mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-11-02 09:01:50 -05:00
Improve the allocators to always align the buffer memory to the requested alignment Use aligned read and writes for sse functions and check alignment, optionally falling back to unaligned path. Add more tests and benchmark cases Check and warn for misaligned memory in plugins.
851 lines
22 KiB
C
851 lines
22 KiB
C
/* Spa
|
|
*
|
|
* Copyright © 2018 Wim Taymans
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include <spa/support/cpu.h>
|
|
#include <spa/utils/defs.h>
|
|
#include <spa/param/audio/format-utils.h>
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
#define U8_MIN 0
|
|
#define U8_MAX 255
|
|
#define U8_SCALE 127.5f
|
|
#define U8_OFFS 128
|
|
#define U8_TO_F32(v) ((((uint8_t)(v)) * (1.0f / U8_OFFS)) - 1.0)
|
|
#define F32_TO_U8(v) (uint8_t)((SPA_CLAMP(v, -1.0f, 1.0f) * U8_SCALE) + U8_OFFS)
|
|
|
|
#define S16_MIN -32767
|
|
#define S16_MAX 32767
|
|
#define S16_MAX_F 32767.0f
|
|
#define S16_SCALE 32767.0f
|
|
#define S16_TO_F32(v) (((int16_t)(v)) * (1.0f / S16_SCALE))
|
|
#define F32_TO_S16(v) (int16_t)(SPA_CLAMP(v, -1.0f, 1.0f) * S16_SCALE)
|
|
|
|
#define S24_MIN -8388607
|
|
#define S24_MAX 8388607
|
|
#define S24_MAX_F 8388607.0f
|
|
#define S24_SCALE 8388607.0f
|
|
#define S24_TO_F32(v) (((int32_t)(v)) * (1.0f / S24_SCALE))
|
|
#define F32_TO_S24(v) (int32_t)(SPA_CLAMP(v, -1.0f, 1.0f) * S24_SCALE)
|
|
|
|
|
|
#define S32_TO_F32(v) S24_TO_F32((v) >> 8)
|
|
#define F32_TO_S32(v) (F32_TO_S24(v) << 8)
|
|
|
|
|
|
static inline int32_t read_s24(const void *src)
|
|
{
|
|
const int8_t *s = src;
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
return (((int32_t)s[2] << 16) | ((uint32_t)(uint8_t)s[1] << 8) | (uint32_t)(uint8_t)s[0]);
|
|
#else
|
|
return (((int32_t)s[0] << 16) | ((uint32_t)(uint8_t)s[1] << 8) | (uint32_t)(uint8_t)s[2]);
|
|
#endif
|
|
}
|
|
|
|
static inline void write_s24(void *dst, int32_t val)
|
|
{
|
|
uint8_t *d = dst;
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
d[0] = (uint8_t) (val);
|
|
d[1] = (uint8_t) (val >> 8);
|
|
d[2] = (uint8_t) (val >> 16);
|
|
#else
|
|
d[0] = (uint8_t) (val >> 16);
|
|
d[1] = (uint8_t) (val >> 8);
|
|
d[2] = (uint8_t) (val);
|
|
#endif
|
|
}
|
|
|
|
#if defined (__SSE2__)
|
|
#include "fmt-ops-sse2.c"
|
|
#endif
|
|
|
|
static void
|
|
conv_copy8d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n_channels; i++)
|
|
memcpy(dst[i], src[i], n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_copy8(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
memcpy(dst[0], src[0], n_samples * n_channels);
|
|
}
|
|
|
|
|
|
static void
|
|
conv_copy16d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n_channels; i++)
|
|
memcpy(dst[i], src[i], n_samples * sizeof(int16_t));
|
|
}
|
|
|
|
static void
|
|
conv_copy16(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
memcpy(dst[0], src[0], n_samples * sizeof(int16_t) * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_copy24d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n_channels; i++)
|
|
memcpy(dst[i], src[i], n_samples * 3);
|
|
}
|
|
|
|
static void
|
|
conv_copy24(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
memcpy(dst[0], src[0], n_samples * 3 * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_copy32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n_channels; i++)
|
|
memcpy(dst[i], src[i], n_samples * sizeof(int32_t));
|
|
}
|
|
|
|
static void
|
|
conv_copy32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
memcpy(dst[0], src[0], n_samples * sizeof(int32_t) * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_u8d_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const uint8_t *s = src[i];
|
|
float *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = U8_TO_F32(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_u8_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_u8d_to_f32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_u8_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint8_t *s = src[0];
|
|
float **d = (float **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = U8_TO_F32(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_u8d_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint8_t **s = (const uint8_t **) src;
|
|
float *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = U8_TO_F32(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s16d_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const int16_t *s = src[i];
|
|
float *d = dst[i];
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = S16_TO_F32(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s16_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_s16d_to_f32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_s16_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int16_t *s = src[0];
|
|
float **d = (float **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = S16_TO_F32(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s16d_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int16_t **s = (const int16_t **) src;
|
|
float *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = S16_TO_F32(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s32d_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const int32_t *s = src[i];
|
|
float *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = S32_TO_F32(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s32_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_s32d_to_f32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_s32_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int32_t *s = src[0];
|
|
float **d = (float **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = S32_TO_F32(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s32d_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int32_t **s = (const int32_t **) src;
|
|
float *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = S32_TO_F32(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24d_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const int8_t *s = src[i];
|
|
float *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
d[j] = S24_TO_F32(read_s24(s));
|
|
s += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_s24d_to_f32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_s24_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint8_t *s = src[0];
|
|
float **d = (float **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++) {
|
|
d[i][j] = S24_TO_F32(read_s24(s));
|
|
s += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24d_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint8_t **s = (const uint8_t **) src;
|
|
float *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++) {
|
|
*d++ = S24_TO_F32(read_s24(&s[i][j*3]));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_32d_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const int32_t *s = src[i];
|
|
float *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = S24_TO_F32(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_32_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_s24_32d_to_f32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_s24_32_to_f32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int32_t *s = src[0];
|
|
float **d = (float **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = S24_TO_F32(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_32d_to_f32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int32_t **s = (const int32_t **) src;
|
|
float *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = S24_TO_F32(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_u8d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
uint8_t *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = F32_TO_U8(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_u8(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_f32d_to_u8d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_u8d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
uint8_t **d = (uint8_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = F32_TO_U8(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_u8(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
uint8_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = F32_TO_U8(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
int16_t *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = F32_TO_S16(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s16(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_f32d_to_s16d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s16d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
int16_t **d = (int16_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = F32_TO_S16(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
int16_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = F32_TO_S16(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
int32_t *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = F32_TO_S32(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_f32d_to_s32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
int32_t **d = (int32_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = F32_TO_S32(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
int32_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = F32_TO_S32(s[i][j]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
conv_f32d_to_s24d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
uint8_t *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
write_s24(d, F32_TO_S24(s[j]));
|
|
d += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s24(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_f32d_to_s24d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s24d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
uint8_t **d = (uint8_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++) {
|
|
write_s24(&d[i][j*3], F32_TO_S24(*s++));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s24(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
uint8_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++) {
|
|
write_s24(d, F32_TO_S24(s[i][j]));
|
|
d += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
conv_f32d_to_s24_32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
int32_t *d = dst[i];
|
|
|
|
for (j = 0; j < n_samples; j++)
|
|
d[j] = F32_TO_S24(s[j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s24_32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
conv_f32d_to_s24_32d(data, dst, src, 1, n_samples * n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s24_32d(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
int32_t **d = (int32_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = F32_TO_S24(*s++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s24_32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const float **s = (const float **) src;
|
|
int32_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = F32_TO_S24(s[i][j]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
deinterleave_8(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint8_t *s = src[0];
|
|
uint8_t **d = (uint8_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = *s++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
deinterleave_16(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint16_t *s = src[0];
|
|
uint16_t **d = (uint16_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = *s++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
deinterleave_24(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint8_t *s = src[0];
|
|
uint8_t **d = (uint8_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++) {
|
|
write_s24(&d[i][j*3], read_s24(s));
|
|
s += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
deinterleave_32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const uint32_t *s = src[0];
|
|
uint32_t **d = (uint32_t **) dst;
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
d[i][j] = *s++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
interleave_8(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int8_t **s = (const int8_t **) src;
|
|
uint8_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = s[i][j];
|
|
}
|
|
}
|
|
|
|
static void
|
|
interleave_16(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int16_t **s = (const int16_t **) src;
|
|
uint16_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = s[i][j];
|
|
}
|
|
}
|
|
|
|
static void
|
|
interleave_24(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int8_t **s = (const int8_t **) src;
|
|
uint8_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++) {
|
|
write_s24(d, read_s24(&s[i][j*3]));
|
|
d += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
interleave_32(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
|
{
|
|
const int32_t **s = (const int32_t **) src;
|
|
uint32_t *d = dst[0];
|
|
int i, j;
|
|
|
|
for (j = 0; j < n_samples; j++) {
|
|
for (i = 0; i < n_channels; i++)
|
|
*d++ = s[i][j];
|
|
}
|
|
}
|
|
|
|
|
|
typedef void (*convert_func_t) (void *data, void *dst[], const void *src[],
|
|
int n_channels, int n_samples);
|
|
|
|
static const struct conv_info {
|
|
uint32_t src_fmt;
|
|
uint32_t dst_fmt;
|
|
#define FEATURE_SSE2 SPA_CPU_FLAG_SSE2
|
|
uint32_t features;
|
|
|
|
convert_func_t func;
|
|
} conv_table[] =
|
|
{
|
|
/* to f32 */
|
|
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_F32, 0, conv_u8_to_f32 },
|
|
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_F32P, 0, conv_u8d_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_F32P, 0, conv_u8_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_F32, 0, conv_u8d_to_f32 },
|
|
|
|
|
|
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32, 0, conv_s16_to_f32 },
|
|
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_F32P, 0, conv_s16d_to_f32d },
|
|
#if defined (__SSE2__)
|
|
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, FEATURE_SSE2, conv_s16_to_f32d_sse2 },
|
|
#endif
|
|
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 0, conv_s16_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_F32, 0, conv_s16d_to_f32 },
|
|
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32, 0, conv_copy32 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32P, 0, conv_copy32d },
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32P, 0, deinterleave_32 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32, 0, interleave_32 },
|
|
|
|
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32, 0, conv_s32_to_f32 },
|
|
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_F32P, 0, conv_s32d_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32P, 0, conv_s32_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_F32, 0, conv_s32d_to_f32 },
|
|
|
|
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32, 0, conv_s24_to_f32 },
|
|
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_F32P, 0, conv_s24d_to_f32d },
|
|
#if defined (__SSE2__)
|
|
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, FEATURE_SSE2, conv_s24_to_f32d_sse2 },
|
|
#endif
|
|
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, conv_s24_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_F32, 0, conv_s24d_to_f32 },
|
|
|
|
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_F32, 0, conv_s24_32_to_f32 },
|
|
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_F32P, 0, conv_s24_32d_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_F32P, 0, conv_s24_32_to_f32d },
|
|
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_F32, 0, conv_s24_32d_to_f32 },
|
|
|
|
/* from f32 */
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U8, 0, conv_f32_to_u8 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U8P, 0, conv_f32d_to_u8d },
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U8P, 0, conv_f32_to_u8d },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U8, 0, conv_f32d_to_u8 },
|
|
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16, 0, conv_f32_to_s16 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16P, 0, conv_f32d_to_s16d },
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16P, 0, conv_f32_to_s16d },
|
|
#if defined (__SSE2__)
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, FEATURE_SSE2, conv_f32d_to_s16_sse2 },
|
|
#endif
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 0, conv_f32d_to_s16 },
|
|
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S32, 0, conv_f32_to_s32 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32P, 0, conv_f32d_to_s32d },
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S32P, 0, conv_f32_to_s32d },
|
|
#if defined (__SSE2__)
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, FEATURE_SSE2, conv_f32d_to_s32_sse2 },
|
|
#endif
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, 0, conv_f32d_to_s32 },
|
|
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24, 0, conv_f32_to_s24 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24P, 0, conv_f32d_to_s24d },
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24P, 0, conv_f32_to_s24d },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24, 0, conv_f32d_to_s24 },
|
|
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24_32, 0, conv_f32_to_s24_32 },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_32P, 0, conv_f32d_to_s24_32d },
|
|
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24_32P, 0, conv_f32_to_s24_32d },
|
|
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_32, 0, conv_f32d_to_s24_32 },
|
|
|
|
/* u8 */
|
|
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8, 0, conv_copy8 },
|
|
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_U8P, 0, conv_copy8d },
|
|
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, 0, deinterleave_8 },
|
|
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_U8, 0, interleave_8 },
|
|
|
|
/* s16 */
|
|
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_S16, 0, conv_copy16 },
|
|
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_S16P, 0, conv_copy16d },
|
|
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_S16P, 0, deinterleave_16 },
|
|
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_S16, 0, interleave_16 },
|
|
|
|
/* s32 */
|
|
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32, 0, conv_copy32 },
|
|
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32P, 0, conv_copy32d },
|
|
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32P, 0, deinterleave_32 },
|
|
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32, 0, interleave_32 },
|
|
|
|
/* s24 */
|
|
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_S24, 0, conv_copy24 },
|
|
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_S24P, 0, conv_copy24d },
|
|
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_S24P, 0, deinterleave_24 },
|
|
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_S24, 0, interleave_24 },
|
|
|
|
/* s24_32 */
|
|
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32, 0, conv_copy32 },
|
|
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32P, 0, conv_copy32d },
|
|
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32P, 0, deinterleave_32 },
|
|
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32, 0, interleave_32 },
|
|
};
|
|
|
|
static const struct conv_info *find_conv_info(uint32_t src_fmt, uint32_t dst_fmt, uint32_t features)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < SPA_N_ELEMENTS(conv_table); i++) {
|
|
if (conv_table[i].src_fmt == src_fmt &&
|
|
conv_table[i].dst_fmt == dst_fmt &&
|
|
(conv_table[i].features == 0 || (conv_table[i].features & features) != 0))
|
|
return &conv_table[i];
|
|
}
|
|
return NULL;
|
|
}
|