timer)
impl->stop_timer(impl);
res = 0;
rtp_stream_emit_close_connection(impl, &res);
/* A leftover connection only makes sense if the stream was in the
* STOPPING state prior to this stream_start() call, because then,
* the previous stream_stop() call could not finish stopping the
* stream, and had to leave the connection open so the timer can
* finish sending out packets. If stream_start() was called before
* the timer finished, then the stream is still in the STOPPING
* state, was thus not properly stopped, and the connection is still
* there. This is not an error, but a consequence of restarting the
* stream early enough.
* If however the state prior to this stream_start() call was
* anything other than STOPPING, then something is wrong. */
if (res > 0) {
if (cur_state != RTP_STREAM_INTERNAL_STATE_STOPPING) {
pw_log_warn("there was already an open connection, "
"even though none was expected");
} else {
pw_log_debug("closed leftover connection since a scheduled "
"\"stopped\" state change was cancelled "
"and we are still in the \"stopping\" state");
}
} else if (res < 0) {
pw_log_error("error while closing leftover connection: %s", spa_strerror(res));
}
impl->reset_ringbuffer(impl);
res = 0;
rtp_stream_emit_open_connection(impl, &res);
if (res > 0) {
pw_log_debug("opened new connection");
} else if (res < 0) {
pw_log_error("could not open connection: %s", spa_strerror(res));
return res;
}
if (impl->separate_sender) {
struct spa_dict_item items[1];
items[0] = SPA_DICT_ITEM_INIT(PW_KEY_NODE_ALWAYS_PROCESS, "true");
pw_filter_set_active(impl->ptp_sender, true);
pw_filter_update_properties(impl->ptp_sender, NULL, &SPA_DICT_INIT(items, 1));
pw_log_info("activated pw_filter for separate sender");
}
set_internal_stream_state(impl, RTP_STREAM_INTERNAL_STATE_STARTED);
pw_log_info("stream started");
return 0;
}
static int stream_stop(struct impl *impl)
{
bool timer_running;
switch (get_internal_stream_state(impl)) {
case RTP_STREAM_INTERNAL_STATE_STOPPING:
case RTP_STREAM_INTERNAL_STATE_STOPPED:
return 0;
default:
break;
}
set_internal_stream_state(impl, RTP_STREAM_INTERNAL_STATE_STOPPING);
timer_running = is_timer_running(impl);
/* Proper stop is only possible if the timer is currently not running,
* because a stop involves closing the connection. If the timer is still
* running, it needs an open connection for sending out remaining packets. */
if (!timer_running) {
int res;
pw_log_info("closing connection as part of stopping the stream");
rtp_stream_emit_close_connection(impl, &res);
if (res > 0) {
pw_log_debug("closed connection");
} else if (res < 0) {
pw_log_error("error while closing connection: %s", spa_strerror(res));
}
} else {
pw_log_info("cannot close connection yet - timer is still running");
}
/* Stopping the separate sender can be done even if the timer is still
* running because it has no dependency on said timer. */
if (impl->separate_sender) {
struct spa_dict_item items[1];
items[0] = SPA_DICT_ITEM_INIT(PW_KEY_NODE_ALWAYS_PROCESS, "false");
pw_filter_update_properties(impl->ptp_sender, NULL, &SPA_DICT_INIT(items, 1));
pw_log_info("deactivating pw_filter for separate sender");
pw_filter_set_active(impl->ptp_sender, false);
}
/* Only switch to STOPPED if the stream could _actually_ be stopped,
* meaning that the timer was no longer running, and the connection
* could be closed. */
if (!timer_running) {
set_internal_stream_state(impl, RTP_STREAM_INTERNAL_STATE_STOPPED);
pw_log_info("stream stopped");
}
return 0;
}
static void on_stream_state_changed(void *d, enum pw_stream_state old,
enum pw_stream_state state, const char *error)
{
struct impl *impl = d;
switch (state) {
case PW_STREAM_STATE_UNCONNECTED:
pw_log_info("stream disconnected");
break;
case PW_STREAM_STATE_ERROR:
pw_log_error("stream error: %s", error);
break;
case PW_STREAM_STATE_STREAMING:
if ((errno = -stream_start(impl)) < 0)
pw_log_error("failed to start RTP stream: %m");
break;
case PW_STREAM_STATE_PAUSED:
if (!impl->always_process)
stream_stop(impl);
impl->have_sync = false;
break;
default:
break;
}
}
static void update_latency_params(struct impl *impl)
{
uint32_t n_params = 0;
const struct spa_pod *params[2];
uint8_t buffer[1024];
struct spa_pod_builder b;
struct spa_latency_info main_latency;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
/* main_latency is the latency in the direction indicated by impl->direction.
* In RTP streams, this consists solely of the process latency. (In theory,
* PipeWire SPA nodes could have additional latencies on top of the process
* latency, but this is not the case here.) The other direction is already
* handled by pw_stream.
*
* The main_latncy is passed as updated SPA_PARAM_Latency params to the stream.
* That way, the stream always gets information of latency for _both_ directions;
* the direction indicated by impl->direction is covered by main_latency, and
* the opposite direction is already taken care of by the default pw_stream
* param handling.
*
* The process latency is also passed on as an SPA_PARAM_ProcessLatency param.
*/
main_latency = SPA_LATENCY_INFO(impl->direction);
spa_process_latency_info_add(&impl->process_latency, &main_latency);
params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &main_latency);
params[n_params++] = spa_process_latency_build(&b, SPA_PARAM_ProcessLatency,
&impl->process_latency);
pw_stream_update_params(impl->stream, params, n_params);
}
static void param_process_latency_changed(struct impl *impl, const struct spa_pod *param)
{
struct spa_process_latency_info process_latency;
if (param == NULL)
spa_zero(process_latency);
else if (spa_process_latency_parse(param, &process_latency) < 0)
return;
if (spa_process_latency_info_compare(&impl->process_latency, &process_latency) == 0)
return;
impl->process_latency = process_latency;
update_latency_params(impl);
}
static void on_stream_param_changed (void *d, uint32_t id, const struct spa_pod *param)
{
struct impl *impl = d;
switch (id) {
case SPA_PARAM_ProcessLatency:
param_process_latency_changed(impl, param);
break;
default:
rtp_stream_emit_param_changed(impl, id, param);
break;
}
};
static const struct pw_stream_events stream_events = {
PW_VERSION_STREAM_EVENTS,
.destroy = stream_destroy,
.state_changed = on_stream_state_changed,
.param_changed = on_stream_param_changed,
.io_changed = stream_io_changed,
};
static const struct format_info *find_audio_format_info(const struct spa_audio_info *info)
{
SPA_FOR_EACH_ELEMENT_VAR(audio_format_info, f)
if (f->media_subtype == info->media_subtype &&
(f->format == 0 || f->format == info->info.raw.format))
return f;
return NULL;
}
static void parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info)
{
spa_audio_info_raw_init_dict_keys(info,
&SPA_DICT_ITEMS(
SPA_DICT_ITEM(SPA_KEY_AUDIO_FORMAT, DEFAULT_FORMAT),
SPA_DICT_ITEM(SPA_KEY_AUDIO_RATE, SPA_STRINGIFY(DEFAULT_RATE)),
SPA_DICT_ITEM(SPA_KEY_AUDIO_POSITION, DEFAULT_POSITION)),
&props->dict,
SPA_KEY_AUDIO_FORMAT,
SPA_KEY_AUDIO_RATE,
SPA_KEY_AUDIO_CHANNELS,
SPA_KEY_AUDIO_POSITION, NULL);
}
static uint32_t msec_to_samples(struct impl *impl, float msec)
{
return (uint32_t)(msec * impl->rate / 1000);
}
static float samples_to_msec(struct impl *impl, uint32_t samples)
{
return samples * 1000.0f / impl->rate;
}
static void on_flush_timeout(void *d, uint64_t expirations)
{
struct impl *impl = d;
impl->flush_timeout(d, expirations);
}
static void default_reset_ringbuffer(struct impl *impl)
{
spa_memzero(impl->buffer, sizeof(impl->buffer));
}
struct rtp_stream *rtp_stream_new(struct pw_core *core,
enum spa_direction direction, struct pw_properties *props,
const struct rtp_stream_events *events, void *data)
{
struct impl *impl;
const char *str, *aes67_driver;
char tmp[64];
uint8_t buffer[1024];
struct spa_pod_builder b;
uint32_t n_params, min_samples, max_samples;
float min_ptime, max_ptime;
const struct spa_pod *params[3];
enum pw_stream_flags flags;
float latency_msec;
int res;
bool process_latency_from_sess;
impl = calloc(1, sizeof(*impl));
if (impl == NULL) {
res = -errno;
goto out;
}
impl->first = true;
set_internal_stream_state(impl, RTP_STREAM_INTERNAL_STATE_STOPPED);
spa_hook_list_init(&impl->listener_list);
impl->direction = direction;
impl->stream_events = stream_events;
impl->context = pw_core_get_context(core);
impl->main_loop = pw_context_get_main_loop(impl->context);
impl->data_loop = pw_context_acquire_loop(impl->context, &props->dict);
impl->timer = pw_loop_add_timer(impl->data_loop, on_flush_timeout, impl);
if (impl->timer == NULL) {
res = -errno;
pw_log_error("can't create timer");
goto out;
}
impl->reset_ringbuffer = default_reset_ringbuffer;
if ((str = pw_properties_get(props, "sess.media")) == NULL)
str = "audio";
if (spa_streq(str, "audio")) {
impl->info.media_type = SPA_MEDIA_TYPE_audio;
impl->info.media_subtype = SPA_MEDIA_SUBTYPE_raw;
impl->payload = 127;
}
else if (spa_streq(str, "raop")) {
impl->info.media_type = SPA_MEDIA_TYPE_audio;
impl->info.media_subtype = SPA_MEDIA_SUBTYPE_raw;
impl->payload = 0x60;
}
else if (spa_streq(str, "midi")) {
impl->info.media_type = SPA_MEDIA_TYPE_application;
impl->info.media_subtype = SPA_MEDIA_SUBTYPE_control;
impl->payload = 0x61;
}
#ifdef HAVE_OPUS
else if (spa_streq(str, "opus")) {
impl->info.media_type = SPA_MEDIA_TYPE_audio;
impl->info.media_subtype = SPA_MEDIA_SUBTYPE_opus;
impl->payload = 127;
}
#endif
else {
pw_log_error("unsupported media type:%s", str);
res = -EINVAL;
goto out;
}
switch (impl->info.media_subtype) {
case SPA_MEDIA_SUBTYPE_raw:
parse_audio_info(props, &impl->info.info.raw);
impl->stream_info = impl->info;
impl->format_info = find_audio_format_info(&impl->info);
if (impl->format_info == NULL) {
pw_log_error("unsupported audio format:%d channels:%d",
impl->stream_info.info.raw.format,
impl->stream_info.info.raw.channels);
res = -EINVAL;
goto out;
}
impl->stride = impl->format_info->size * impl->stream_info.info.raw.channels;
impl->rate = impl->stream_info.info.raw.rate;
break;
case SPA_MEDIA_SUBTYPE_control:
impl->stream_info = impl->info;
impl->format_info = find_audio_format_info(&impl->info);
if (impl->format_info == NULL) {
res = -EINVAL;
goto out;
}
pw_properties_set(props, PW_KEY_FORMAT_DSP, "8 bit raw midi");
impl->stride = impl->format_info->size;
impl->rate = pw_properties_get_uint32(props, "midi.rate", 10000);
if (impl->rate == 0)
impl->rate = 10000;
break;
case SPA_MEDIA_SUBTYPE_opus:
impl->stream_info.media_type = SPA_MEDIA_TYPE_audio;
impl->stream_info.media_subtype = SPA_MEDIA_SUBTYPE_raw;
parse_audio_info(props, &impl->stream_info.info.raw);
impl->stream_info.info.raw.format = SPA_AUDIO_FORMAT_F32;
impl->info.info.opus.rate = impl->stream_info.info.raw.rate;
impl->info.info.opus.channels = impl->stream_info.info.raw.channels;
impl->format_info = find_audio_format_info(&impl->info);
if (impl->format_info == NULL) {
pw_log_error("unsupported audio format:%d channels:%d",
impl->stream_info.info.raw.format,
impl->stream_info.info.raw.channels);
res = -EINVAL;
goto out;
}
impl->stride = impl->format_info->size * impl->stream_info.info.raw.channels;
impl->rate = impl->stream_info.info.raw.rate;
break;
default:
spa_assert_not_reached();
break;
}
/* Limit the actual maximum buffer size to the maximum integer multiple
* amount of impl->stride that fits within BUFFER_SIZE. This is important
* to prevent corner cases where the read pointer wrapped around at the
* same time when the IO clock experiences a discontinuity.
*
* If the BUFFER_SIZE constant is not an integer multiple of impl->stride,
* pointer wrap-arounds will result in positions that exhibit a nonzero
* impl->stride division rest. Also, the write and read pointers are normally
* increased monotonically and contiguously. But, if a discontinuity is
* detected, these pointers may be resynchronized. Importantly, sometimes
* only one of them may be resynchronized, while the other retains its existing
* synchronization. (For example, the read and write side may use different
* discontinuity thresholds.)
*
* What then can happen is that the resynchronized pointer exhibits a _different_
* impl->stride division than the other pointer. Once the resynchronization takes
* place, that pointer is again monotonically increased from then on, so those
* division rests will stay different. This then means that the read and write
* operations will not be aligned properly. For example, a write operation might
* write to position 20 in the ring buffer, but the read operation might read
* from position 22, and doing so with a stride value of 6. The end result is
* invalid data.
*
* One way to visualize this is to think of the ring buffer as a grid. The grid
* cell size equals impl->stride. If BUFFER_SIZE is not an integer multiple of
* impl->stride, it means that the very last grid cell will have a size that is
* smaller than impl->stride. The unaligned read/write operations mean that the
* operations will not be done at the same grid cell boundaries, so for example
* the read operation might think that a cell starts at byte 2, while the write
* operation might think that the same cell starts at byte 4.
*
* By limiting the actual maximum buffer size to the maximum integer multiple
* amount of impl->stride that fits within BUFFER_SIZE, this is avoided, since
* then, all grid cells are guaranteed to have the size impl->stride, so the
* aforementioned division rest will always be zero.
*/
impl->actual_max_buffer_size = SPA_ROUND_DOWN(BUFFER_SIZE, impl->stride);
pw_log_debug("possible / actual max buffer size: %" PRIu32 " / %" PRIu32,
(uint32_t)BUFFER_SIZE, impl->actual_max_buffer_size);
pw_properties_setf(props, "rtp.mime", "%s", impl->format_info->mime);
if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL)
pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true");
if (pw_properties_get(props, PW_KEY_NODE_NETWORK) == NULL)
pw_properties_set(props, PW_KEY_NODE_NETWORK, "true");
impl->marker_on_first = pw_properties_get_bool(props, "sess.marker-on-first", false);
if (spa_streq(str, "raop"))
impl->marker_on_first = 1;
impl->ignore_ssrc = pw_properties_get_bool(props, "sess.ignore-ssrc", false);
impl->direct_timestamp = pw_properties_get_bool(props, "sess.ts-direct", false);
if (direction == PW_DIRECTION_INPUT) {
impl->ssrc = pw_properties_get_uint32(props, "rtp.sender-ssrc", pw_rand32());
impl->ts_offset = pw_properties_get_uint32(props, "rtp.sender-ts-offset", pw_rand32());
} else {
impl->have_ssrc = impl->fixed_ssrc = pw_properties_fetch_uint32(props, "rtp.receiver-ssrc", &impl->ssrc);
if (pw_properties_fetch_uint32(props, "rtp.receiver-ts-offset", &impl->ts_offset) < 0)
impl->direct_timestamp = false;
}
impl->payload = pw_properties_get_uint32(props, "rtp.payload", impl->payload);
impl->mtu = pw_properties_get_uint32(props, "net.mtu", DEFAULT_MTU);
impl->header_size = pw_properties_get_uint32(props, "net.header", IP4_HEADER_SIZE + UDP_HEADER_SIZE);
impl->header_size += RTP_HEADER_SIZE;
if (impl->mtu <= impl->header_size) {
pw_log_error("invalid MTU %d, using %d", impl->mtu, DEFAULT_MTU);
impl->mtu = DEFAULT_MTU;
}
impl->payload_size = impl->mtu - impl->header_size;
impl->seq = pw_rand32();
str = pw_properties_get(props, "sess.min-ptime");
if (!spa_atof(str, &min_ptime))
min_ptime = DEFAULT_MIN_PTIME;
str = pw_properties_get(props, "sess.max-ptime");
if (!spa_atof(str, &max_ptime))
max_ptime = DEFAULT_MAX_PTIME;
min_samples = msec_to_samples(impl, min_ptime);
max_samples = msec_to_samples(impl, max_ptime);
float ptime = 0.0f;
if ((str = pw_properties_get(props, "rtp.ptime")) != NULL)
if (!spa_atof(str, &ptime))
ptime = 0.0f;
uint32_t framecount = 0;
if ((str = pw_properties_get(props, "rtp.framecount")) != NULL)
if (!spa_atou32(str, &framecount, 0))
framecount = 0;
if (ptime > 0.0f || framecount > 0) {
if (!framecount) {
impl->psamples = msec_to_samples(impl, ptime);
pw_properties_setf(props, "rtp.framecount", "%u", impl->psamples);
} else if (ptime == 0.0f) {
impl->psamples = framecount;
pw_properties_set(props, "rtp.ptime",
spa_dtoa(tmp, sizeof(tmp),
samples_to_msec(impl, impl->psamples)));
} else if (fabsf((samples_to_msec(impl, framecount)) - ptime) > 0.1f) {
impl->psamples = msec_to_samples(impl, ptime);
pw_log_warn("rtp.ptime doesn't match rtp.framecount. Choosing rtp.ptime");
}
} else {
impl->psamples = impl->payload_size / impl->stride;
impl->psamples = SPA_CLAMP(impl->psamples, min_samples, max_samples);
if (direction == PW_DIRECTION_INPUT) {
pw_properties_set(props, "rtp.ptime",
spa_dtoa(tmp, sizeof(tmp),
samples_to_msec(impl, impl->psamples)));
pw_properties_setf(props, "rtp.framecount", "%u", impl->psamples);
}
}
ptime = samples_to_msec(impl, impl->psamples);
/* For senders, the default latency is ptime and for a receiver it is
* DEFAULT_SESS_LATENCY. Setting the sess.latency.msec for a sender to
* something smaller/bigger will influence the quantum and the amount
* of packets we send in one cycle */
str = pw_properties_get(props, "sess.latency.msec");
if (!spa_atof(str, &latency_msec)) {
latency_msec = direction == PW_DIRECTION_INPUT ?
ptime :
DEFAULT_SESS_LATENCY;
}
impl->target_buffer = msec_to_samples(impl, latency_msec);
impl->max_error = msec_to_samples(impl, ERROR_MSEC);
if (impl->target_buffer < impl->psamples) {
pw_log_warn("sess.latency.msec %f cannot be lower than rtp.ptime %f",
latency_msec, ptime);
impl->target_buffer = impl->psamples;
}
/* We're not expecting odd ptimes, so this modulo should be 0 */
if (fmodf(impl->target_buffer, impl->psamples) != 0) {
pw_log_warn("sess.latency.msec %f should be an integer multiple of rtp.ptime %f",
latency_msec, ptime);
impl->target_buffer = SPA_ROUND_DOWN(impl->target_buffer, impl->psamples);
}
aes67_driver = pw_properties_get(props, "aes67.driver-group");
pw_properties_setf(props, PW_KEY_NODE_RATE, "1/%d", impl->rate);
if (direction == PW_DIRECTION_INPUT && !aes67_driver) {
/* While sending, we accept latency-sized buffers, and break it
* up and send in ptime intervals using a timer */
pw_properties_setf(props, PW_KEY_NODE_LATENCY, "%d/%d",
impl->target_buffer, impl->rate);
} else {
/* For receive, and with split sending, we break up the latency
* as half being in stream latency, and the rest in our own
* ringbuffer latency */
pw_properties_setf(props, PW_KEY_NODE_LATENCY, "%d/%d",
impl->target_buffer / 2, impl->rate);
}
pw_properties_setf(props, "net.mtu", "%u", impl->mtu);
pw_properties_setf(props, "rtp.media", "%s", impl->format_info->media_type);
pw_properties_setf(props, "rtp.mime", "%s", impl->format_info->mime);
pw_properties_setf(props, "rtp.payload", "%u", impl->payload);
pw_properties_setf(props, "rtp.ssrc", "%u", impl->ssrc);
pw_properties_setf(props, "rtp.rate", "%u", impl->rate);
if (impl->info.info.raw.channels > 0)
pw_properties_setf(props, "rtp.channels", "%u", impl->info.info.raw.channels);
if ((str = pw_properties_get(props, "sess.ts-refclk")) != NULL) {
pw_properties_setf(props, "rtp.ts-offset", "%u", impl->ts_offset);
pw_properties_set(props, "rtp.ts-refclk", str);
}
process_latency_from_sess = pw_properties_get_bool(props, "process.latency.from.sess", false);
spa_dll_init(&impl->dll);
spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 128, impl->rate);
impl->corr = 1.0;
impl->stream = pw_stream_new(core, "rtp-session", props);
props = NULL;
if (impl->stream == NULL) {
res = -errno;
pw_log_error("can't create stream: %m");
goto out;
}
n_params = 0;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
flags = PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_RT_PROCESS;
switch (impl->info.media_subtype) {
case SPA_MEDIA_SUBTYPE_raw:
params[n_params++] = spa_format_audio_build(&b,
SPA_PARAM_EnumFormat, &impl->stream_info);
flags |= PW_STREAM_FLAG_AUTOCONNECT;
rtp_audio_init(impl, core, direction, aes67_driver);
break;
case SPA_MEDIA_SUBTYPE_control:
params[n_params++] = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control));
rtp_midi_init(impl, direction);
break;
case SPA_MEDIA_SUBTYPE_opus:
params[n_params++] = spa_format_audio_build(&b,
SPA_PARAM_EnumFormat, &impl->stream_info);
flags |= PW_STREAM_FLAG_AUTOCONNECT;
rtp_opus_init(impl, direction);
break;
default:
res = -EINVAL;
goto out;
}
if (process_latency_from_sess) {
/* If process.latency.from.sess is set to true, then the sess.latency.msec
* quantity is to be set as the process latency at startup. But since the
* sess.latency.msec value is converted to impl->target_buffer, and that
* quantity in turn is subjected to constraint checks (see above), it is
* possible that the _actual_ session latency no longer equals the value
* of sess.latency.msec by the time this location is reached. To take into
* account these constraint adjustments, convert back the impl->target_buffer
* to nanoseconds, and use that as the process latency.
*
* Then, just like how update_latency_params() does it, construct the
* SPA_PARAM_Latency and SPA_PARAM_ProcessLatency params to let the new
* pw_stream know of these latency figures right from the start. */
struct spa_latency_info latency;
impl->process_latency.ns = (int64_t)(impl->target_buffer * 1e9 / impl->rate);
pw_log_debug("set process latency to %" PRId64 " based on sess.latency.msec "
"value %f", impl->process_latency.ns, latency_msec);
latency = SPA_LATENCY_INFO(impl->direction);
spa_process_latency_info_add(&(impl->process_latency), &latency);
params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &latency);
params[n_params++] = spa_process_latency_build(&b, SPA_PARAM_ProcessLatency,
&(impl->process_latency));
}
pw_stream_add_listener(impl->stream,
&impl->stream_listener,
&impl->stream_events, impl);
if ((res = pw_stream_connect(impl->stream,
direction,
PW_ID_ANY,
flags,
params, n_params)) < 0) {
pw_log_error("can't connect stream: %s", spa_strerror(res));
goto out;
}
if (impl->always_process &&
(res = stream_start(impl)) < 0)
goto out;
spa_hook_list_append(&impl->listener_list, &impl->listener, events, data);
return (struct rtp_stream*)impl;
out:
pw_properties_free(props);
errno = -res;
return NULL;
}
void rtp_stream_destroy(struct rtp_stream *s)
{
struct impl *impl = (struct impl*)s;
rtp_stream_emit_destroy(impl);
if (impl->deinit)
impl->deinit(impl, impl->direction);
if (impl->ptp_sender)
pw_filter_destroy(impl->ptp_sender);
if (impl->stream)
pw_stream_destroy(impl->stream);
if (impl->timer)
pw_loop_destroy_source(impl->data_loop, impl->timer);
if (impl->data_loop)
pw_context_release_loop(impl->context, impl->data_loop);
spa_hook_list_clean(&impl->listener_list);
free(impl);
}
int rtp_stream_update_properties(struct rtp_stream *s, const struct spa_dict *dict)
{
struct impl *impl = (struct impl*)s;
return pw_stream_update_properties(impl->stream, dict);
}
int rtp_stream_receive_packet(struct rtp_stream *s, uint8_t *buffer, size_t len)
{
struct impl *impl = (struct impl*)s;
return impl->receive_rtp(impl, buffer, len);
}
uint64_t rtp_stream_get_time(struct rtp_stream *s, uint32_t *rate)
{
struct impl *impl = (struct impl*)s;
struct spa_io_position *pos = impl->io_position;
if (pos == NULL)
return -EIO;
*rate = impl->rate;
return pos->clock.position * impl->rate *
pos->clock.rate.num / pos->clock.rate.denom;
}
uint16_t rtp_stream_get_seq(struct rtp_stream *s)
{
struct impl *impl = (struct impl*)s;
return impl->seq;
}
size_t rtp_stream_get_mtu(struct rtp_stream *s)
{
struct impl *impl = (struct impl*)s;
return impl->mtu;
}
void rtp_stream_set_first(struct rtp_stream *s)
{
struct impl *impl = (struct impl*)s;
impl->first = true;
}
void rtp_stream_set_error(struct rtp_stream *s, int res, const char *error)
{
struct impl *impl = (struct impl*)s;
pw_stream_set_error(impl->stream, res, "%s: %s", error, spa_strerror(res));
}
enum pw_stream_state rtp_stream_get_state(struct rtp_stream *s, const char **error)
{
struct impl *impl = (struct impl*)s;
return pw_stream_get_state(impl->stream, error);
}
int rtp_stream_set_active(struct rtp_stream *s, bool active)
{
struct impl *impl = (struct impl*)s;
return pw_stream_set_active(impl->stream, active);
}
int rtp_stream_set_param(struct rtp_stream *s, uint32_t id, const struct spa_pod *param)
{
struct impl *impl = (struct impl*)s;
return pw_stream_set_param(impl->stream, id, param);
}
int rtp_stream_update_params(struct rtp_stream *s,
const struct spa_pod **params,
uint32_t n_params)
{
struct impl *impl = (struct impl*)s;
return pw_stream_update_params(impl->stream, params, n_params);
}
void rtp_stream_update_process_latency(struct rtp_stream *s,
const struct spa_process_latency_info *process_latency)
{
struct impl *impl = (struct impl*)s;
if (spa_process_latency_info_compare(&impl->process_latency, process_latency) == 0)
return;
spa_memcpy(&(impl->process_latency), process_latency,
sizeof(const struct spa_process_latency_info));
update_latency_params(impl);
}