pipewire/spa/plugins/alsa/alsa-utils.c
Wim Taymans 5de7898808 node: implement activation
Make an eventfd for each node and listen for events when the node
is activated.
Reorganize some graphs links to make it possible to activiate nodes
by signaling the eventfd
Pass the peer node to each remote node and let the remote node
directly activate the peer when needed.
Let each node signal the driver node when finished.
With this we don't need to go through the daemon to schedule the
graph, nodes will simply activate eachother. We only go to the
server when there is a server node to schedule.
Keep stats about the state of each node and the time it was
triggered, running and finished.
2019-02-12 17:42:33 +01:00

1091 lines
31 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <sys/time.h>
#include <math.h>
#include <limits.h>
#include <sys/timerfd.h>
#include <spa/pod/filter.h>
#include <spa/control/control.h>
#include "alsa-utils.h"
#define CHECK(s,msg) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", snd_strerror(err)); return err; }
static int spa_alsa_open(struct state *state)
{
int err;
struct props *props = &state->props;
if (state->opened)
return 0;
CHECK(snd_output_stdio_attach(&state->output, stderr, 0), "attach failed");
spa_log_info(state->log, "ALSA device open '%s'", props->device);
CHECK(snd_pcm_open(&state->hndl,
props->device,
state->stream,
SND_PCM_NONBLOCK |
SND_PCM_NO_AUTO_RESAMPLE |
SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "open failed");
state->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK);
state->opened = true;
state->sample_count = 0;
state->sample_time = 0;
return 0;
}
int spa_alsa_close(struct state *state)
{
int err = 0;
if (!state->opened)
return 0;
spa_log_info(state->log, "Device '%s' closing", state->props.device);
CHECK(snd_pcm_close(state->hndl), "close failed");
close(state->timerfd);
state->opened = false;
return err;
}
struct format_info {
uint32_t spa_format;
uint32_t spa_pformat;
snd_pcm_format_t format;
};
static const struct format_info format_info[] = {
{ SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN},
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8},
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8},
{ SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE},
{ SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE},
{ SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE},
{ SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE},
{ SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE},
{ SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE},
{ SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE},
{ SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE},
{ SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE},
{ SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE},
{ SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE},
{ SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE},
{ SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE},
{ SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE},
{ SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE},
{ SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE},
{ SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE},
{ SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE},
{ SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE},
{ SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE},
};
static snd_pcm_format_t spa_format_to_alsa(uint32_t format)
{
size_t i;
for (i = 0; i < SPA_N_ELEMENTS(format_info); i++) {
if (format_info[i].spa_format == format)
return format_info[i].format;
}
return SND_PCM_FORMAT_UNKNOWN;
}
struct chmap_info {
enum snd_pcm_chmap_position pos;
enum spa_audio_channel channel;
};
static const struct chmap_info chmap_info[] = {
[SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN },
[SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA },
[SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO },
[SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL },
[SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR },
[SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL },
[SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR },
[SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC },
[SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE },
[SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL },
[SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR },
[SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC },
[SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC },
[SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC },
[SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC },
[SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC },
[SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW },
[SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW },
[SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH },
[SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH },
[SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH },
[SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC },
[SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL },
[SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR },
[SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC },
[SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL },
[SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR },
[SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC },
[SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC },
[SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC },
[SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL },
[SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR },
[SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE },
[SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE },
[SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC },
[SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC },
[SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC },
};
#define _M(ch) (1LL << SND_CHMAP_ ##ch)
struct def_mask {
int channels;
uint64_t mask;
};
static const struct def_mask default_layouts[] = {
{ 0, 0 },
{ 1, _M(MONO) },
{ 2, _M(FL) | _M(FR) },
{ 3, _M(FL) | _M(FR) | _M(LFE) },
{ 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) },
{ 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) },
{ 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) },
{ 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) },
{ 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) },
};
static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos)
{
return chmap_info[pos].channel;
}
static void sanitize_map(snd_pcm_chmap_t* map)
{
uint64_t mask = 0, p, dup = 0;
const struct def_mask *def;
uint32_t i, j, pos;
for (i = 0; i < map->channels; i++) {
if (map->pos[i] < 0 || map->pos[i] > SND_CHMAP_LAST)
map->pos[i] = SND_CHMAP_UNKNOWN;
p = 1LL << map->pos[i];
if (mask & p) {
/* duplicate channel */
for (j = 0; j <= i; j++)
if (map->pos[j] == map->pos[i])
map->pos[j] = SND_CHMAP_UNKNOWN;
dup |= p;
p = 1LL << SND_CHMAP_UNKNOWN;
}
mask |= p;
}
if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0)
return;
def = &default_layouts[map->channels];
/* remove duplicates */
mask &= ~dup;
/* keep unassigned channels */
mask = def->mask & ~mask;
pos = 0;
for (i = 0; i < map->channels; i++) {
if (map->pos[i] == SND_CHMAP_UNKNOWN) {
do {
mask >>= 1;
pos++;
}
while (mask != 0 && (mask & 1) == 0);
map->pos[i] = mask ? pos : 0;
}
}
}
int
spa_alsa_enum_format(struct state *state, uint32_t *index,
const struct spa_pod *filter,
struct spa_pod **result,
struct spa_pod_builder *builder)
{
snd_pcm_t *hndl;
snd_pcm_hw_params_t *params;
snd_pcm_format_mask_t *fmask;
snd_pcm_access_mask_t *amask;
snd_pcm_chmap_query_t **maps;
size_t i, j;
int err, dir;
unsigned int min, max;
uint8_t buffer[4096];
struct spa_pod_builder b = { 0 };
struct spa_pod_choice *choice;
struct spa_pod *fmt;
int res;
bool opened;
struct spa_pod_frame f[2];
opened = state->opened;
if ((err = spa_alsa_open(state)) < 0)
return err;
next:
spa_pod_builder_init(&b, buffer, sizeof(buffer));
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available");
spa_pod_builder_push_object(&b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_add(&b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
0);
snd_pcm_format_mask_alloca(&fmask);
snd_pcm_hw_params_get_format_mask(params, fmask);
snd_pcm_access_mask_alloca(&amask);
snd_pcm_hw_params_get_access_mask(params, amask);
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_format, 0);
spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_None, 0);
choice = (struct spa_pod_choice*)spa_pod_builder_frame(&b, &f[1]);
for (i = 1, j = 0; i < SPA_N_ELEMENTS(format_info); i++) {
const struct format_info *fi = &format_info[i];
if (snd_pcm_format_mask_test(fmask, fi->format)) {
if (snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED)) {
if (j++ == 0)
spa_pod_builder_id(&b, fi->spa_format);
spa_pod_builder_id(&b, fi->spa_format);
}
if (snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) &&
fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN) {
if (j++ == 0)
spa_pod_builder_id(&b, fi->spa_pformat);
spa_pod_builder_id(&b, fi->spa_pformat);
}
}
}
if (j > 1)
choice->body.type = SPA_CHOICE_Enum;
spa_pod_builder_pop(&b, &f[1]);
CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min");
CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max");
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_rate, 0);
spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_None, 0);
choice = (struct spa_pod_choice*)spa_pod_builder_frame(&b, &f[1]);
spa_pod_builder_int(&b, SPA_CLAMP(DEFAULT_RATE, min, max));
if (min != max) {
spa_pod_builder_int(&b, min);
spa_pod_builder_int(&b, max);
choice->body.type = SPA_CHOICE_Range;
}
spa_pod_builder_pop(&b, &f[1]);
CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min");
CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max");
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_channels, 0);
if ((maps = snd_pcm_query_chmaps(hndl)) != NULL) {
uint32_t channel;
snd_pcm_chmap_t* map;
if (maps[*index] == NULL) {
res = 0;
snd_pcm_free_chmaps(maps);
goto exit;
}
map = &maps[*index]->map;
spa_log_debug(state->log, "map %d channels", map->channels);
sanitize_map(map);
spa_pod_builder_int(&b, map->channels);
spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_position, 0);
spa_pod_builder_push_array(&b, &f[1]);
for (j = 0; j < map->channels; j++) {
spa_log_debug(state->log, "position %zd %d", j, map->pos[j]);
channel = chmap_position_to_channel(map->pos[j]);
spa_pod_builder_id(&b, channel);
}
spa_pod_builder_pop(&b, &f[1]);
snd_pcm_free_chmaps(maps);
}
else {
if (*index > 0) {
res = 0;
goto exit;
}
spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_None, 0);
choice = (struct spa_pod_choice*)spa_pod_builder_frame(&b, &f[1]);
spa_pod_builder_int(&b, SPA_CLAMP(DEFAULT_CHANNELS, min, max));
if (min != max) {
spa_pod_builder_int(&b, min);
spa_pod_builder_int(&b, max);
choice->body.type = SPA_CHOICE_Range;
}
spa_pod_builder_pop(&b, &f[1]);
}
fmt = spa_pod_builder_pop(&b, &f[0]);
(*index)++;
if ((res = spa_pod_filter(builder, result, fmt, filter)) < 0)
goto next;
res = 1;
exit:
if (!opened)
spa_alsa_close(state);
return res;
}
int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags)
{
unsigned int rrate, rchannels;
snd_pcm_uframes_t period_size;
int err, dir;
snd_pcm_hw_params_t *params;
snd_pcm_format_t format;
struct spa_audio_info_raw *info = &fmt->info.raw;
snd_pcm_t *hndl;
unsigned int periods;
if ((err = spa_alsa_open(state)) < 0)
return err;
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
/* choose all parameters */
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available");
/* set hardware resampling */
CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample");
/* set the interleaved read/write format */
CHECK(snd_pcm_hw_params_set_access(hndl, params, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set_access");
/* disable ALSA wakeups, we use a timer */
if (snd_pcm_hw_params_can_disable_period_wakeup(params))
CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup");
/* set the sample format */
format = spa_format_to_alsa(info->format);
if (format == SND_PCM_FORMAT_UNKNOWN) {
spa_log_warn(state->log, "unknown format %u", info->format);
return -EINVAL;
}
spa_log_info(state->log, "Stream parameters are %iHz, %s, %i channels", info->rate, snd_pcm_format_name(format),
info->channels);
CHECK(snd_pcm_hw_params_set_format(hndl, params, format), "set_format");
/* set the count of channels */
rchannels = info->channels;
CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels");
if (rchannels != info->channels) {
spa_log_warn(state->log, "Channels doesn't match (requested %u, get %u", info->channels, rchannels);
if (flags & SPA_NODE_PARAM_FLAG_NEAREST)
info->channels = rchannels;
else
return -EINVAL;
}
/* set the stream rate */
rrate = info->rate;
CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near");
if (rrate != info->rate) {
spa_log_warn(state->log, "Rate doesn't match (requested %iHz, get %iHz)", info->rate, rrate);
if (flags & SPA_NODE_PARAM_FLAG_NEAREST)
info->rate = rrate;
else
return -EINVAL;
}
state->format = format;
state->channels = info->channels;
state->rate = info->rate;
state->frame_size = info->channels * (snd_pcm_format_physical_width(format) / 8);
dir = 0;
period_size = 1024;
CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near");
CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max");
CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near");
state->period_frames = period_size;
periods = state->buffer_frames / state->period_frames;
spa_log_info(state->log, "buffer frames %zd, period frames %zd, periods %u, frame_size %zd",
state->buffer_frames, state->period_frames, periods, state->frame_size);
/* write the parameters to device */
CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params");
return 0;
}
static int set_swparams(struct state *state)
{
snd_pcm_t *hndl = state->hndl;
int err = 0;
snd_pcm_sw_params_t *params;
snd_pcm_sw_params_alloca(&params);
/* get the current params */
CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current");
CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode");
#if 0
snd_pcm_uframes_t boundary;
CHECK(snd_pcm_sw_params_get_boundary(params, &boundary), "get_boundary");
CHECK(snd_pcm_sw_params_set_stop_threshold(hndl, params, boundary), "set_stop_threshold");
#endif
/* start the transfer */
CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold");
CHECK(snd_pcm_sw_params_set_period_event(hndl, params, 0), "set_period_event");
/* write the parameters to the playback device */
CHECK(snd_pcm_sw_params(hndl, params), "sw_params");
return 0;
}
static int set_timeout(struct state *state, uint64_t time)
{
struct itimerspec ts;
if (!state->slaved) {
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
timerfd_settime(state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL);
}
return 0;
}
static int alsa_recover(struct state *state, int err)
{
int res, st;
snd_pcm_status_t *status;
snd_pcm_status_alloca(&status);
if ((res = snd_pcm_status(state->hndl, status)) < 0) {
spa_log_error(state->log, "snd_pcm_status error: %s", snd_strerror(res));
return res;
}
st = snd_pcm_status_get_state(status);
switch (st) {
case SND_PCM_STATE_XRUN:
{
struct timeval now, trigger, diff;
uint64_t xrun, missing;
snd_pcm_status_get_tstamp (status, &now);
snd_pcm_status_get_trigger_tstamp (status, &trigger);
timersub(&now, &trigger, &diff);
xrun = SPA_TIMEVAL_TO_USEC(&diff);
missing = xrun * state->rate / SPA_USEC_PER_SEC;
spa_log_error(state->log, "xrun of %"PRIu64" usec %"PRIu64" %f",
xrun, missing, state->safety);
break;
}
default:
spa_log_error(state->log, "recover from error state %d", st);
break;
}
if ((res = snd_pcm_recover(state->hndl, err, true)) < 0) {
spa_log_error(state->log, "snd_pcm_recover error: %s", snd_strerror(res));
return res;
}
dll_init(&state->dll, DLL_BW_MAX);
if (state->stream == SND_PCM_STREAM_CAPTURE) {
if ((res = snd_pcm_start(state->hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(res));
return res;
}
state->alsa_started = true;
} else {
state->alsa_started = false;
spa_alsa_write(state, state->threshold * 2, true);
}
return 0;
}
static int get_status(struct state *state, snd_pcm_sframes_t *delay)
{
snd_pcm_sframes_t av;
int res;
if ((av = snd_pcm_avail(state->hndl)) < 0) {
if ((res = alsa_recover(state, av)) < 0)
return res;
if ((av = snd_pcm_avail(state->hndl)) < 0)
return av;
}
if (delay) {
if (state->stream == SND_PCM_STREAM_PLAYBACK)
*delay = state->buffer_frames - av;
else
*delay = av;
}
return 0;
}
static int update_time(struct state *state, uint64_t nsec, snd_pcm_sframes_t delay, bool slaved)
{
uint64_t sample_time, elapsed;
double tw = 0.0, extra = 0.0;
int64_t sdelay;
sample_time = state->sample_count;
if (!slaved) {
elapsed = sample_time - state->sample_time;
} else {
elapsed = state->threshold;
}
if (state->stream == SND_PCM_STREAM_CAPTURE) {
elapsed = state->threshold;
extra = (double) elapsed / state->rate;
sdelay = (int64_t)(delay - elapsed);
} else {
if (elapsed == 0) {
elapsed = state->threshold / 2;
delay = state->threshold / 2;
}
state->sample_time = sample_time;
sdelay = -delay;
}
/* we try to match the delay with the number of delayed samples */
tw = nsec * 1e-9 - (double)sdelay / state->rate - state->safety;
tw = dll_update(&state->dll, tw, (double)elapsed / state->rate);
state->next_time = (tw + extra - state->safety) * 1e9;
if (state->dll.bw > DLL_BW_MIN && tw > state->dll.base + DLL_BW_PERIOD)
dll_bandwidth(&state->dll, DLL_BW_MIN);
if (state->clock) {
state->clock->nsec = state->last_time;
state->clock->rate = SPA_FRACTION(1, state->rate);
state->clock->position = state->sample_count;
state->clock->delay = sdelay;
state->clock->rate_diff = state->dll.dt;
}
state->old_dt = SPA_CLAMP(state->dll.dt, 0.95, 1.05);
#if 0
if (slaved && state->notify) {
struct spa_pod_builder b = { 0 };
spa_pod_builder_init(&b, state->notify, 1024);
spa_pod_builder_push_sequence(&b, 0);
spa_pod_builder_control(&b, 0, SPA_CONTROL_Properties);
spa_pod_builder_push_object(&b, SPA_TYPE_OBJECT_Props, SPA_PARAM_Props);
spa_pod_builder_prop(&b, SPA_PROP_rate, 0);
spa_pod_builder_double(&b, state->old_dt);
spa_pod_builder_pop(&b);
spa_pod_builder_pop(&b);
}
#endif
spa_log_trace(state->log, "%"PRIu64" %f %"PRIi64" %"PRIi64" %"PRIi64" %d %"PRIu64" %f %f", nsec,
state->old_dt, delay, elapsed, (int64_t)(nsec - state->last_time),
state->threshold, state->next_time, tw, extra);
state->last_time = nsec;
return 0;
}
int spa_alsa_write(struct state *state, snd_pcm_uframes_t silence, bool start)
{
snd_pcm_t *hndl = state->hndl;
const snd_pcm_channel_area_t *my_areas;
snd_pcm_uframes_t written, frames, offset, off, to_write, total_written;
int res;
if (state->position && state->threshold != state->position->size)
state->threshold = state->position->size;
if (state->slaved) {
uint64_t nsec, master;
snd_pcm_sframes_t delay;
master = state->position->clock.position + state->position->clock.delay;
nsec = master * SPA_NSEC_PER_SEC / state->rate;
if ((res = get_status(state, &delay)) < 0)
return res;
if ((res = update_time(state, nsec, delay, true)) < 0)
return res;
spa_log_trace(state->log, "slave %f %"PRIi64" %"PRIu64" %d",
state->dll.dt, nsec, delay, state->rate);
if (delay > state->threshold * 2) {
snd_pcm_rewind(state->hndl, state->threshold);
delay -= state->threshold;
}
}
total_written = 0;
again:
frames = state->buffer_frames;
if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res));
return res;
}
spa_log_trace(state->log, "begin %ld %ld %d", offset, frames, state->threshold);
silence = SPA_MIN(silence, frames);
to_write = frames;
off = offset;
written = 0;
while (!spa_list_is_empty(&state->ready) && to_write > 0) {
uint8_t *dst, *src;
size_t n_bytes, n_frames;
struct buffer *b;
struct spa_data *d;
uint32_t index, offs, avail, size, maxsize, l0, l1;
b = spa_list_first(&state->ready, struct buffer, link);
d = b->buf->datas;
dst = SPA_MEMBER(my_areas[0].addr, off * state->frame_size, uint8_t);
src = d[0].data;
size = d[0].chunk->size;
maxsize = d[0].maxsize;
index = d[0].chunk->offset + state->ready_offset;
avail = size - state->ready_offset;
avail /= state->frame_size;
n_frames = SPA_MIN(avail, to_write);
n_bytes = n_frames * state->frame_size;
offs = index % maxsize;
l0 = SPA_MIN(n_bytes, maxsize - offs);
l1 = n_bytes - l0;
memcpy(dst, src + offs, l0);
if (l1 > 0)
memcpy(dst + l0, src, l1);
state->ready_offset += n_bytes;
if (state->ready_offset >= size) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
state->io->buffer_id = b->id;
spa_log_trace(state->log, "alsa-util %p: reuse buffer %u", state, b->id);
state->callbacks->reuse_buffer(state->callbacks_data, 0, b->id);
state->ready_offset = 0;
}
written += n_frames;
off += n_frames;
to_write -= n_frames;
if (silence > n_frames)
silence -= n_frames;
else
silence = 0;
}
if (silence > 0) {
spa_log_trace(state->log, "silence %ld", silence);
snd_pcm_areas_silence(my_areas, off, state->channels, silence, state->format);
written += silence;
}
spa_log_trace(state->log, "commit %ld %ld %"PRIi64, offset, written, state->sample_count);
total_written += written;
if ((res = snd_pcm_mmap_commit(hndl, offset, written)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res));
if (res != -EPIPE && res != -ESTRPIPE)
return res;
}
if (!spa_list_is_empty(&state->ready) && total_written < state->threshold && written > 0)
goto again;
state->sample_count += total_written;
if (!state->alsa_started && written > 0 && start) {
spa_log_trace(state->log, "snd_pcm_start %lu", written);
if ((res = snd_pcm_start(hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(res));
return res;
}
state->alsa_started = true;
}
return 0;
}
static snd_pcm_uframes_t
push_frames(struct state *state,
const snd_pcm_channel_area_t *my_areas,
snd_pcm_uframes_t offset,
snd_pcm_uframes_t frames)
{
snd_pcm_uframes_t total_frames = 0;
if (spa_list_is_empty(&state->free)) {
spa_log_warn(state->log, "no more buffers");
total_frames = state->threshold;
} else {
uint8_t *src;
size_t n_bytes;
struct buffer *b;
struct spa_data *d;
uint32_t index, offs, avail, l0, l1;
struct spa_io_buffers *io;
b = spa_list_first(&state->free, struct buffer, link);
spa_list_remove(&b->link);
if (b->h) {
b->h->seq = state->sample_count;
b->h->pts = SPA_TIMESPEC_TO_NSEC(&state->now);
b->h->dts_offset = 0;
}
d = b->buf->datas;
src = SPA_MEMBER(my_areas[0].addr, offset * state->frame_size, uint8_t);
avail = d[0].maxsize / state->frame_size;
index = 0;
total_frames = SPA_MIN(avail, frames);
n_bytes = total_frames * state->frame_size;
offs = index % d[0].maxsize;
l0 = SPA_MIN(n_bytes, d[0].maxsize - offs);
l1 = n_bytes - l0;
memcpy(SPA_MEMBER(d[0].data, offs, void), src, l0);
if (l1 > 0)
memcpy(d[0].data, src + l0, l1);
d[0].chunk->offset = index;
d[0].chunk->size = n_bytes;
d[0].chunk->stride = state->frame_size;
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
io = state->io;
if (io != NULL && io->status != SPA_STATUS_HAVE_BUFFER) {
io->buffer_id = b->id;
io->status = SPA_STATUS_HAVE_BUFFER;
}
else {
spa_list_append(&state->ready, &b->link);
}
state->callbacks->process(state->callbacks_data, SPA_STATUS_HAVE_BUFFER);
}
return total_frames;
}
static int handle_play(struct state *state)
{
int res;
snd_pcm_sframes_t delay;
uint64_t nsec;
int64_t jitter;
if (state->position && state->threshold != state->position->size)
state->threshold = state->position->size;
clock_gettime(CLOCK_MONOTONIC, &state->now);
if ((res = get_status(state, &delay)) < 0)
return 0;
nsec = SPA_TIMESPEC_TO_NSEC(&state->now);
jitter = nsec - state->next_time;
spa_log_trace(state->log, "timeout %ld %"PRIu64" %"PRIu64" %"PRIi64" %d %ld", delay,
nsec, state->next_time, jitter, state->threshold, state->sample_count);
if (delay >= state->threshold * 2) {
spa_log_trace(state->log, "early wakeup %ld %d", delay, state->threshold);
state->next_time = nsec + (state->threshold / 2) * SPA_NSEC_PER_SEC / state->rate;
return 0;
}
if ((res = update_time(state, nsec, delay, false)) < 0)
return 0;
if (spa_list_is_empty(&state->ready)) {
struct spa_io_buffers *io = state->io;
spa_log_trace(state->log, "alsa-util %p: %d", state, io->status);
io->status = SPA_STATUS_NEED_BUFFER;
if (state->range) {
state->range->offset = state->sample_count * state->frame_size;
state->range->min_size = state->threshold * state->frame_size;
state->range->max_size = state->threshold * state->frame_size;
}
state->callbacks->process(state->callbacks_data, SPA_STATUS_NEED_BUFFER);
}
else {
spa_alsa_write(state, 0, true);
}
return 0;
}
static void alsa_on_playback_timeout_event(struct spa_source *source)
{
struct state *state = source->data;
uint64_t expire;
if (state->started && read(state->timerfd, &expire, sizeof(uint64_t)) != sizeof(uint64_t))
spa_log_warn(state->log, "error reading timerfd: %s", strerror(errno));
handle_play(state);
set_timeout(state, state->next_time);
}
static void alsa_on_capture_timeout_event(struct spa_source *source)
{
uint64_t expire, nsec;
int res;
struct state *state = source->data;
snd_pcm_t *hndl = state->hndl;
snd_pcm_sframes_t delay;
snd_pcm_uframes_t total_read = 0, to_read;
const snd_pcm_channel_area_t *my_areas;
int64_t jitter;
if (state->started && read(state->timerfd, &expire, sizeof(uint64_t)) != sizeof(uint64_t))
spa_log_warn(state->log, "error reading timerfd: %s", strerror(errno));
if (state->position)
state->threshold = state->position->size;
clock_gettime(CLOCK_MONOTONIC, &state->now);
if ((res = get_status(state, &delay)) < 0)
return;
nsec = SPA_TIMESPEC_TO_NSEC(&state->now);
jitter = nsec - state->next_time;
spa_log_trace(state->log, "timeout %ld %"PRIu64" %"PRIu64" %"PRIi64" %d %ld", delay,
nsec, state->next_time, jitter, state->threshold, state->sample_count);
if (delay < state->threshold) {
spa_log_trace(state->log, "early wakeup %ld %d", delay, state->threshold);
state->next_time = nsec + (state->threshold - delay) * SPA_NSEC_PER_SEC / state->rate;
goto next;
}
if ((res = update_time(state, nsec, delay, false)) < 0)
return;
to_read = SPA_MIN(delay, state->threshold);
while (total_read < to_read) {
snd_pcm_uframes_t read, frames, offset;
frames = to_read - total_read;
spa_log_trace(state->log, "begin %ld %ld %ld %ld", offset, frames, to_read, total_read);
if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res));
return;
}
read = push_frames(state, my_areas, offset, frames);
if (read < frames)
to_read = 0;
spa_log_trace(state->log, "commit %ld %ld", offset, read);
if ((res = snd_pcm_mmap_commit(hndl, offset, read)) < 0) {
spa_log_error(state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res));
if (res != -EPIPE && res != -ESTRPIPE)
return;
}
total_read += read;
}
state->sample_count += total_read;
next:
set_timeout(state, state->next_time);
}
static void reset_buffers(struct state *this)
{
uint32_t i;
spa_list_init(&this->free);
spa_list_init(&this->ready);
for (i = 0; i < this->n_buffers; i++) {
struct buffer *b = &this->buffers[i];
if (this->stream == SND_PCM_STREAM_PLAYBACK) {
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
} else {
spa_list_append(&this->free, &b->link);
SPA_FLAG_UNSET(b->flags, BUFFER_FLAG_OUT);
}
}
}
int spa_alsa_start(struct state *state)
{
int err;
struct itimerspec ts;
if (state->started)
return 0;
if (state->position)
state->threshold = state->position->size;
else
state->threshold = state->props.min_latency;
state->slaved = false;
if (state->position && state->clock) {
if (state->position->clock.id != state->clock->id)
state->slaved = true;
}
dll_init(&state->dll, DLL_BW_MAX);
state->old_dt = 1.0;
state->safety = 0.0;
spa_log_debug(state->log, "alsa %p: start %d %d", state, state->threshold, state->slaved);
CHECK(set_swparams(state), "swparams");
snd_pcm_dump(state->hndl, state->output);
if ((err = snd_pcm_prepare(state->hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_prepare error: %s", snd_strerror(err));
return err;
}
if (!state->slaved) {
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
state->source.func = alsa_on_playback_timeout_event;
} else {
state->source.func = alsa_on_capture_timeout_event;
}
state->source.data = state;
state->source.fd = state->timerfd;
state->source.mask = SPA_IO_IN;
state->source.rmask = 0;
spa_loop_add_source(state->data_loop, &state->source);
}
reset_buffers(state);
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
state->alsa_started = false;
spa_alsa_write(state, state->threshold * 2, true);
} else {
if ((err = snd_pcm_start(state->hndl)) < 0) {
spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(err));
return err;
}
state->alsa_started = true;
}
if (!state->slaved) {
clock_gettime(CLOCK_MONOTONIC, &state->now);
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 1;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
timerfd_settime(state->timerfd, 0, &ts, NULL);
}
state->io->status = SPA_STATUS_OK;
state->io->buffer_id = SPA_ID_INVALID;
state->started = true;
return 0;
}
static int do_remove_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct state *state = user_data;
struct itimerspec ts;
if (!state->slaved) {
spa_loop_remove_source(state->data_loop, &state->source);
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 0;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
timerfd_settime(state->timerfd, 0, &ts, NULL);
}
return 0;
}
int spa_alsa_pause(struct state *state)
{
int err;
if (!state->started)
return 0;
spa_log_debug(state->log, "alsa %p: pause", state);
spa_loop_invoke(state->data_loop, do_remove_source, 0, NULL, 0, true, state);
if ((err = snd_pcm_drop(state->hndl)) < 0)
spa_log_error(state->log, "snd_pcm_drop %s", snd_strerror(err));
state->started = false;
return 0;
}