pipewire/spa/plugins/audioconvert/audioconvert.c
Wim Taymans 564c9b1ba5 Use "8 bit raw midi" for control ports again
There is no need to encode the potential format in the format.dsp of
control ports, this is just for legacy compatibility with JACK apps. The
actual format can be negotiated with the types field.

Fixes midi port visibility with apps compiled against 1.2, such as JACK
apps in flatpaks.
2025-05-23 16:46:13 +02:00

4369 lines
127 KiB
C

/* Spa */
/* SPDX-FileCopyrightText: Copyright © 2022 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <sys/mman.h>
#include <spa/support/plugin.h>
#include <spa/support/cpu.h>
#include <spa/support/loop.h>
#include <spa/support/log.h>
#include <spa/support/plugin-loader.h>
#include <spa/utils/result.h>
#include <spa/utils/list.h>
#include <spa/utils/json.h>
#include <spa/utils/names.h>
#include <spa/utils/string.h>
#include <spa/utils/ratelimit.h>
#include <spa/node/node.h>
#include <spa/node/io.h>
#include <spa/node/utils.h>
#include <spa/node/keys.h>
#include <spa/param/audio/format-utils.h>
#include <spa/param/audio/raw-json.h>
#include <spa/param/param.h>
#include <spa/param/latency-utils.h>
#include <spa/param/tag-utils.h>
#include <spa/pod/filter.h>
#include <spa/pod/dynamic.h>
#include <spa/debug/types.h>
#include <spa/control/ump-utils.h>
#include <spa/filter-graph/filter-graph.h>
#include "volume-ops.h"
#include "fmt-ops.h"
#include "channelmix-ops.h"
#include "resample.h"
#include "wavfile.h"
#undef SPA_LOG_TOPIC_DEFAULT
#define SPA_LOG_TOPIC_DEFAULT &log_topic
SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.audioconvert");
#define DEFAULT_RATE 48000
#define DEFAULT_CHANNELS 2
#define MAX_ALIGN FMT_OPS_MAX_ALIGN
#define MAX_BUFFERS 32
#define MAX_DATAS SPA_AUDIO_MAX_CHANNELS
#define MAX_PORTS (SPA_AUDIO_MAX_CHANNELS+1)
#define MAX_STAGES 64
#define MAX_GRAPH 9 /* 8 active + 1 replacement slot */
#define DEFAULT_MUTE false
#define DEFAULT_VOLUME VOLUME_NORM
#define DEFAULT_MIN_VOLUME 0.0
#define DEFAULT_MAX_VOLUME 10.0
struct volumes {
bool mute;
uint32_t n_volumes;
float volumes[SPA_AUDIO_MAX_CHANNELS];
};
static void init_volumes(struct volumes *vol)
{
uint32_t i;
vol->mute = DEFAULT_MUTE;
vol->n_volumes = 0;
for (i = 0; i < SPA_AUDIO_MAX_CHANNELS; i++)
vol->volumes[i] = DEFAULT_VOLUME;
}
struct volume_ramp_params {
unsigned int volume_ramp_samples;
unsigned int volume_ramp_step_samples;
unsigned int volume_ramp_time;
unsigned int volume_ramp_step_time;
enum spa_audio_volume_ramp_scale scale;
};
struct props {
float volume;
float min_volume;
float max_volume;
float prev_volume;
uint32_t n_channels;
uint32_t channel_map[SPA_AUDIO_MAX_CHANNELS];
struct volumes channel;
struct volumes soft;
struct volumes monitor;
struct volume_ramp_params vrp;
unsigned int have_soft_volume:1;
unsigned int mix_disabled:1;
unsigned int resample_disabled:1;
unsigned int resample_quality;
double rate;
char wav_path[512];
unsigned int lock_volumes:1;
unsigned int filter_graph_disabled:1;
};
static void props_reset(struct props *props)
{
uint32_t i;
props->volume = DEFAULT_VOLUME;
props->min_volume = DEFAULT_MIN_VOLUME;
props->max_volume = DEFAULT_MAX_VOLUME;
props->n_channels = 0;
for (i = 0; i < SPA_AUDIO_MAX_CHANNELS; i++)
props->channel_map[i] = SPA_AUDIO_CHANNEL_UNKNOWN;
init_volumes(&props->channel);
init_volumes(&props->soft);
init_volumes(&props->monitor);
props->have_soft_volume = false;
props->mix_disabled = false;
props->resample_disabled = false;
props->resample_quality = RESAMPLE_DEFAULT_QUALITY;
props->rate = 1.0;
spa_zero(props->wav_path);
props->lock_volumes = false;
props->filter_graph_disabled = false;
}
struct buffer {
uint32_t id;
#define BUFFER_FLAG_QUEUED (1<<0)
#define BUFFER_FLAG_MAPPED (1<<1)
uint32_t flags;
struct spa_list link;
struct spa_buffer *buf;
void *datas[MAX_DATAS];
};
struct port {
uint32_t direction;
uint32_t id;
struct spa_io_buffers *io;
uint64_t info_all;
struct spa_port_info info;
#define IDX_EnumFormat 0
#define IDX_Meta 1
#define IDX_IO 2
#define IDX_Format 3
#define IDX_Buffers 4
#define IDX_Latency 5
#define IDX_Tag 6
#define N_PORT_PARAMS 7
struct spa_param_info params[N_PORT_PARAMS];
char position[16];
struct buffer buffers[MAX_BUFFERS];
uint32_t n_buffers;
struct spa_latency_info latency[2];
unsigned int have_latency:1;
struct spa_audio_info format;
unsigned int valid:1;
unsigned int have_format:1;
unsigned int is_dsp:1;
unsigned int is_monitor:1;
unsigned int is_control:1;
uint32_t blocks;
uint32_t stride;
uint32_t maxsize;
const struct spa_pod_sequence *ctrl;
uint32_t ctrl_offset;
struct spa_list queue;
};
struct dir {
struct port *ports[MAX_PORTS];
uint32_t n_ports;
enum spa_direction direction;
enum spa_param_port_config_mode mode;
struct spa_audio_info format;
unsigned int have_format:1;
unsigned int have_profile:1;
struct spa_pod *tag;
uint32_t remap[MAX_PORTS];
struct convert conv;
unsigned int need_remap:1;
unsigned int is_passthrough:1;
unsigned int control:1;
};
struct stage_context {
#define CTX_DATA_SRC 0
#define CTX_DATA_DST 1
#define CTX_DATA_REMAP_DST 2
#define CTX_DATA_REMAP_SRC 3
#define CTX_DATA_TMP_0 4
#define CTX_DATA_TMP_1 5
#define CTX_DATA_MAX 6
void **datas[CTX_DATA_MAX];
uint32_t in_samples;
uint32_t n_samples;
uint32_t n_out;
uint32_t src_idx;
uint32_t dst_idx;
uint32_t final_idx;
struct port *ctrlport;
};
struct stage {
struct impl *impl;
bool passthrough;
uint32_t in_idx;
uint32_t out_idx;
void *data;
void (*run) (struct stage *stage, struct stage_context *c);
};
struct filter_graph {
struct impl *impl;
struct spa_list link;
int order;
struct spa_handle *handle;
struct spa_filter_graph *graph;
struct spa_hook listener;
uint32_t n_inputs;
uint32_t inputs_position[SPA_AUDIO_MAX_CHANNELS];
uint32_t n_outputs;
uint32_t outputs_position[SPA_AUDIO_MAX_CHANNELS];
uint32_t latency;
bool removing;
bool setup;
};
struct impl {
struct spa_handle handle;
struct spa_node node;
struct spa_log *log;
struct spa_cpu *cpu;
struct spa_loop *data_loop;
struct spa_plugin_loader *loader;
uint32_t n_graph;
struct filter_graph *filter_graph[MAX_GRAPH];
struct spa_list free_graphs;
struct spa_list active_graphs;
struct filter_graph graphs[MAX_GRAPH];
struct spa_process_latency_info latency;
int in_filter_props;
int filter_props_count;
struct stage stages[MAX_STAGES];
uint32_t n_stages;
uint32_t cpu_flags;
uint32_t max_align;
uint32_t quantum_limit;
enum spa_direction direction;
struct spa_ratelimit rate_limit;
struct props props;
struct spa_io_position *io_position;
struct spa_io_rate_match *io_rate_match;
uint64_t info_all;
struct spa_node_info info;
#define IDX_EnumPortConfig 0
#define IDX_PortConfig 1
#define IDX_PropInfo 2
#define IDX_Props 3
#define N_NODE_PARAMS 4
struct spa_param_info params[N_NODE_PARAMS];
struct spa_hook_list hooks;
unsigned int monitor:1;
unsigned int monitor_channel_volumes:1;
struct dir dir[2];
struct channelmix mix;
struct resample resample;
struct volume volume;
double rate_scale;
struct spa_pod_sequence *vol_ramp_sequence;
uint32_t vol_ramp_offset;
uint32_t in_offset;
uint32_t out_offset;
unsigned int started:1;
unsigned int setup:1;
unsigned int resample_peaks:1;
unsigned int is_passthrough:1;
unsigned int ramp_volume:1;
unsigned int drained:1;
unsigned int rate_adjust:1;
unsigned int port_ignore_latency:1;
unsigned int monitor_passthrough:1;
unsigned int resample_passthrough:1;
bool recalc;
char group_name[128];
uint32_t maxsize;
uint32_t maxports;
uint32_t scratch_size;
uint32_t scratch_ports;
float *empty;
float *scratch;
float *tmp[2][MAX_PORTS];
float *tmp_datas[2][MAX_PORTS];
struct wav_file *wav_file;
};
#define CHECK_PORT(this,d,p) ((p) < this->dir[d].n_ports)
#define GET_PORT(this,d,p) (this->dir[d].ports[p])
#define GET_IN_PORT(this,p) GET_PORT(this,SPA_DIRECTION_INPUT,p)
#define GET_OUT_PORT(this,p) GET_PORT(this,SPA_DIRECTION_OUTPUT,p)
#define PORT_IS_DSP(this,d,p) (GET_PORT(this,d,p)->is_dsp)
#define PORT_IS_CONTROL(this,d,p) (GET_PORT(this,d,p)->is_control)
static void set_volume(struct impl *this);
static void emit_node_info(struct impl *this, bool full)
{
uint64_t old = full ? this->info.change_mask : 0;
if (full)
this->info.change_mask = this->info_all;
if (this->info.change_mask) {
if (this->info.change_mask & SPA_NODE_CHANGE_MASK_PARAMS) {
SPA_FOR_EACH_ELEMENT_VAR(this->params, p) {
if (p->user > 0) {
p->flags ^= SPA_PARAM_INFO_SERIAL;
p->user = 0;
}
}
}
spa_node_emit_info(&this->hooks, &this->info);
this->info.change_mask = old;
}
}
static void emit_port_info(struct impl *this, struct port *port, bool full)
{
uint64_t old = full ? port->info.change_mask : 0;
if (full)
port->info.change_mask = port->info_all;
if (port->info.change_mask) {
struct spa_dict_item items[5];
uint32_t n_items = 0;
if (PORT_IS_DSP(this, port->direction, port->id)) {
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_FORMAT_DSP, "32 bit float mono audio");
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_AUDIO_CHANNEL, port->position);
if (port->is_monitor)
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_MONITOR, "true");
if (this->port_ignore_latency)
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_IGNORE_LATENCY, "true");
} else if (PORT_IS_CONTROL(this, port->direction, port->id)) {
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_NAME, "control");
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_FORMAT_DSP, "8 bit raw midi");
}
if (this->group_name[0] != '\0')
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_PORT_GROUP, this->group_name);
port->info.props = &SPA_DICT_INIT(items, n_items);
if (port->info.change_mask & SPA_PORT_CHANGE_MASK_PARAMS) {
SPA_FOR_EACH_ELEMENT_VAR(port->params, p) {
if (p->user > 0) {
p->flags ^= SPA_PARAM_INFO_SERIAL;
p->user = 0;
}
}
}
spa_node_emit_port_info(&this->hooks, port->direction, port->id, &port->info);
port->info.change_mask = old;
}
}
static void emit_info(struct impl *this, bool full)
{
struct port *p;
uint32_t i;
emit_node_info(this, full);
for (i = 0; i < this->dir[SPA_DIRECTION_INPUT].n_ports; i++) {
if ((p = GET_IN_PORT(this, i)) && p->valid)
emit_port_info(this, p, full);
}
for (i = 0; i < this->dir[SPA_DIRECTION_OUTPUT].n_ports; i++) {
if ((p = GET_OUT_PORT(this, i)) && p->valid)
emit_port_info(this, p, full);
}
}
static int init_port(struct impl *this, enum spa_direction direction, uint32_t port_id,
uint32_t position, bool is_dsp, bool is_monitor, bool is_control)
{
struct port *port = GET_PORT(this, direction, port_id);
const char *name;
spa_assert(port_id < MAX_PORTS);
if (port == NULL) {
port = calloc(1, sizeof(struct port));
if (port == NULL)
return -errno;
this->dir[direction].ports[port_id] = port;
}
port->direction = direction;
port->id = port_id;
port->latency[SPA_DIRECTION_INPUT] = SPA_LATENCY_INFO(SPA_DIRECTION_INPUT);
port->latency[SPA_DIRECTION_OUTPUT] = SPA_LATENCY_INFO(SPA_DIRECTION_OUTPUT);
name = spa_debug_type_find_short_name(spa_type_audio_channel, position);
snprintf(port->position, sizeof(port->position), "%s", name ? name : "UNK");
port->info = SPA_PORT_INFO_INIT();
port->info.change_mask = port->info_all = SPA_PORT_CHANGE_MASK_FLAGS |
SPA_PORT_CHANGE_MASK_PROPS |
SPA_PORT_CHANGE_MASK_PARAMS;
port->info.flags = SPA_PORT_FLAG_NO_REF |
SPA_PORT_FLAG_DYNAMIC_DATA;
port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ);
port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ);
port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ);
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE);
port->params[IDX_Tag] = SPA_PARAM_INFO(SPA_PARAM_Tag, SPA_PARAM_INFO_READWRITE);
port->info.params = port->params;
port->info.n_params = N_PORT_PARAMS;
port->n_buffers = 0;
port->have_format = false;
port->is_monitor = is_monitor;
port->is_dsp = is_dsp;
if (port->is_dsp) {
port->format.media_type = SPA_MEDIA_TYPE_audio;
port->format.media_subtype = SPA_MEDIA_SUBTYPE_dsp;
port->format.info.dsp.format = SPA_AUDIO_FORMAT_DSP_F32;
port->blocks = 1;
port->stride = 4;
}
port->is_control = is_control;
if (port->is_control) {
port->format.media_type = SPA_MEDIA_TYPE_application;
port->format.media_subtype = SPA_MEDIA_SUBTYPE_control;
port->blocks = 1;
port->stride = 1;
}
port->valid = true;
spa_list_init(&port->queue);
spa_log_debug(this->log, "%p: add port %d:%d position:%s %d %d %d",
this, direction, port_id, port->position, is_dsp,
is_monitor, is_control);
return 0;
}
static int deinit_port(struct impl *this, enum spa_direction direction, uint32_t port_id)
{
struct port *port = GET_PORT(this, direction, port_id);
if (port == NULL || !port->valid)
return -ENOENT;
port->valid = false;
spa_node_emit_port_info(&this->hooks, direction, port_id, NULL);
return 0;
}
static int node_param_enum_port_config(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
{
struct dir *dir = &this->dir[index];
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamPortConfig, id,
SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(dir->direction),
SPA_PARAM_PORT_CONFIG_mode, SPA_POD_CHOICE_ENUM_Id(4,
SPA_PARAM_PORT_CONFIG_MODE_none,
SPA_PARAM_PORT_CONFIG_MODE_none,
SPA_PARAM_PORT_CONFIG_MODE_dsp,
SPA_PARAM_PORT_CONFIG_MODE_convert),
SPA_PARAM_PORT_CONFIG_monitor, SPA_POD_CHOICE_Bool(false),
SPA_PARAM_PORT_CONFIG_control, SPA_POD_CHOICE_Bool(false));
break;
}
default:
return 0;
}
return 1;
}
static int node_param_port_config(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
{
struct dir *dir = &this->dir[index];
struct spa_pod_frame f[1];
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_ParamPortConfig, id);
spa_pod_builder_add(b,
SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(dir->direction),
SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(dir->mode),
SPA_PARAM_PORT_CONFIG_monitor, SPA_POD_Bool(this->monitor),
SPA_PARAM_PORT_CONFIG_control, SPA_POD_Bool(dir->control),
0);
if (dir->have_format) {
spa_pod_builder_prop(b, SPA_PARAM_PORT_CONFIG_format, 0);
spa_format_audio_raw_build(b, id, &dir->format.info.raw);
}
*param = spa_pod_builder_pop(b, &f[0]);
break;
}
default:
return 0;
}
return 1;
}
static int node_param_prop_info(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
struct props *p = &this->props;
struct spa_pod_frame f[2];
switch (index) {
case 0:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_volume),
SPA_PROP_INFO_description, SPA_POD_String("Volume"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME));
break;
case 1:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_mute),
SPA_PROP_INFO_description, SPA_POD_String("Mute"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->channel.mute));
break;
case 2:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_channelVolumes),
SPA_PROP_INFO_description, SPA_POD_String("Channel Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 3:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_channelMap),
SPA_PROP_INFO_description, SPA_POD_String("Channel Map"),
SPA_PROP_INFO_type, SPA_POD_Id(SPA_AUDIO_CHANNEL_UNKNOWN),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 4:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_monitorMute),
SPA_PROP_INFO_description, SPA_POD_String("Monitor Mute"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->monitor.mute));
break;
case 5:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_monitorVolumes),
SPA_PROP_INFO_description, SPA_POD_String("Monitor Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 6:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_softMute),
SPA_PROP_INFO_description, SPA_POD_String("Soft Mute"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->soft.mute));
break;
case 7:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_softVolumes),
SPA_PROP_INFO_description, SPA_POD_String("Soft Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_container, SPA_POD_Id(SPA_TYPE_Array));
break;
case 8:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("monitor.channel-volumes"),
SPA_PROP_INFO_description, SPA_POD_String("Monitor channel volume"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
this->monitor_channel_volumes),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 9:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.disable"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Channel mixing"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->mix_disabled),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 10:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.min-volume"),
SPA_PROP_INFO_description, SPA_POD_String("Minimum volume level"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->min_volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 11:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.max-volume"),
SPA_PROP_INFO_description, SPA_POD_String("Maximum volume level"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(p->max_volume,
DEFAULT_MIN_VOLUME, DEFAULT_MAX_VOLUME),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 12:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.normalize"),
SPA_PROP_INFO_description, SPA_POD_String("Normalize Volumes"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
SPA_FLAG_IS_SET(this->mix.options, CHANNELMIX_OPTION_NORMALIZE)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 13:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.mix-lfe"),
SPA_PROP_INFO_description, SPA_POD_String("Mix LFE into channels"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
SPA_FLAG_IS_SET(this->mix.options, CHANNELMIX_OPTION_MIX_LFE)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 14:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.upmix"),
SPA_PROP_INFO_description, SPA_POD_String("Enable upmixing"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(
SPA_FLAG_IS_SET(this->mix.options, CHANNELMIX_OPTION_UPMIX)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 15:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.lfe-cutoff"),
SPA_PROP_INFO_description, SPA_POD_String("LFE cutoff frequency"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.lfe_cutoff, 0.0, 1000.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 16:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.fc-cutoff"),
SPA_PROP_INFO_description, SPA_POD_String("FC cutoff frequency (Hz)"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.fc_cutoff, 0.0, 48000.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 17:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.rear-delay"),
SPA_PROP_INFO_description, SPA_POD_String("Rear channels delay (ms)"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.rear_delay, 0.0, 1000.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 18:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.stereo-widen"),
SPA_PROP_INFO_description, SPA_POD_String("Stereo widen"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Float(
this->mix.widen, 0.0, 1.0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 19:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.hilbert-taps"),
SPA_PROP_INFO_description, SPA_POD_String("Taps for phase shift of rear"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(
this->mix.hilbert_taps, 0, MAX_TAPS),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 20:
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_PropInfo, id);
spa_pod_builder_add(b,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.upmix-method"),
SPA_PROP_INFO_description, SPA_POD_String("Upmix method to use"),
SPA_PROP_INFO_type, SPA_POD_String(
channelmix_upmix_info[this->mix.upmix].label),
SPA_PROP_INFO_params, SPA_POD_Bool(true),
0);
spa_pod_builder_prop(b, SPA_PROP_INFO_labels, 0);
spa_pod_builder_push_struct(b, &f[1]);
SPA_FOR_EACH_ELEMENT_VAR(channelmix_upmix_info, i) {
spa_pod_builder_string(b, i->label);
spa_pod_builder_string(b, i->description);
}
spa_pod_builder_pop(b, &f[1]);
*param = spa_pod_builder_pop(b, &f[0]);
break;
case 21:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_rate),
SPA_PROP_INFO_description, SPA_POD_String("Rate scaler"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Double(p->rate, 0.0, 10.0));
break;
case 22:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_quality),
SPA_PROP_INFO_name, SPA_POD_String("resample.quality"),
SPA_PROP_INFO_description, SPA_POD_String("Resample Quality"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(p->resample_quality, 0, 14),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 23:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("resample.disable"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Resampling"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->resample_disabled),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 24:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("dither.noise"),
SPA_PROP_INFO_description, SPA_POD_String("Add noise bits"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(this->dir[1].conv.noise_bits, 0, 16),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 25:
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_PropInfo, id);
spa_pod_builder_add(b,
SPA_PROP_INFO_name, SPA_POD_String("dither.method"),
SPA_PROP_INFO_description, SPA_POD_String("The dithering method"),
SPA_PROP_INFO_type, SPA_POD_String(
dither_method_info[this->dir[1].conv.method].label),
SPA_PROP_INFO_params, SPA_POD_Bool(true),
0);
spa_pod_builder_prop(b, SPA_PROP_INFO_labels, 0);
spa_pod_builder_push_struct(b, &f[1]);
SPA_FOR_EACH_ELEMENT_VAR(dither_method_info, i) {
spa_pod_builder_string(b, i->label);
spa_pod_builder_string(b, i->description);
}
spa_pod_builder_pop(b, &f[1]);
*param = spa_pod_builder_pop(b, &f[0]);
break;
case 26:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("debug.wav-path"),
SPA_PROP_INFO_description, SPA_POD_String("Path to WAV file"),
SPA_PROP_INFO_type, SPA_POD_String(p->wav_path),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 27:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("channelmix.lock-volumes"),
SPA_PROP_INFO_description, SPA_POD_String("Disable volume updates"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->lock_volumes),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 28:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("audioconvert.filter-graph.disable"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Filter graph updates"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(p->filter_graph_disabled),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 29:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_name, SPA_POD_String("audioconvert.filter-graph"),
SPA_PROP_INFO_description, SPA_POD_String("A filter graph to load"),
SPA_PROP_INFO_type, SPA_POD_String(""),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
default:
if (this->filter_graph[0] && this->filter_graph[0]->graph) {
return spa_filter_graph_enum_prop_info(this->filter_graph[0]->graph,
index - 30, b, param);
}
return 0;
}
return 1;
}
static int node_param_props(struct impl *this, uint32_t id, uint32_t index,
struct spa_pod **param, struct spa_pod_builder *b)
{
struct props *p = &this->props;
struct spa_pod_frame f[2];
switch (index) {
case 0:
spa_pod_builder_push_object(b, &f[0],
SPA_TYPE_OBJECT_Props, id);
spa_pod_builder_add(b,
SPA_PROP_volume, SPA_POD_Float(p->volume),
SPA_PROP_mute, SPA_POD_Bool(p->channel.mute),
SPA_PROP_channelVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float,
p->channel.n_volumes,
p->channel.volumes),
SPA_PROP_channelMap, SPA_POD_Array(sizeof(uint32_t),
SPA_TYPE_Id,
p->n_channels,
p->channel_map),
SPA_PROP_softMute, SPA_POD_Bool(p->soft.mute),
SPA_PROP_softVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float,
p->soft.n_volumes,
p->soft.volumes),
SPA_PROP_monitorMute, SPA_POD_Bool(p->monitor.mute),
SPA_PROP_monitorVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float,
p->monitor.n_volumes,
p->monitor.volumes),
0);
spa_pod_builder_prop(b, SPA_PROP_params, 0);
spa_pod_builder_push_struct(b, &f[1]);
spa_pod_builder_string(b, "monitor.channel-volumes");
spa_pod_builder_bool(b, this->monitor_channel_volumes);
spa_pod_builder_string(b, "channelmix.disable");
spa_pod_builder_bool(b, this->props.mix_disabled);
spa_pod_builder_string(b, "channelmix.min-volume");
spa_pod_builder_float(b, this->props.min_volume);
spa_pod_builder_string(b, "channelmix.max-volume");
spa_pod_builder_float(b, this->props.max_volume);
spa_pod_builder_string(b, "channelmix.normalize");
spa_pod_builder_bool(b, SPA_FLAG_IS_SET(this->mix.options,
CHANNELMIX_OPTION_NORMALIZE));
spa_pod_builder_string(b, "channelmix.mix-lfe");
spa_pod_builder_bool(b, SPA_FLAG_IS_SET(this->mix.options,
CHANNELMIX_OPTION_MIX_LFE));
spa_pod_builder_string(b, "channelmix.upmix");
spa_pod_builder_bool(b, SPA_FLAG_IS_SET(this->mix.options,
CHANNELMIX_OPTION_UPMIX));
spa_pod_builder_string(b, "channelmix.lfe-cutoff");
spa_pod_builder_float(b, this->mix.lfe_cutoff);
spa_pod_builder_string(b, "channelmix.fc-cutoff");
spa_pod_builder_float(b, this->mix.fc_cutoff);
spa_pod_builder_string(b, "channelmix.rear-delay");
spa_pod_builder_float(b, this->mix.rear_delay);
spa_pod_builder_string(b, "channelmix.stereo-widen");
spa_pod_builder_float(b, this->mix.widen);
spa_pod_builder_string(b, "channelmix.hilbert-taps");
spa_pod_builder_int(b, this->mix.hilbert_taps);
spa_pod_builder_string(b, "channelmix.upmix-method");
spa_pod_builder_string(b, channelmix_upmix_info[this->mix.upmix].label);
spa_pod_builder_string(b, "resample.quality");
spa_pod_builder_int(b, p->resample_quality);
spa_pod_builder_string(b, "resample.disable");
spa_pod_builder_bool(b, p->resample_disabled);
spa_pod_builder_string(b, "dither.noise");
spa_pod_builder_int(b, this->dir[1].conv.noise_bits);
spa_pod_builder_string(b, "dither.method");
spa_pod_builder_string(b, dither_method_info[this->dir[1].conv.method].label);
spa_pod_builder_string(b, "debug.wav-path");
spa_pod_builder_string(b, p->wav_path);
spa_pod_builder_string(b, "channelmix.lock-volumes");
spa_pod_builder_bool(b, p->lock_volumes);
spa_pod_builder_string(b, "audioconvert.filter-graph.disable");
spa_pod_builder_bool(b, p->filter_graph_disabled);
spa_pod_builder_string(b, "audioconvert.filter-graph");
spa_pod_builder_string(b, "");
spa_pod_builder_pop(b, &f[1]);
*param = spa_pod_builder_pop(b, &f[0]);
break;
default:
{
struct spa_filter_graph *graph;
int res;
if (index-1 >= this->n_graph)
return 0;
graph = this->filter_graph[index-1]->graph;
if (graph == NULL)
return 1;
res = spa_filter_graph_get_props(graph, b, param);
if (res == 0) {
*param = NULL;
return 1;
}
return res;
}
}
return 1;
}
static int impl_node_enum_params(void *object, int seq,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[4096];
struct spa_result_node_params result;
uint32_t count = 0;
int res = 0;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
param = NULL;
switch (id) {
case SPA_PARAM_EnumPortConfig:
res = node_param_enum_port_config(this, id, result.index, &param, &b);
break;
case SPA_PARAM_PortConfig:
res = node_param_port_config(this, id, result.index, &param, &b);
break;
case SPA_PARAM_PropInfo:
res = node_param_prop_info(this, id, result.index, &param, &b);
break;
case SPA_PARAM_Props:
res = node_param_props(this, id, result.index, &param, &b);
break;
default:
return 0;
}
if (res <= 0)
return res;
if (param == NULL || spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_debug(this->log, "%p: io %d %p/%zd", this, id, data, size);
switch (id) {
case SPA_IO_Position:
this->io_position = data;
break;
default:
return -ENOENT;
}
return 0;
}
static void port_update_latency(struct port *port,
const struct spa_latency_info *info, bool valid)
{
if (spa_latency_info_compare(info, &port->latency[info->direction]) != 0) {
port->latency[info->direction] = *info;
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[IDX_Latency].user++;
}
port->have_latency = valid;
}
static void recalc_latencies(struct impl *this, enum spa_direction direction)
{
struct spa_latency_info info;
enum spa_direction other = SPA_DIRECTION_REVERSE(direction);
struct port *port;
uint32_t i;
bool have_latency = false;
spa_latency_info_combine_start(&info, other);
for (i = 0; i < this->dir[direction].n_ports; i++) {
port = GET_PORT(this, direction, i);
if ((port->is_monitor) || !port->have_latency)
continue;
spa_log_debug(this->log, "%p: combine %d", this, i);
spa_latency_info_combine(&info, &port->latency[other]);
have_latency = true;
}
spa_latency_info_combine_finish(&info);
spa_process_latency_info_add(&this->latency, &info);
spa_log_debug(this->log, "%p: combined %s latency %f-%f %d-%d %"PRIu64"-%"PRIu64, this,
info.direction == SPA_DIRECTION_INPUT ? "input" : "output",
info.min_quantum, info.max_quantum,
info.min_rate, info.max_rate,
info.min_ns, info.max_ns);
for (i = 0; i < this->dir[other].n_ports; i++) {
port = GET_PORT(this, other, i);
if (port->is_monitor)
continue;
port_update_latency(port, &info, have_latency);
}
}
static void recalc_graph_latency(struct impl *impl)
{
struct filter_graph *g;
int32_t latency = 0;
spa_list_for_each(g, &impl->active_graphs, link)
latency += g->latency;
if (latency != impl->latency.rate) {
impl->latency.rate = latency;
recalc_latencies(impl, SPA_DIRECTION_INPUT);
recalc_latencies(impl, SPA_DIRECTION_OUTPUT);
}
}
static void update_graph_latency(struct filter_graph *g, uint32_t latency)
{
if (g->latency != latency) {
g->latency = latency;
recalc_graph_latency(g->impl);
}
}
static void graph_info(void *object, const struct spa_filter_graph_info *info)
{
struct filter_graph *g = object;
struct spa_dict *props = info->props;
uint32_t i;
if (g->removing)
return;
g->n_inputs = info->n_inputs;
g->n_outputs = info->n_outputs;
for (i = 0; props && i < props->n_items; i++) {
const char *k = props->items[i].key;
const char *s = props->items[i].value;
if (spa_streq(k, "n_inputs"))
spa_atou32(s, &g->n_inputs, 0);
else if (spa_streq(k, "n_outputs"))
spa_atou32(s, &g->n_outputs, 0);
else if (spa_streq(k, "inputs.audio.position"))
spa_audio_parse_position(s, strlen(s),
g->inputs_position, &g->n_inputs);
else if (spa_streq(k, "outputs.audio.position"))
spa_audio_parse_position(s, strlen(s),
g->outputs_position, &g->n_outputs);
else if (spa_streq(k, "latency")) {
double latency;
if (spa_atod(s, &latency))
update_graph_latency(g, (uint32_t)latency);
}
}
emit_info(g->impl, false);
}
static int apply_props(struct impl *impl, const struct spa_pod *props);
static void graph_apply_props(void *object, enum spa_direction direction, const struct spa_pod *props)
{
struct filter_graph *g = object;
struct impl *impl = g->impl;
if (g->removing)
return;
apply_props(impl, props);
emit_info(impl, false);
}
static void graph_props_changed(void *object, enum spa_direction direction)
{
struct filter_graph *g = object;
struct impl *impl = g->impl;
if (g->removing)
return;
impl->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
impl->params[IDX_Props].user++;
emit_info(impl, false);
}
struct spa_filter_graph_events graph_events = {
SPA_VERSION_FILTER_GRAPH_EVENTS,
.info = graph_info,
.apply_props = graph_apply_props,
.props_changed = graph_props_changed,
};
static int setup_filter_graph(struct impl *this, struct filter_graph *g,
uint32_t channels, uint32_t *position)
{
int res;
char rate_str[64], in_ports[64];
struct dir *dir;
if (g == NULL || g->graph == NULL || g->setup)
return 0;
dir = &this->dir[SPA_DIRECTION_REVERSE(this->direction)];
snprintf(rate_str, sizeof(rate_str), "%d", dir->format.info.raw.rate);
if (channels) {
snprintf(in_ports, sizeof(in_ports), "%d", channels);
g->n_inputs = channels;
if (position) {
memcpy(g->inputs_position, position, sizeof(uint32_t) * channels);
memcpy(g->outputs_position, position, sizeof(uint32_t) * channels);
}
}
spa_filter_graph_deactivate(g->graph);
res = spa_filter_graph_activate(g->graph,
&SPA_DICT_ITEMS(
SPA_DICT_ITEM(SPA_KEY_AUDIO_RATE, rate_str),
SPA_DICT_ITEM("filter-graph.n_inputs", channels ? in_ports : NULL)));
g->setup = res >= 0;
return res;
}
static int setup_channelmix(struct impl *this, uint32_t channels, uint32_t *position);
static void free_tmp(struct impl *this)
{
uint32_t i;
spa_log_debug(this->log, "free tmp %d", this->scratch_size);
free(this->empty);
this->empty = NULL;
this->scratch_size = 0;
this->scratch_ports = 0;
free(this->scratch);
this->scratch = NULL;
for (i = 0; i < MAX_PORTS; i++) {
free(this->tmp[0][i]);
this->tmp[0][i] = NULL;
free(this->tmp[1][i]);
this->tmp[1][i] = NULL;
this->tmp_datas[0][i] = NULL;
this->tmp_datas[1][i] = NULL;
}
}
static int ensure_tmp(struct impl *this)
{
uint32_t maxsize = this->maxsize, maxports = this->maxports;
uint32_t i;
float *empty, *scratch, *tmp[2];
if (maxsize > this->scratch_size) {
spa_log_info(this->log, "resize tmp %d -> %d", this->scratch_size, maxsize);
if ((empty = realloc(this->empty, maxsize + MAX_ALIGN)) != NULL)
this->empty = empty;
if ((scratch = realloc(this->scratch, maxsize + MAX_ALIGN)) != NULL)
this->scratch = scratch;
if (empty == NULL || scratch == NULL) {
free_tmp(this);
return -ENOMEM;
}
memset(this->empty, 0, maxsize + MAX_ALIGN);
for (i = 0; i < this->scratch_ports; i++) {
if ((tmp[0] = realloc(this->tmp[0][i], maxsize + MAX_ALIGN)) != NULL)
this->tmp[0][i] = tmp[0];
if ((tmp[1] = realloc(this->tmp[1][i], maxsize + MAX_ALIGN)) != NULL)
this->tmp[1][i] = tmp[1];
if (tmp[0] == NULL || tmp[1] == NULL) {
free_tmp(this);
return -ENOMEM;
}
this->tmp_datas[0][i] = SPA_PTR_ALIGN(this->tmp[0][i], MAX_ALIGN, void);
this->tmp_datas[1][i] = SPA_PTR_ALIGN(this->tmp[1][i], MAX_ALIGN, void);
}
this->scratch_size = maxsize;
}
if (maxports > this->scratch_ports) {
spa_log_info(this->log, "resize ports %d -> %d", this->scratch_ports, maxports);
for (i = this->scratch_ports; i < maxports; i++) {
if ((tmp[0] = malloc(maxsize + MAX_ALIGN)) != NULL)
this->tmp[0][i] = tmp[0];
if ((tmp[1] = malloc(maxsize + MAX_ALIGN)) != NULL)
this->tmp[1][i] = tmp[1];
if (tmp[0] == NULL || tmp[1] == NULL) {
free_tmp(this);
return -ENOMEM;
}
this->tmp_datas[0][i] = SPA_PTR_ALIGN(this->tmp[0][i], MAX_ALIGN, void);
this->tmp_datas[0][i] = SPA_PTR_ALIGN(this->tmp[0][i], MAX_ALIGN, void);
}
this->scratch_ports = maxports;
}
return 0;
}
static int setup_filter_graphs(struct impl *impl)
{
int res;
uint32_t channels, *position;
struct dir *in, *out;
struct filter_graph *g, *t;
in = &impl->dir[SPA_DIRECTION_INPUT];
out = &impl->dir[SPA_DIRECTION_OUTPUT];
channels = in->format.info.raw.channels;
position = in->format.info.raw.position;
impl->maxports = SPA_MAX(in->format.info.raw.channels, out->format.info.raw.channels);
spa_list_for_each_safe(g, t, &impl->active_graphs, link) {
if (g->removing)
continue;
if ((res = setup_filter_graph(impl, g, channels, position)) < 0) {
g->removing = true;
spa_log_warn(impl->log, "failed to activate graph %d: %s", g->order,
spa_strerror(res));
} else {
channels = g->n_outputs;
position = g->outputs_position;
impl->maxports = SPA_MAX(impl->maxports, channels);
}
}
if ((res = ensure_tmp(impl)) < 0)
return res;
if ((res = setup_channelmix(impl, channels, position)) < 0)
return res;
return 0;
}
static int do_sync_filter_graph(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
struct impl *impl = user_data;
struct filter_graph *g;
impl->n_graph = 0;
spa_list_for_each(g, &impl->active_graphs, link)
if (g->setup && !g->removing)
impl->filter_graph[impl->n_graph++] = g;
impl->recalc = true;
return 0;
}
static void clean_filter_handles(struct impl *impl, bool force)
{
struct filter_graph *g, *t;
spa_list_for_each_safe(g, t, &impl->active_graphs, link) {
if (!g->removing)
continue;
spa_list_remove(&g->link);
if (g->graph)
spa_hook_remove(&g->listener);
if (g->handle)
spa_plugin_loader_unload(impl->loader, g->handle);
spa_zero(*g);
spa_list_append(&impl->free_graphs, &g->link);
}
recalc_graph_latency(impl);
}
static inline void insert_graph(struct spa_list *graphs, struct filter_graph *pending)
{
struct filter_graph *g;
spa_list_for_each(g, graphs, link) {
if (g->order < pending->order)
break;
}
spa_list_append(&g->link, &pending->link);
}
static int load_filter_graph(struct impl *impl, const char *graph, int order)
{
char qlimit[64];
int res;
void *iface;
struct spa_handle *new_handle = NULL;
struct filter_graph *pending, *g, *t;
if (impl->props.filter_graph_disabled)
return -EPERM;
/* find graph spot */
if (spa_list_is_empty(&impl->free_graphs))
return -ENOSPC;
/* find free graph for our new filter */
pending = spa_list_first(&impl->free_graphs, struct filter_graph, link);
pending->impl = impl;
pending->order = order;
pending->removing = false;
/* move active graphs with same order to inactive list */
spa_list_for_each_safe(g, t, &impl->active_graphs, link) {
if (g->order == order) {
g->removing = true;
spa_log_info(impl->log, "removing filter-graph order:%d", order);
}
}
if (graph != NULL && graph[0] != '\0') {
snprintf(qlimit, sizeof(qlimit), "%u", impl->quantum_limit);
new_handle = spa_plugin_loader_load(impl->loader, "filter.graph",
&SPA_DICT_ITEMS(
SPA_DICT_ITEM(SPA_KEY_LIBRARY_NAME, "filter-graph/libspa-filter-graph"),
SPA_DICT_ITEM("clock.quantum-limit", qlimit),
SPA_DICT_ITEM("filter.graph", graph)));
if (new_handle == NULL)
goto error;
res = spa_handle_get_interface(new_handle, SPA_TYPE_INTERFACE_FilterGraph, &iface);
if (res < 0 || iface == NULL)
goto error;
/* prepare new filter and swap it */
pending->graph = iface;
pending->handle = new_handle;
spa_filter_graph_add_listener(pending->graph,
&pending->listener, &graph_events, pending);
spa_list_remove(&pending->link);
insert_graph(&impl->active_graphs, pending);
spa_log_info(impl->log, "loading filter-graph order:%d", order);
}
res = setup_filter_graphs(impl);
spa_loop_invoke(impl->data_loop, do_sync_filter_graph, 0, NULL, 0, true, impl);
if (impl->in_filter_props == 0)
clean_filter_handles(impl, false);
impl->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
impl->params[IDX_PropInfo].user++;
impl->params[IDX_Props].user++;
return 0;
error:
if (new_handle != NULL)
spa_plugin_loader_unload(impl->loader, new_handle);
return -ENOTSUP;
}
static int audioconvert_set_param(struct impl *this, const char *k, const char *s, bool *disable_filter)
{
int res;
if (spa_streq(k, "monitor.channel-volumes"))
this->monitor_channel_volumes = spa_atob(s);
else if (spa_streq(k, "channelmix.disable"))
this->props.mix_disabled = spa_atob(s);
else if (spa_streq(k, "channelmix.min-volume"))
spa_atof(s, &this->props.min_volume);
else if (spa_streq(k, "channelmix.max-volume"))
spa_atof(s, &this->props.max_volume);
else if (spa_streq(k, "channelmix.normalize"))
SPA_FLAG_UPDATE(this->mix.options, CHANNELMIX_OPTION_NORMALIZE, spa_atob(s));
else if (spa_streq(k, "channelmix.mix-lfe"))
SPA_FLAG_UPDATE(this->mix.options, CHANNELMIX_OPTION_MIX_LFE, spa_atob(s));
else if (spa_streq(k, "channelmix.upmix"))
SPA_FLAG_UPDATE(this->mix.options, CHANNELMIX_OPTION_UPMIX, spa_atob(s));
else if (spa_streq(k, "channelmix.lfe-cutoff"))
spa_atof(s, &this->mix.lfe_cutoff);
else if (spa_streq(k, "channelmix.fc-cutoff"))
spa_atof(s, &this->mix.fc_cutoff);
else if (spa_streq(k, "channelmix.rear-delay"))
spa_atof(s, &this->mix.rear_delay);
else if (spa_streq(k, "channelmix.stereo-widen"))
spa_atof(s, &this->mix.widen);
else if (spa_streq(k, "channelmix.hilbert-taps"))
spa_atou32(s, &this->mix.hilbert_taps, 0);
else if (spa_streq(k, "channelmix.upmix-method"))
this->mix.upmix = channelmix_upmix_from_label(s);
else if (spa_streq(k, "resample.quality"))
this->props.resample_quality = atoi(s);
else if (spa_streq(k, "resample.disable"))
this->props.resample_disabled = spa_atob(s);
else if (spa_streq(k, "dither.noise"))
spa_atou32(s, &this->dir[1].conv.noise_bits, 0);
else if (spa_streq(k, "dither.method"))
this->dir[1].conv.method = dither_method_from_label(s);
else if (spa_streq(k, "debug.wav-path")) {
spa_scnprintf(this->props.wav_path,
sizeof(this->props.wav_path), "%s", s ? s : "");
}
else if (spa_streq(k, "channelmix.lock-volumes"))
this->props.lock_volumes = spa_atob(s);
else if (spa_strstartswith(k, "audioconvert.filter-graph")) {
int order = atoi(k+ strlen("audioconvert.filter-graph."));
if ((res = load_filter_graph(this, s, order)) < 0) {
spa_log_warn(this->log, "Can't load filter-graph %d: %s",
order, spa_strerror(res));
}
}
else if (spa_streq(k, "audioconvert.filter-graph.disable")) {
if (!*disable_filter)
*disable_filter = spa_atob(s);
}
else
return 0;
return 1;
}
static int parse_prop_params(struct impl *this, struct spa_pod *params)
{
struct spa_pod_parser prs;
struct spa_pod_frame f;
int changed = 0;
bool filter_graph_disabled = this->props.filter_graph_disabled;
spa_pod_parser_pod(&prs, params);
if (spa_pod_parser_push_struct(&prs, &f) < 0)
return 0;
while (true) {
const char *name;
struct spa_pod *pod;
char value[4096];
if (spa_pod_parser_get_string(&prs, &name) < 0)
break;
if (spa_pod_parser_get_pod(&prs, &pod) < 0)
break;
if (spa_pod_is_string(pod)) {
spa_pod_copy_string(pod, sizeof(value), value);
} else if (spa_pod_is_float(pod)) {
spa_dtoa(value, sizeof(value),
SPA_POD_VALUE(struct spa_pod_float, pod));
} else if (spa_pod_is_double(pod)) {
spa_dtoa(value, sizeof(value),
SPA_POD_VALUE(struct spa_pod_double, pod));
} else if (spa_pod_is_int(pod)) {
snprintf(value, sizeof(value), "%d",
SPA_POD_VALUE(struct spa_pod_int, pod));
} else if (spa_pod_is_bool(pod)) {
snprintf(value, sizeof(value), "%s",
SPA_POD_VALUE(struct spa_pod_bool, pod) ?
"true" : "false");
} else if (spa_pod_is_none(pod)) {
spa_zero(value);
} else
continue;
spa_log_info(this->log, "key:'%s' val:'%s'", name, value);
changed += audioconvert_set_param(this, name, value, &filter_graph_disabled);
}
if (changed) {
this->props.filter_graph_disabled = filter_graph_disabled;
channelmix_init(&this->mix);
}
return changed;
}
static int get_ramp_samples(struct impl *this)
{
struct volume_ramp_params *vrp = &this->props.vrp;
int samples = -1;
if (vrp->volume_ramp_samples)
samples = vrp->volume_ramp_samples;
else if (vrp->volume_ramp_time) {
struct dir *d = &this->dir[SPA_DIRECTION_OUTPUT];
unsigned int sample_rate = d->format.info.raw.rate;
samples = (vrp->volume_ramp_time * sample_rate) / 1000;
spa_log_info(this->log, "volume ramp samples calculated from time is %d", samples);
}
if (!samples)
samples = -1;
return samples;
}
static int get_ramp_step_samples(struct impl *this)
{
struct volume_ramp_params *vrp = &this->props.vrp;
int samples = -1;
if (vrp->volume_ramp_step_samples)
samples = vrp->volume_ramp_step_samples;
else if (vrp->volume_ramp_step_time) {
struct dir *d = &this->dir[SPA_DIRECTION_OUTPUT];
int sample_rate = d->format.info.raw.rate;
/* convert the step time which is in nano seconds to seconds */
samples = (vrp->volume_ramp_step_time/1000) * (sample_rate/1000);
spa_log_debug(this->log, "volume ramp step samples calculated from time is %d", samples);
}
if (!samples)
samples = -1;
return samples;
}
static double get_volume_at_scale(struct impl *this, double value)
{
struct volume_ramp_params *vrp = &this->props.vrp;
if (vrp->scale == SPA_AUDIO_VOLUME_RAMP_LINEAR || vrp->scale == SPA_AUDIO_VOLUME_RAMP_INVALID)
return value;
else if (vrp->scale == SPA_AUDIO_VOLUME_RAMP_CUBIC)
return (value * value * value);
return 0.0;
}
static struct spa_pod *generate_ramp_up_seq(struct impl *this)
{
struct spa_pod_dynamic_builder b;
struct spa_pod_frame f[1];
struct props *p = &this->props;
double volume_accum = p->prev_volume;
int ramp_samples = get_ramp_samples(this);
int ramp_step_samples = get_ramp_step_samples(this);
double volume_step = ((p->volume - p->prev_volume) / (ramp_samples / ramp_step_samples));
uint32_t volume_offs = 0;
spa_pod_dynamic_builder_init(&b, NULL, 0, 4096);
spa_pod_builder_push_sequence(&b.b, &f[0], 0);
spa_log_info(this->log, "generating ramp up sequence from %f to %f with a"
" step value %f at scale %d", p->prev_volume, p->volume, volume_step, p->vrp.scale);
do {
spa_log_trace(this->log, "volume accum %f", get_volume_at_scale(this, volume_accum));
spa_pod_builder_control(&b.b, volume_offs, SPA_CONTROL_Properties);
spa_pod_builder_add_object(&b.b,
SPA_TYPE_OBJECT_Props, 0,
SPA_PROP_volume,
SPA_POD_Float(get_volume_at_scale(this, volume_accum)));
volume_accum += volume_step;
volume_offs += ramp_step_samples;
} while (volume_accum < p->volume);
return spa_pod_builder_pop(&b.b, &f[0]);
}
static struct spa_pod *generate_ramp_down_seq(struct impl *this)
{
struct spa_pod_dynamic_builder b;
struct spa_pod_frame f[1];
int ramp_samples = get_ramp_samples(this);
int ramp_step_samples = get_ramp_step_samples(this);
struct props *p = &this->props;
double volume_accum = p->prev_volume;
double volume_step = ((p->prev_volume - p->volume) / (ramp_samples / ramp_step_samples));
uint32_t volume_offs = 0;
spa_pod_dynamic_builder_init(&b, NULL, 0, 4096);
spa_pod_builder_push_sequence(&b.b, &f[0], 0);
spa_log_info(this->log, "generating ramp down sequence from %f to %f with a"
" step value %f at scale %d", p->prev_volume, p->volume, volume_step, p->vrp.scale);
do {
spa_log_trace(this->log, "volume accum %f", get_volume_at_scale(this, volume_accum));
spa_pod_builder_control(&b.b, volume_offs, SPA_CONTROL_Properties);
spa_pod_builder_add_object(&b.b,
SPA_TYPE_OBJECT_Props, 0,
SPA_PROP_volume,
SPA_POD_Float(get_volume_at_scale(this, volume_accum)));
volume_accum -= volume_step;
volume_offs += ramp_step_samples;
} while (volume_accum > p->volume);
return spa_pod_builder_pop(&b.b, &f[0]);
}
static struct volume_ramp_params *reset_volume_ramp_params(struct impl *this)
{
if (!this->vol_ramp_sequence) {
struct volume_ramp_params *vrp = &this->props.vrp;
spa_zero(this->props.vrp);
return vrp;
}
return 0;
}
static int apply_props(struct impl *this, const struct spa_pod *param)
{
struct spa_pod_prop *prop;
struct spa_pod_object *obj = (struct spa_pod_object *) param;
struct props *p = &this->props;
bool have_channel_volume = false;
bool have_soft_volume = false;
int changed = 0;
int vol_ramp_params_changed = 0;
struct volume_ramp_params *vrp = reset_volume_ramp_params(this);
uint32_t n;
int32_t value;
uint32_t id;
SPA_POD_OBJECT_FOREACH(obj, prop) {
switch (prop->key) {
case SPA_PROP_volume:
p->prev_volume = p->volume;
if (!p->lock_volumes &&
spa_pod_get_float(&prop->value, &p->volume) == 0) {
spa_log_debug(this->log, "%p new volume %f", this, p->volume);
changed++;
}
break;
case SPA_PROP_mute:
if (!p->lock_volumes &&
spa_pod_get_bool(&prop->value, &p->channel.mute) == 0) {
have_channel_volume = true;
changed++;
}
break;
case SPA_PROP_volumeRampSamples:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp->volume_ramp_samples = value;
spa_log_info(this->log, "%p volume ramp samples %d", this, value);
vol_ramp_params_changed++;
}
break;
case SPA_PROP_volumeRampStepSamples:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp->volume_ramp_step_samples = value;
spa_log_info(this->log, "%p volume ramp step samples is %d",
this, value);
}
break;
case SPA_PROP_volumeRampTime:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp->volume_ramp_time = value;
spa_log_info(this->log, "%p volume ramp time %d", this, value);
vol_ramp_params_changed++;
}
break;
case SPA_PROP_volumeRampStepTime:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_int(&prop->value, &value) == 0 && value) {
vrp->volume_ramp_step_time = value;
spa_log_info(this->log, "%p volume ramp time %d", this, value);
}
break;
case SPA_PROP_volumeRampScale:
if (this->vol_ramp_sequence) {
spa_log_error(this->log, "%p volume ramp sequence is being "
"applied try again", this);
break;
}
if (spa_pod_get_id(&prop->value, &id) == 0 && id) {
vrp->scale = id;
spa_log_info(this->log, "%p volume ramp scale %d", this, id);
}
break;
case SPA_PROP_channelVolumes:
if (!p->lock_volumes &&
(n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
p->channel.volumes, SPA_AUDIO_MAX_CHANNELS)) > 0) {
have_channel_volume = true;
p->channel.n_volumes = n;
changed++;
}
break;
case SPA_PROP_channelMap:
if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Id,
p->channel_map, SPA_AUDIO_MAX_CHANNELS)) > 0) {
p->n_channels = n;
changed++;
}
break;
case SPA_PROP_softMute:
if (!p->lock_volumes &&
spa_pod_get_bool(&prop->value, &p->soft.mute) == 0) {
have_soft_volume = true;
changed++;
}
break;
case SPA_PROP_softVolumes:
if (!p->lock_volumes &&
(n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
p->soft.volumes, SPA_AUDIO_MAX_CHANNELS)) > 0) {
have_soft_volume = true;
p->soft.n_volumes = n;
changed++;
}
break;
case SPA_PROP_monitorMute:
if (spa_pod_get_bool(&prop->value, &p->monitor.mute) == 0)
changed++;
break;
case SPA_PROP_monitorVolumes:
if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
p->monitor.volumes, SPA_AUDIO_MAX_CHANNELS)) > 0) {
p->monitor.n_volumes = n;
changed++;
}
break;
case SPA_PROP_rate:
if (spa_pod_get_double(&prop->value, &p->rate) == 0 &&
!this->rate_adjust && p->rate != 1.0) {
this->rate_adjust = true;
spa_log_info(this->log, "%p: activating adaptive resampler",
this);
}
break;
case SPA_PROP_params:
if (this->filter_props_count == 0)
changed += parse_prop_params(this, &prop->value);
break;
default:
break;
}
}
if (changed) {
if (have_soft_volume)
p->have_soft_volume = true;
else if (have_channel_volume)
p->have_soft_volume = false;
set_volume(this);
this->recalc = true;
}
if (!p->lock_volumes && vol_ramp_params_changed) {
void *sequence = NULL;
if (p->volume == p->prev_volume)
spa_log_error(this->log, "no change in volume, cannot ramp volume");
else if (p->volume > p->prev_volume)
sequence = generate_ramp_up_seq(this);
else
sequence = generate_ramp_down_seq(this);
if (!sequence)
spa_log_error(this->log, "unable to generate sequence");
this->vol_ramp_sequence = (struct spa_pod_sequence *) sequence;
this->vol_ramp_offset = 0;
this->recalc = true;
}
if (changed) {
this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
this->params[IDX_Props].user++;
}
return changed;
}
static int apply_midi(struct impl *this, const struct spa_pod *value)
{
struct props *p = &this->props;
uint8_t data[8];
int size;
size = spa_ump_to_midi(SPA_POD_BODY(value), SPA_POD_BODY_SIZE(value),
data, sizeof(data));
if (size < 3)
return -EINVAL;
if ((data[0] & 0xf0) != 0xb0 || data[1] != 7)
return 0;
p->volume = data[2] / 127.0f;
set_volume(this);
return 1;
}
static int reconfigure_mode(struct impl *this, enum spa_param_port_config_mode mode,
enum spa_direction direction, bool monitor, bool control, struct spa_audio_info *info)
{
struct dir *dir;
uint32_t i;
dir = &this->dir[direction];
if (dir->have_profile && this->monitor == monitor && dir->mode == mode &&
dir->control == control &&
(info == NULL || memcmp(&dir->format, info, sizeof(*info)) == 0))
return 0;
spa_log_debug(this->log, "%p: port config direction:%d monitor:%d "
"control:%d mode:%d %d", this, direction, monitor,
control, mode, dir->n_ports);
for (i = 0; i < dir->n_ports; i++) {
deinit_port(this, direction, i);
if (this->monitor && direction == SPA_DIRECTION_INPUT)
deinit_port(this, SPA_DIRECTION_OUTPUT, i+1);
}
this->monitor = monitor;
this->setup = false;
dir->control = control;
dir->have_profile = true;
dir->mode = mode;
switch (mode) {
case SPA_PARAM_PORT_CONFIG_MODE_dsp:
{
if (info) {
dir->n_ports = info->info.raw.channels;
dir->format = *info;
dir->format.info.raw.format = SPA_AUDIO_FORMAT_DSP_F32;
dir->format.info.raw.rate = 0;
dir->have_format = true;
} else {
dir->n_ports = 0;
}
if (this->monitor && direction == SPA_DIRECTION_INPUT)
this->dir[SPA_DIRECTION_OUTPUT].n_ports = dir->n_ports + 1;
for (i = 0; i < dir->n_ports; i++) {
init_port(this, direction, i, info->info.raw.position[i], true, false, false);
if (this->monitor && direction == SPA_DIRECTION_INPUT)
init_port(this, SPA_DIRECTION_OUTPUT, i+1,
info->info.raw.position[i], true, true, false);
}
break;
}
case SPA_PARAM_PORT_CONFIG_MODE_convert:
{
dir->n_ports = 1;
dir->have_format = false;
init_port(this, direction, 0, 0, false, false, false);
break;
}
case SPA_PARAM_PORT_CONFIG_MODE_none:
dir->n_ports = 0;
break;
default:
return -ENOTSUP;
}
if (direction == SPA_DIRECTION_INPUT && dir->control) {
i = dir->n_ports++;
init_port(this, direction, i, 0, false, false, true);
}
/* emit all port changes */
emit_info(this, false);
this->info.change_mask |= SPA_NODE_CHANGE_MASK_FLAGS | SPA_NODE_CHANGE_MASK_PARAMS;
this->info.flags &= ~SPA_NODE_FLAG_NEED_CONFIGURE;
this->params[IDX_Props].user++;
this->params[IDX_PortConfig].user++;
return 0;
}
static int node_set_param_port_config(struct impl *this, uint32_t flags,
const struct spa_pod *param)
{
struct spa_audio_info info = { 0, }, *infop = NULL;
struct spa_pod *format = NULL;
enum spa_direction direction;
enum spa_param_port_config_mode mode;
bool monitor = false, control = false;
int res;
if (param == NULL)
return 0;
if (spa_pod_parse_object(param,
SPA_TYPE_OBJECT_ParamPortConfig, NULL,
SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(&direction),
SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(&mode),
SPA_PARAM_PORT_CONFIG_monitor, SPA_POD_OPT_Bool(&monitor),
SPA_PARAM_PORT_CONFIG_control, SPA_POD_OPT_Bool(&control),
SPA_PARAM_PORT_CONFIG_format, SPA_POD_OPT_Pod(&format)) < 0)
return -EINVAL;
if (format) {
if (!spa_pod_is_object_type(format, SPA_TYPE_OBJECT_Format))
return -EINVAL;
if ((res = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0)
return res;
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_raw)
return -EINVAL;
if (spa_format_audio_raw_parse(format, &info.info.raw) < 0)
return -EINVAL;
if (info.info.raw.channels == 0 ||
info.info.raw.channels > SPA_AUDIO_MAX_CHANNELS)
return -EINVAL;
infop = &info;
}
return reconfigure_mode(this, mode, direction, monitor, control, infop);
}
static int node_set_param_props(struct impl *this, uint32_t flags,
const struct spa_pod *param)
{
bool have_graph = false;
struct filter_graph *g, *t;
if (param == NULL)
return 0;
this->filter_props_count = 0;
spa_list_for_each_safe(g, t, &this->active_graphs, link) {
if (g->removing)
continue;
have_graph = true;
this->in_filter_props++;
spa_filter_graph_set_props(g->graph, SPA_DIRECTION_INPUT, param);
this->filter_props_count++;
this->in_filter_props--;
}
if (!have_graph)
apply_props(this, param);
clean_filter_handles(this, false);
return 0;
}
static int impl_node_set_param(void *object, uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
switch (id) {
case SPA_PARAM_PortConfig:
res = node_set_param_port_config(this, flags, param);
break;
case SPA_PARAM_Props:
res = node_set_param_props(this, flags, param);
break;
default:
return -ENOENT;
}
emit_info(this, false);
return res;
}
static int int32_cmp(const void *v1, const void *v2)
{
int32_t a1 = *(int32_t*)v1;
int32_t a2 = *(int32_t*)v2;
if (a1 == 0 && a2 != 0)
return 1;
if (a2 == 0 && a1 != 0)
return -1;
return a1 - a2;
}
static int setup_in_convert(struct impl *this)
{
uint32_t i, j;
struct dir *in = &this->dir[SPA_DIRECTION_INPUT];
struct spa_audio_info src_info, dst_info;
int res;
bool remap = false;
src_info = in->format;
dst_info = src_info;
dst_info.info.raw.format = SPA_AUDIO_FORMAT_DSP_F32;
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d", this,
spa_debug_type_find_name(spa_type_audio_format, src_info.info.raw.format),
src_info.info.raw.channels,
src_info.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, dst_info.info.raw.format),
dst_info.info.raw.channels,
dst_info.info.raw.rate);
qsort(dst_info.info.raw.position, dst_info.info.raw.channels,
sizeof(uint32_t), int32_cmp);
for (i = 0; i < src_info.info.raw.channels; i++) {
for (j = 0; j < dst_info.info.raw.channels; j++) {
if (src_info.info.raw.position[i] !=
dst_info.info.raw.position[j])
continue;
in->remap[i] = j;
if (i != j)
remap = true;
spa_log_debug(this->log, "%p: channel %d (%d) -> %d (%s -> %s)", this,
i, in->remap[i], j,
spa_debug_type_find_short_name(spa_type_audio_channel,
src_info.info.raw.position[i]),
spa_debug_type_find_short_name(spa_type_audio_channel,
dst_info.info.raw.position[j]));
dst_info.info.raw.position[j] = -1;
break;
}
}
if (in->conv.free)
convert_free(&in->conv);
in->conv.src_fmt = src_info.info.raw.format;
in->conv.dst_fmt = dst_info.info.raw.format;
in->conv.n_channels = dst_info.info.raw.channels;
in->conv.cpu_flags = this->cpu_flags;
in->need_remap = remap;
if ((res = convert_init(&in->conv)) < 0)
return res;
spa_log_debug(this->log, "%p: got converter features %08x:%08x passthrough:%d remap:%d %s", this,
this->cpu_flags, in->conv.cpu_flags, in->conv.is_passthrough,
remap, in->conv.func_name);
return 0;
}
static void fix_volumes(struct impl *this, struct volumes *vols, uint32_t channels)
{
float s;
uint32_t i;
spa_log_debug(this->log, "%p %d -> %d", this, vols->n_volumes, channels);
if (vols->n_volumes > 0) {
s = 0.0f;
for (i = 0; i < vols->n_volumes; i++)
s += vols->volumes[i];
s /= vols->n_volumes;
} else {
s = 1.0f;
}
vols->n_volumes = channels;
for (i = 0; i < vols->n_volumes; i++)
vols->volumes[i] = s;
}
static int remap_volumes(struct impl *this, const struct spa_audio_info *info)
{
struct props *p = &this->props;
uint32_t i, j, target = info->info.raw.channels;
for (i = 0; i < p->n_channels; i++) {
for (j = i; j < target; j++) {
spa_log_debug(this->log, "%d %d: %d <-> %d", i, j,
p->channel_map[i], info->info.raw.position[j]);
if (p->channel_map[i] != info->info.raw.position[j])
continue;
if (i != j) {
SPA_SWAP(p->channel_map[i], p->channel_map[j]);
SPA_SWAP(p->channel.volumes[i], p->channel.volumes[j]);
SPA_SWAP(p->soft.volumes[i], p->soft.volumes[j]);
SPA_SWAP(p->monitor.volumes[i], p->monitor.volumes[j]);
}
break;
}
}
p->n_channels = target;
for (i = 0; i < p->n_channels; i++)
p->channel_map[i] = info->info.raw.position[i];
if (target == 0)
return 0;
if (p->channel.n_volumes != target)
fix_volumes(this, &p->channel, target);
if (p->soft.n_volumes != target)
fix_volumes(this, &p->soft, target);
if (p->monitor.n_volumes != target)
fix_volumes(this, &p->monitor, target);
return 1;
}
static void set_volume(struct impl *this)
{
struct volumes *vol;
uint32_t i;
float volumes[SPA_AUDIO_MAX_CHANNELS];
struct dir *dir = &this->dir[this->direction];
spa_log_debug(this->log, "%p set volume %f have_format:%d", this, this->props.volume, dir->have_format);
if (dir->have_format)
remap_volumes(this, &dir->format);
if (this->mix.set_volume == NULL)
return;
if (this->props.have_soft_volume)
vol = &this->props.soft;
else
vol = &this->props.channel;
for (i = 0; i < vol->n_volumes; i++)
volumes[i] = SPA_CLAMPF(vol->volumes[dir->remap[i]],
this->props.min_volume, this->props.max_volume);
channelmix_set_volume(&this->mix,
SPA_CLAMPF(this->props.volume, this->props.min_volume, this->props.max_volume),
vol->mute, vol->n_volumes, volumes);
this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
this->params[IDX_Props].user++;
}
static char *format_position(char *str, size_t len, uint32_t channels, uint32_t *position)
{
uint32_t i, idx = 0;
for (i = 0; i < channels; i++)
idx += snprintf(str + idx, len - idx, "%s%s", i == 0 ? "" : " ",
spa_debug_type_find_short_name(spa_type_audio_channel,
position[i]));
return str;
}
static int setup_channelmix(struct impl *this, uint32_t channels, uint32_t *position)
{
struct dir *in = &this->dir[SPA_DIRECTION_INPUT];
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
uint32_t i, src_chan, dst_chan, p;
uint64_t src_mask, dst_mask;
char str[1024];
int res;
src_chan = channels;
dst_chan = out->format.info.raw.channels;
for (i = 0, src_mask = 0; i < src_chan; i++) {
p = position[i];
src_mask |= 1ULL << (p < 64 ? p : 0);
}
for (i = 0, dst_mask = 0; i < dst_chan; i++) {
p = out->format.info.raw.position[i];
dst_mask |= 1ULL << (p < 64 ? p : 0);
}
spa_log_info(this->log, "in %s (%016"PRIx64")", format_position(str, sizeof(str),
src_chan, position), src_mask);
spa_log_info(this->log, "out %s (%016"PRIx64")", format_position(str, sizeof(str),
dst_chan, out->format.info.raw.position), dst_mask);
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d %08"PRIx64":%08"PRIx64, this,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
src_chan,
in->format.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
dst_chan,
in->format.info.raw.rate,
src_mask, dst_mask);
if (this->props.mix_disabled &&
(src_chan != dst_chan || src_mask != dst_mask))
return -EPERM;
this->mix.src_chan = src_chan;
this->mix.src_mask = src_mask;
this->mix.dst_chan = dst_chan;
this->mix.dst_mask = dst_mask;
this->mix.cpu_flags = this->cpu_flags;
this->mix.log = this->log;
this->mix.freq = in->format.info.raw.rate;
if ((res = channelmix_init(&this->mix)) < 0)
return res;
set_volume(this);
spa_log_debug(this->log, "%p: got channelmix features %08x:%08x flags:%08x %s",
this, this->cpu_flags, this->mix.cpu_flags,
this->mix.flags, this->mix.func_name);
return 0;
}
static int setup_resample(struct impl *this)
{
struct dir *in = &this->dir[SPA_DIRECTION_INPUT];
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
int res;
uint32_t channels;
if (this->direction == SPA_DIRECTION_INPUT)
channels = in->format.info.raw.channels;
else
channels = out->format.info.raw.channels;
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d", this,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
channels,
in->format.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, SPA_AUDIO_FORMAT_DSP_F32),
channels,
out->format.info.raw.rate);
if (this->props.resample_disabled && !this->resample_peaks &&
in->format.info.raw.rate != out->format.info.raw.rate)
return -EPERM;
if (this->resample.free)
resample_free(&this->resample);
this->resample.channels = channels;
this->resample.i_rate = in->format.info.raw.rate;
this->resample.o_rate = out->format.info.raw.rate;
this->resample.log = this->log;
this->resample.quality = this->props.resample_quality;
this->resample.cpu_flags = this->cpu_flags;
this->rate_adjust = this->props.rate != 1.0;
if (this->resample_peaks)
res = resample_peaks_init(&this->resample);
else
res = resample_native_init(&this->resample);
spa_log_debug(this->log, "%p: got resample features %08x:%08x %s",
this, this->cpu_flags, this->resample.cpu_flags,
this->resample.func_name);
return res;
}
static int calc_width(struct spa_audio_info *info)
{
switch (info->info.raw.format) {
case SPA_AUDIO_FORMAT_U8:
case SPA_AUDIO_FORMAT_U8P:
case SPA_AUDIO_FORMAT_S8:
case SPA_AUDIO_FORMAT_S8P:
case SPA_AUDIO_FORMAT_ULAW:
case SPA_AUDIO_FORMAT_ALAW:
return 1;
case SPA_AUDIO_FORMAT_S16P:
case SPA_AUDIO_FORMAT_S16:
case SPA_AUDIO_FORMAT_S16_OE:
return 2;
case SPA_AUDIO_FORMAT_S24P:
case SPA_AUDIO_FORMAT_S24:
case SPA_AUDIO_FORMAT_S24_OE:
return 3;
case SPA_AUDIO_FORMAT_F64P:
case SPA_AUDIO_FORMAT_F64:
case SPA_AUDIO_FORMAT_F64_OE:
return 8;
default:
return 4;
}
}
static int setup_out_convert(struct impl *this)
{
uint32_t i, j;
struct dir *out = &this->dir[SPA_DIRECTION_OUTPUT];
struct spa_audio_info src_info, dst_info;
int res;
bool remap = false;
dst_info = out->format;
src_info = dst_info;
src_info.info.raw.format = SPA_AUDIO_FORMAT_DSP_F32;
spa_log_info(this->log, "%p: %s/%d@%d->%s/%d@%d", this,
spa_debug_type_find_name(spa_type_audio_format, src_info.info.raw.format),
src_info.info.raw.channels,
src_info.info.raw.rate,
spa_debug_type_find_name(spa_type_audio_format, dst_info.info.raw.format),
dst_info.info.raw.channels,
dst_info.info.raw.rate);
qsort(src_info.info.raw.position, src_info.info.raw.channels,
sizeof(uint32_t), int32_cmp);
for (i = 0; i < src_info.info.raw.channels; i++) {
for (j = 0; j < dst_info.info.raw.channels; j++) {
if (src_info.info.raw.position[i] !=
dst_info.info.raw.position[j])
continue;
out->remap[i] = j;
if (i != j)
remap = true;
spa_log_debug(this->log, "%p: channel %d (%d) -> %d (%s -> %s)", this,
i, out->remap[i], j,
spa_debug_type_find_short_name(spa_type_audio_channel,
src_info.info.raw.position[i]),
spa_debug_type_find_short_name(spa_type_audio_channel,
dst_info.info.raw.position[j]));
dst_info.info.raw.position[j] = -1;
break;
}
}
if (out->conv.free)
convert_free(&out->conv);
out->conv.src_fmt = src_info.info.raw.format;
out->conv.dst_fmt = dst_info.info.raw.format;
out->conv.rate = dst_info.info.raw.rate;
out->conv.n_channels = dst_info.info.raw.channels;
out->conv.cpu_flags = this->cpu_flags;
out->need_remap = remap;
if ((res = convert_init(&out->conv)) < 0)
return res;
spa_log_debug(this->log, "%p: got converter features %08x:%08x quant:%d:%d"
" passthrough:%d remap:%d %s", this,
this->cpu_flags, out->conv.cpu_flags, out->conv.method,
out->conv.noise_bits, out->conv.is_passthrough, remap, out->conv.func_name);
return 0;
}
static uint32_t resample_update_rate_match(struct impl *this, bool passthrough, uint32_t size, uint32_t queued)
{
uint32_t delay, match_size;
int32_t delay_frac;
if (passthrough) {
delay = 0;
delay_frac = 0;
match_size = size;
} else {
/* Only apply rate_scale if we're working in DSP mode (i.e. in driver rate) */
double scale = this->dir[SPA_DIRECTION_REVERSE(this->direction)].mode == SPA_PARAM_PORT_CONFIG_MODE_dsp ?
this->rate_scale : 1.0;
double rate = scale / this->props.rate;
double fdelay;
if (this->io_rate_match &&
SPA_FLAG_IS_SET(this->io_rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE))
rate *= this->io_rate_match->rate;
resample_update_rate(&this->resample, rate);
fdelay = resample_delay(&this->resample) + resample_phase(&this->resample);
if (this->direction == SPA_DIRECTION_INPUT) {
match_size = resample_in_len(&this->resample, size);
} else {
fdelay *= rate * this->resample.o_rate / this->resample.i_rate;
match_size = resample_out_len(&this->resample, size);
}
delay = (uint32_t)round(fdelay);
delay_frac = (int32_t)((fdelay - delay) * 1e9);
}
match_size -= SPA_MIN(match_size, queued);
spa_log_trace_fp(this->log, "%p: next match %u %u %u", this, match_size, size, queued);
if (this->io_rate_match) {
this->io_rate_match->delay = delay + queued;
this->io_rate_match->delay_frac = delay_frac;
this->io_rate_match->size = match_size;
}
return match_size;
}
static inline bool resample_is_passthrough(struct impl *this)
{
if (this->props.resample_disabled)
return true;
if (this->resample.i_rate != this->resample.o_rate)
return false;
if (this->rate_scale != 1.0)
return false;
if (this->rate_adjust)
return false;
if (this->io_rate_match != NULL &&
SPA_FLAG_IS_SET(this->io_rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE))
return false;
return true;
}
static int setup_convert(struct impl *this)
{
struct dir *in, *out;
uint32_t i, rate, duration;
struct port *p;
int res;
in = &this->dir[SPA_DIRECTION_INPUT];
out = &this->dir[SPA_DIRECTION_OUTPUT];
spa_log_debug(this->log, "%p: setup:%d in_format:%d out_format:%d", this,
this->setup, in->have_format, out->have_format);
if (this->setup)
return 0;
if (!in->have_format || !out->have_format)
return -EINVAL;
if (this->io_position != NULL) {
rate = this->io_position->clock.target_rate.denom;
duration = this->io_position->clock.target_duration;
} else {
rate = DEFAULT_RATE;
duration = this->quantum_limit;
}
/* in DSP mode we always convert to the DSP rate */
if (in->mode == SPA_PARAM_PORT_CONFIG_MODE_dsp)
in->format.info.raw.rate = rate;
if (out->mode == SPA_PARAM_PORT_CONFIG_MODE_dsp)
out->format.info.raw.rate = rate;
/* try to passthrough the rates */
if (in->format.info.raw.rate == 0)
in->format.info.raw.rate = out->format.info.raw.rate;
else if (out->format.info.raw.rate == 0)
out->format.info.raw.rate = in->format.info.raw.rate;
/* try to passthrough the channels */
if (in->format.info.raw.channels == 0)
in->format.info.raw.channels = out->format.info.raw.channels;
else if (out->format.info.raw.channels == 0)
out->format.info.raw.channels = in->format.info.raw.channels;
if (in->format.info.raw.rate == 0 || out->format.info.raw.rate == 0)
return -EINVAL;
if (in->format.info.raw.channels == 0 || out->format.info.raw.channels == 0)
return -EINVAL;
if ((res = setup_in_convert(this)) < 0)
return res;
if ((res = setup_filter_graphs(this)) < 0)
return res;
if ((res = setup_resample(this)) < 0)
return res;
if ((res = setup_out_convert(this)) < 0)
return res;
this->maxsize = this->quantum_limit * sizeof(float);
for (i = 0; i < in->n_ports; i++) {
p = GET_IN_PORT(this, i);
this->maxsize = SPA_MAX(this->maxsize, p->maxsize);
}
for (i = 0; i < out->n_ports; i++) {
p = GET_OUT_PORT(this, i);
this->maxsize = SPA_MAX(this->maxsize, p->maxsize);
}
if ((res = ensure_tmp(this)) < 0)
return res;
resample_update_rate_match(this, resample_is_passthrough(this), duration, 0);
this->setup = true;
this->recalc = true;
return 0;
}
static void reset_node(struct impl *this)
{
struct filter_graph *g;
spa_list_for_each(g, &this->active_graphs, link) {
if (g->graph)
spa_filter_graph_deactivate(g->graph);
g->setup = false;
}
if (this->resample.reset)
resample_reset(&this->resample);
this->in_offset = 0;
this->out_offset = 0;
}
static int impl_node_send_command(void *object, const struct spa_command *command)
{
struct impl *this = object;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(command != NULL, -EINVAL);
switch (SPA_NODE_COMMAND_ID(command)) {
case SPA_NODE_COMMAND_Start:
if (this->started)
return 0;
if ((res = setup_convert(this)) < 0)
return res;
this->started = true;
break;
case SPA_NODE_COMMAND_Suspend:
this->setup = false;
SPA_FALLTHROUGH;
case SPA_NODE_COMMAND_Pause:
this->started = false;
break;
case SPA_NODE_COMMAND_Flush:
reset_node(this);
break;
default:
return -ENOTSUP;
}
return 0;
}
static int
impl_node_add_listener(void *object,
struct spa_hook *listener,
const struct spa_node_events *events,
void *data)
{
struct impl *this = object;
struct spa_hook_list save;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_trace(this->log, "%p: add listener %p", this, listener);
spa_hook_list_isolate(&this->hooks, &save, listener, events, data);
emit_info(this, true);
spa_hook_list_join(&this->hooks, &save);
return 0;
}
static int
impl_node_set_callbacks(void *object,
const struct spa_node_callbacks *callbacks,
void *user_data)
{
return 0;
}
static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id,
const struct spa_dict *props)
{
return -ENOTSUP;
}
static int
impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id)
{
return -ENOTSUP;
}
static int port_param_enum_formats(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0:
if (port->is_dsp) {
struct spa_audio_info_dsp info;
info.format = SPA_AUDIO_FORMAT_DSP_F32;
*param = spa_format_audio_dsp_build(b, id, &info);
} else if (port->is_control) {
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_Format, id,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control),
SPA_FORMAT_CONTROL_types, SPA_POD_CHOICE_FLAGS_Int(
(1u<<SPA_CONTROL_UMP) | (1u<<SPA_CONTROL_Properties)));
} else {
struct spa_pod_frame f[1];
uint32_t rate = impl->io_position ?
impl->io_position->clock.target_rate.denom : DEFAULT_RATE;
spa_pod_builder_push_object(b, &f[0],
SPA_TYPE_OBJECT_Format, id);
spa_pod_builder_add(b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
SPA_FORMAT_AUDIO_format, SPA_POD_CHOICE_ENUM_Id(25,
SPA_AUDIO_FORMAT_F32P,
SPA_AUDIO_FORMAT_F32P,
SPA_AUDIO_FORMAT_F32,
SPA_AUDIO_FORMAT_F32_OE,
SPA_AUDIO_FORMAT_F64P,
SPA_AUDIO_FORMAT_F64,
SPA_AUDIO_FORMAT_F64_OE,
SPA_AUDIO_FORMAT_S32P,
SPA_AUDIO_FORMAT_S32,
SPA_AUDIO_FORMAT_S32_OE,
SPA_AUDIO_FORMAT_S24_32P,
SPA_AUDIO_FORMAT_S24_32,
SPA_AUDIO_FORMAT_S24_32_OE,
SPA_AUDIO_FORMAT_S24P,
SPA_AUDIO_FORMAT_S24,
SPA_AUDIO_FORMAT_S24_OE,
SPA_AUDIO_FORMAT_S16P,
SPA_AUDIO_FORMAT_S16,
SPA_AUDIO_FORMAT_S16_OE,
SPA_AUDIO_FORMAT_S8P,
SPA_AUDIO_FORMAT_S8,
SPA_AUDIO_FORMAT_U8P,
SPA_AUDIO_FORMAT_U8,
SPA_AUDIO_FORMAT_ULAW,
SPA_AUDIO_FORMAT_ALAW),
0);
if (!impl->props.resample_disabled) {
spa_pod_builder_add(b,
SPA_FORMAT_AUDIO_rate, SPA_POD_CHOICE_RANGE_Int(
rate, 1, INT32_MAX),
0);
}
spa_pod_builder_add(b,
SPA_FORMAT_AUDIO_channels, SPA_POD_CHOICE_RANGE_Int(
DEFAULT_CHANNELS, 1, SPA_AUDIO_MAX_CHANNELS),
0);
*param = spa_pod_builder_pop(b, &f[0]);
}
break;
default:
return 0;
}
return 1;
}
static int port_param_format(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
if (!port->have_format)
return -EIO;
if (index > 0)
return 0;
if (port->is_dsp)
*param = spa_format_audio_dsp_build(b, id, &port->format.info.dsp);
else if (port->is_control)
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_Format, id,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control),
SPA_FORMAT_CONTROL_types, SPA_POD_Int(
(1u<<SPA_CONTROL_UMP) | (1u<<SPA_CONTROL_Properties)));
else
*param = spa_format_audio_raw_build(b, id, &port->format.info.raw);
return 1;
}
static int port_param_buffers(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
uint32_t size;
if (!port->have_format)
return -EIO;
if (index > 0)
return 0;
size = impl->quantum_limit;
if (!port->is_dsp) {
uint32_t irate, orate;
struct dir *dir = &impl->dir[port->direction];
/* Convert ports are scaled so that they can always
* provide one quantum of data. irate is the rate of the
* data before it goes into the resampler. */
irate = dir->format.info.raw.rate;
/* scale the size for adaptive resampling */
size += size/2;
/* collect the other port rate. This is the output of the resampler
* and is usually one quantum. */
dir = &impl->dir[SPA_DIRECTION_REVERSE(port->direction)];
if (dir->mode == SPA_PARAM_PORT_CONFIG_MODE_dsp)
orate = impl->io_position ? impl->io_position->clock.target_rate.denom : DEFAULT_RATE;
else
orate = dir->format.info.raw.rate;
/* scale the buffer size when we can. Only do this when we downsample because
* then we need to ask more input data for one quantum. */
if (irate != 0 && orate != 0 && irate > orate)
size = SPA_SCALE32_UP(size, irate, orate);
}
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamBuffers, id,
SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int(1, 1, MAX_BUFFERS),
SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(port->blocks),
SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int(
size * port->stride,
16 * port->stride,
INT32_MAX),
SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->stride));
return 1;
}
static int port_param_meta(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamMeta, id,
SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header),
SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header)));
break;
default:
return 0;
}
return 1;
}
static int port_param_io(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0:
*param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_ParamIO, id,
SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers),
SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers)));
break;
default:
return 0;
}
return 1;
}
static int port_param_latency(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
*param = spa_latency_build(b, id, &port->latency[index]);
break;
default:
return 0;
}
return 1;
}
static int port_param_tag(struct impl *impl, struct port *port, uint32_t id,
uint32_t index, struct spa_pod **param, struct spa_pod_builder *b)
{
switch (index) {
case 0 ... 1:
if (port->is_monitor)
index = index ^ 1;
*param = impl->dir[index].tag;
break;
default:
return 0;
}
return 1;
}
static int
impl_node_port_enum_params(void *object, int seq,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct port *port;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[4096];
struct spa_result_node_params result;
uint32_t count = 0;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
spa_log_debug(this->log, "%p: enum params port %d.%d %d %u",
this, direction, port_id, seq, id);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = GET_PORT(this, direction, port_id);
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
param = NULL;
switch (id) {
case SPA_PARAM_EnumFormat:
res = port_param_enum_formats(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Format:
res = port_param_format(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Buffers:
res = port_param_buffers(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Meta:
res = port_param_meta(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_IO:
res = port_param_io(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Latency:
res = port_param_latency(this, port, id, result.index, &param, &b);
break;
case SPA_PARAM_Tag:
res = port_param_tag(this, port, id, result.index, &param, &b);
break;
default:
return -ENOENT;
}
if (res <= 0)
return res;
if (param == NULL || spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int clear_buffers(struct impl *this, struct port *port)
{
uint32_t i, j;
spa_log_debug(this->log, "%p: clear buffers %p %d", this, port, port->n_buffers);
for (i = 0; i < port->n_buffers; i++) {
struct buffer *b = &port->buffers[i];
if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_MAPPED)) {
for (j = 0; j < b->buf->n_datas; j++) {
if (b->datas[j]) {
spa_log_debug(this->log, "%p: unmap buffer %d data %d %p",
this, i, j, b->datas[j]);
munmap(b->datas[j], b->buf->datas[j].maxsize);
b->datas[j] = NULL;
}
}
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_MAPPED);
}
}
port->n_buffers = 0;
spa_list_init(&port->queue);
return 0;
}
static int port_set_latency(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
const struct spa_pod *latency)
{
struct impl *this = object;
struct port *port, *oport;
enum spa_direction other = SPA_DIRECTION_REVERSE(direction);
struct spa_latency_info info;
bool have_latency;;
spa_log_debug(this->log, "%p: set latency direction:%d id:%d %p",
this, direction, port_id, latency);
port = GET_PORT(this, direction, port_id);
if (latency == NULL) {
info = SPA_LATENCY_INFO(other);
have_latency = false;
} else {
if (spa_latency_parse(latency, &info) < 0 ||
info.direction != other)
return -EINVAL;
have_latency = true;
}
port_update_latency(port, &info, have_latency);
spa_log_debug(this->log, "%p: set %s latency %f-%f %d-%d %"PRIu64"-%"PRIu64, this,
info.direction == SPA_DIRECTION_INPUT ? "input" : "output",
info.min_quantum, info.max_quantum,
info.min_rate, info.max_rate,
info.min_ns, info.max_ns);
if (this->monitor_passthrough) {
if (port->is_monitor)
oport = GET_PORT(this, other, port_id-1);
else if (this->monitor && direction == SPA_DIRECTION_INPUT)
oport = GET_PORT(this, other, port_id+1);
else
return 0;
if (oport != NULL)
port_update_latency(oport, &info, have_latency);
}
recalc_latencies(this, direction);
return 0;
}
static int port_set_tag(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
const struct spa_pod *tag)
{
struct impl *this = object;
struct port *port, *oport;
enum spa_direction other = SPA_DIRECTION_REVERSE(direction);
uint32_t i;
spa_log_debug(this->log, "%p: set tag direction:%d id:%d %p",
this, direction, port_id, tag);
port = GET_PORT(this, direction, port_id);
if (port->is_monitor && !this->monitor_passthrough)
return 0;
if (tag != NULL) {
struct spa_tag_info info;
void *state = NULL;
if (spa_tag_parse(tag, &info, &state) < 0 ||
info.direction != other)
return -EINVAL;
}
if (spa_tag_compare(tag, this->dir[other].tag) != 0) {
free(this->dir[other].tag);
this->dir[other].tag = tag ? spa_pod_copy(tag) : NULL;
for (i = 0; i < this->dir[other].n_ports; i++) {
oport = GET_PORT(this, other, i);
oport->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
oport->params[IDX_Tag].user++;
}
}
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[IDX_Tag].user++;
return 0;
}
static int port_set_format(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
const struct spa_pod *format)
{
struct impl *this = object;
struct port *port;
int res;
port = GET_PORT(this, direction, port_id);
spa_log_debug(this->log, "%p: %d:%d set format", this, direction, port_id);
if (format == NULL) {
port->have_format = false;
clear_buffers(this, port);
} else {
struct spa_audio_info info = { 0 };
if ((res = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0) {
spa_log_error(this->log, "can't parse format %s", spa_strerror(res));
return res;
}
if (PORT_IS_DSP(this, direction, port_id)) {
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_dsp) {
spa_log_error(this->log, "unexpected types %d/%d",
info.media_type, info.media_subtype);
return -EINVAL;
}
if ((res = spa_format_audio_dsp_parse(format, &info.info.dsp)) < 0) {
spa_log_error(this->log, "can't parse format %s", spa_strerror(res));
return res;
}
if (info.info.dsp.format != SPA_AUDIO_FORMAT_DSP_F32) {
spa_log_error(this->log, "unexpected format %d<->%d",
info.info.dsp.format, SPA_AUDIO_FORMAT_DSP_F32);
return -EINVAL;
}
port->blocks = 1;
port->stride = 4;
}
else if (PORT_IS_CONTROL(this, direction, port_id)) {
if (info.media_type != SPA_MEDIA_TYPE_application ||
info.media_subtype != SPA_MEDIA_SUBTYPE_control) {
spa_log_error(this->log, "unexpected types %d/%d",
info.media_type, info.media_subtype);
return -EINVAL;
}
port->blocks = 1;
port->stride = 1;
}
else {
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_raw) {
spa_log_error(this->log, "unexpected types %d/%d",
info.media_type, info.media_subtype);
return -EINVAL;
}
if ((res = spa_format_audio_raw_parse(format, &info.info.raw)) < 0) {
spa_log_error(this->log, "can't parse format %s", spa_strerror(res));
return res;
}
if (info.info.raw.format == 0 ||
(!this->props.resample_disabled && info.info.raw.rate == 0) ||
info.info.raw.channels == 0 ||
info.info.raw.channels > SPA_AUDIO_MAX_CHANNELS) {
spa_log_error(this->log, "invalid format:%d rate:%d channels:%d",
info.info.raw.format, info.info.raw.rate,
info.info.raw.channels);
return -EINVAL;
}
port->stride = calc_width(&info);
if (SPA_AUDIO_FORMAT_IS_PLANAR(info.info.raw.format)) {
port->blocks = info.info.raw.channels;
} else {
port->stride *= info.info.raw.channels;
port->blocks = 1;
}
this->dir[direction].format = info;
this->dir[direction].have_format = true;
this->setup = false;
}
port->format = info;
port->have_format = true;
spa_log_debug(this->log, "%p: %d %d %d", this,
port_id, port->stride, port->blocks);
}
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
if (port->have_format) {
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ);
} else {
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
}
return 0;
}
static int
impl_node_port_set_param(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
int res = 0;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_debug(this->log, "%p: set param port %d.%d %u",
this, direction, port_id, id);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
switch (id) {
case SPA_PARAM_Latency:
res = port_set_latency(this, direction, port_id, flags, param);
break;
case SPA_PARAM_Tag:
res = port_set_tag(this, direction, port_id, flags, param);
break;
case SPA_PARAM_Format:
res = port_set_format(this, direction, port_id, flags, param);
break;
default:
return -ENOENT;
}
emit_info(this, false);
return res;
}
static inline void queue_buffer(struct impl *this, struct port *port, uint32_t id)
{
struct buffer *b = &port->buffers[id];
spa_log_trace_fp(this->log, "%p: queue buffer %d on port %d %d",
this, id, port->id, b->flags);
if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_QUEUED))
return;
spa_list_append(&port->queue, &b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_QUEUED);
}
static inline struct buffer *peek_buffer(struct impl *this, struct port *port)
{
struct buffer *b;
if (spa_list_is_empty(&port->queue))
return NULL;
b = spa_list_first(&port->queue, struct buffer, link);
spa_log_trace_fp(this->log, "%p: peek buffer %d/%d on port %d %u",
this, b->id, port->n_buffers, port->id, b->flags);
return b;
}
static inline void dequeue_buffer(struct impl *this, struct port *port, struct buffer *b)
{
spa_log_trace_fp(this->log, "%p: dequeue buffer %d on port %d %u",
this, b->id, port->id, b->flags);
if (!SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_QUEUED))
return;
spa_list_remove(&b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_QUEUED);
}
static int
impl_node_port_use_buffers(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t flags,
struct spa_buffer **buffers,
uint32_t n_buffers)
{
struct impl *this = object;
struct port *port;
uint32_t i, j, maxsize;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = GET_PORT(this, direction, port_id);
spa_log_debug(this->log, "%p: use buffers %d on port %d:%d",
this, n_buffers, direction, port_id);
clear_buffers(this, port);
if (n_buffers > 0 && !port->have_format)
return -EIO;
if (n_buffers > MAX_BUFFERS)
return -ENOSPC;
maxsize = this->quantum_limit * sizeof(float);
for (i = 0; i < n_buffers; i++) {
struct buffer *b;
uint32_t n_datas = buffers[i]->n_datas;
struct spa_data *d = buffers[i]->datas;
b = &port->buffers[i];
b->id = i;
b->flags = 0;
b->buf = buffers[i];
if (n_datas != port->blocks) {
spa_log_error(this->log, "%p: invalid blocks %d on buffer %d",
this, n_datas, i);
return -EINVAL;
}
for (j = 0; j < n_datas; j++) {
void *data = d[j].data;
if (data == NULL && SPA_FLAG_IS_SET(d[j].flags, SPA_DATA_FLAG_MAPPABLE)) {
data = mmap(NULL, d[j].maxsize,
PROT_READ, MAP_SHARED, d[j].fd,
d[j].mapoffset);
if (data == MAP_FAILED) {
spa_log_error(this->log, "%p: mmap failed %d on buffer %d %d %p: %m",
this, j, i, d[j].type, data);
return -EINVAL;
}
SPA_FLAG_SET(b->flags, BUFFER_FLAG_MAPPED);
spa_log_debug(this->log, "%p: mmap %d on buffer %d %d %p %p",
this, j, i, d[j].type, data, b);
}
if (data == NULL) {
spa_log_error(this->log, "%p: invalid memory %d on buffer %d %d %p",
this, j, i, d[j].type, data);
return -EINVAL;
} else if (!SPA_IS_ALIGNED(data, this->max_align)) {
spa_log_warn(this->log, "%p: memory %d on buffer %d not aligned",
this, j, i);
}
if (direction == SPA_DIRECTION_OUTPUT &&
!SPA_FLAG_IS_SET(d[j].flags, SPA_DATA_FLAG_DYNAMIC))
this->is_passthrough = false;
b->datas[j] = data;
maxsize = SPA_MAX(maxsize, d[j].maxsize);
}
if (direction == SPA_DIRECTION_OUTPUT)
queue_buffer(this, port, i);
}
port->maxsize = maxsize;
port->n_buffers = n_buffers;
return 0;
}
struct io_data {
struct port *port;
void *data;
size_t size;
};
static int do_set_port_io(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
const struct io_data *d = user_data;
d->port->io = d->data;
return 0;
}
static int
impl_node_port_set_io(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t id, void *data, size_t size)
{
struct impl *this = object;
struct port *port;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_log_debug(this->log, "%p: set io %d on port %d:%d %p",
this, id, direction, port_id, data);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = GET_PORT(this, direction, port_id);
switch (id) {
case SPA_IO_Buffers:
if (this->data_loop) {
struct io_data d = { .port = port, .data = data, .size = size };
spa_loop_invoke(this->data_loop, do_set_port_io, 0, NULL, 0, true, &d);
}
else
port->io = data;
break;
case SPA_IO_RateMatch:
this->io_rate_match = data;
break;
default:
return -ENOENT;
}
return 0;
}
static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id)
{
struct impl *this = object;
struct port *port;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, SPA_DIRECTION_OUTPUT, port_id), -EINVAL);
port = GET_OUT_PORT(this, port_id);
queue_buffer(this, port, buffer_id);
return 0;
}
static int channelmix_process_apply_sequence(struct impl *this,
const struct spa_pod_sequence *sequence, uint32_t *processed_offset,
void *SPA_RESTRICT dst[], const void *SPA_RESTRICT src[],
uint32_t n_samples)
{
struct spa_pod_control *c, *prev = NULL;
uint32_t avail_samples = n_samples;
uint32_t i;
const float *s[MAX_PORTS], **ss = (const float**) src;
float *d[MAX_PORTS], **sd = (float **) dst;
const struct spa_pod_sequence_body *body = &(sequence)->body;
uint32_t size = SPA_POD_BODY_SIZE(sequence);
bool end = false;
c = spa_pod_control_first(body);
while (true) {
uint32_t chunk;
if (c == NULL || !spa_pod_control_is_inside(body, size, c)) {
c = NULL;
end = true;
}
if (avail_samples == 0)
break;
/* ignore old control offsets */
if (c != NULL) {
if (c->offset <= *processed_offset) {
prev = c;
if (c != NULL)
c = spa_pod_control_next(c);
continue;
}
chunk = SPA_MIN(avail_samples, c->offset - *processed_offset);
spa_log_trace_fp(this->log, "%p: process %d-%d %d/%d", this,
*processed_offset, c->offset, chunk, avail_samples);
} else {
chunk = avail_samples;
spa_log_trace_fp(this->log, "%p: process remain %d", this, chunk);
}
if (prev) {
switch (prev->type) {
case SPA_CONTROL_UMP:
apply_midi(this, &prev->value);
break;
case SPA_CONTROL_Properties:
apply_props(this, &prev->value);
break;
default:
continue;
}
}
if (ss == (const float**)src && chunk != avail_samples) {
for (i = 0; i < this->mix.src_chan; i++)
s[i] = ss[i];
for (i = 0; i < this->mix.dst_chan; i++)
d[i] = sd[i];
ss = s;
sd = d;
}
channelmix_process(&this->mix, (void**)sd, (const void**)ss, chunk);
if (chunk != avail_samples) {
for (i = 0; i < this->mix.src_chan; i++)
ss[i] += chunk;
for (i = 0; i < this->mix.dst_chan; i++)
sd[i] += chunk;
}
avail_samples -= chunk;
*processed_offset += chunk;
}
return end ? 1 : 0;
}
static inline uint32_t resample_get_in_size(struct impl *this, bool passthrough, uint32_t out_size)
{
uint32_t match_size = passthrough ? out_size : resample_in_len(&this->resample, out_size);
spa_log_trace_fp(this->log, "%p: current match %u", this, match_size);
return match_size;
}
static uint64_t get_time_ns(struct impl *impl)
{
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) < 0)
return 0;
return SPA_TIMESPEC_TO_NSEC(&now);
}
static void run_wav_stage(struct stage *stage, struct stage_context *c)
{
struct impl *impl = stage->impl;
const void **src = (const void **)c->datas[stage->in_idx];
if (SPA_UNLIKELY(impl->props.wav_path[0])) {
if (impl->wav_file == NULL) {
struct wav_file_info info;
info.info = impl->dir[impl->direction].format;
impl->wav_file = wav_file_open(impl->props.wav_path,
"w", &info);
if (impl->wav_file == NULL)
spa_log_warn(impl->log, "can't open wav path: %m");
}
if (impl->wav_file) {
wav_file_write(impl->wav_file, src, c->n_samples);
} else {
spa_zero(impl->props.wav_path);
}
} else if (impl->wav_file != NULL) {
wav_file_close(impl->wav_file);
impl->wav_file = NULL;
impl->recalc = true;
}
}
static void add_wav_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->src_idx;
s->data = NULL;
s->run = run_wav_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
}
static void run_dst_remap_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_OUTPUT];
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
c->datas[s->out_idx][i] = c->datas[s->in_idx][dir->remap[i]];
spa_log_trace_fp(impl->log, "%p: output remap %d -> %d", impl, i, dir->remap[i]);
}
}
static void add_dst_remap_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->dst_idx;
s->out_idx = CTX_DATA_REMAP_DST;
s->data = NULL;
s->run = run_dst_remap_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->dst_idx = CTX_DATA_REMAP_DST;
ctx->final_idx = CTX_DATA_REMAP_DST;
}
static void run_src_remap_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_INPUT];
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
c->datas[s->out_idx][dir->remap[i]] = c->datas[s->in_idx][i];
spa_log_trace_fp(impl->log, "%p: input remap %d -> %d", impl, dir->remap[i], i);
}
}
static void add_src_remap_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = CTX_DATA_REMAP_SRC;
s->data = NULL;
s->run = run_src_remap_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = CTX_DATA_REMAP_SRC;
}
static void run_src_convert_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_INPUT];
void *remap_src_datas[MAX_PORTS], **dst;
spa_log_trace_fp(impl->log, "%p: input convert %d", impl, c->n_samples);
if (dir->need_remap) {
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
remap_src_datas[i] = c->datas[s->out_idx][dir->remap[i]];
spa_log_trace_fp(impl->log, "%p: input remap %d -> %d", impl, dir->remap[i], i);
}
dst = remap_src_datas;
} else {
dst = c->datas[s->out_idx];
}
convert_process(&dir->conv, dst, (const void**)c->datas[s->in_idx], c->n_samples);
}
static void add_src_convert_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->dst_idx;
s->data = NULL;
s->run = run_src_convert_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = ctx->dst_idx;
}
static void run_resample_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
uint32_t in_len = c->n_samples;
uint32_t out_len = c->n_out;
resample_process(&impl->resample, (const void**)c->datas[s->in_idx], &in_len,
c->datas[s->out_idx], &out_len);
spa_log_trace_fp(impl->log, "%p: resample %d/%d -> %d/%d", impl,
c->n_samples, in_len, c->n_out, out_len);
c->in_samples = in_len;
c->n_samples = out_len;
}
static void add_resample_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->dst_idx;
s->data = NULL;
s->run = run_resample_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = ctx->dst_idx;
}
static void run_channelmix_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
void **out_datas = c->datas[s->out_idx];
const void **in_datas = (const void**)c->datas[s->in_idx];
struct port *ctrlport = c->ctrlport;
spa_log_trace_fp(impl->log, "%p: channelmix %d", impl, c->n_samples);
if (ctrlport != NULL && ctrlport->ctrl != NULL) {
if (channelmix_process_apply_sequence(impl, ctrlport->ctrl,
&ctrlport->ctrl_offset, out_datas, in_datas, c->n_samples) == 1) {
ctrlport->io->status = SPA_STATUS_OK;
ctrlport->ctrl = NULL;
}
} else if (impl->vol_ramp_sequence) {
if (channelmix_process_apply_sequence(impl, impl->vol_ramp_sequence,
&impl->vol_ramp_offset, out_datas, in_datas, c->n_samples) == 1) {
free(impl->vol_ramp_sequence);
impl->vol_ramp_sequence = NULL;
}
} else {
channelmix_process(&impl->mix, out_datas, in_datas, c->n_samples);
}
}
static void run_filter_stage(struct stage *s, struct stage_context *c)
{
struct filter_graph *fg = s->data;
spa_log_trace_fp(s->impl->log, "%p: filter-graph %d", s->impl, c->n_samples);
spa_filter_graph_process(fg->graph, (const void **)c->datas[s->in_idx],
c->datas[s->out_idx], c->n_samples);
}
static void add_filter_stage(struct impl *impl, uint32_t i, struct filter_graph *fg, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->dst_idx;
s->data = fg;
s->run = run_filter_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = ctx->dst_idx;
}
static void add_channelmix_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->dst_idx;
s->data = NULL;
s->run = run_channelmix_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = ctx->dst_idx;
}
static void run_dst_convert_stage(struct stage *s, struct stage_context *c)
{
struct impl *impl = s->impl;
struct dir *dir = &impl->dir[SPA_DIRECTION_OUTPUT];
void *remap_datas[MAX_PORTS], **src;
spa_log_trace_fp(impl->log, "%p: output convert %d", impl, c->n_samples);
if (dir->need_remap) {
uint32_t i;
for (i = 0; i < dir->conv.n_channels; i++) {
remap_datas[dir->remap[i]] = c->datas[s->in_idx][i];
spa_log_trace_fp(impl->log, "%p: output remap %d -> %d", impl, i, dir->remap[i]);
}
src = remap_datas;
} else {
src = c->datas[s->in_idx];
}
convert_process(&dir->conv, c->datas[s->out_idx], (const void **)src, c->n_samples);
}
static void add_dst_convert_stage(struct impl *impl, struct stage_context *ctx)
{
struct stage *s = &impl->stages[impl->n_stages];
s->impl = impl;
s->passthrough = false;
s->in_idx = ctx->src_idx;
s->out_idx = ctx->final_idx;
s->data = NULL;
s->run = run_dst_convert_stage;
spa_log_trace(impl->log, "%p: stage %d", impl, impl->n_stages);
impl->n_stages++;
ctx->src_idx = s->out_idx;
}
static void recalc_stages(struct impl *this, struct stage_context *ctx)
{
struct dir *dir;
bool filter_passthrough, in_passthrough, mix_passthrough, resample_passthrough, out_passthrough;
int tmp = 0;
struct port *ctrlport = ctx->ctrlport;
bool in_need_remap, out_need_remap;
uint32_t i;
this->recalc = false;
this->n_stages = 0;
dir = &this->dir[SPA_DIRECTION_INPUT];
in_passthrough = dir->conv.is_passthrough;
in_need_remap = dir->need_remap;
dir = &this->dir[SPA_DIRECTION_OUTPUT];
out_passthrough = dir->conv.is_passthrough;
out_need_remap = dir->need_remap;
resample_passthrough = resample_is_passthrough(this);
filter_passthrough = this->n_graph == 0;
this->resample_passthrough = resample_passthrough;
mix_passthrough = SPA_FLAG_IS_SET(this->mix.flags, CHANNELMIX_FLAG_IDENTITY) &&
(ctrlport == NULL || ctrlport->ctrl == NULL) && (this->vol_ramp_sequence == NULL);
if (in_passthrough && filter_passthrough && mix_passthrough && resample_passthrough)
out_passthrough = false;
if (out_passthrough && out_need_remap)
add_dst_remap_stage(this, ctx);
if (this->direction == SPA_DIRECTION_INPUT &&
(this->props.wav_path[0] || this->wav_file != NULL))
add_wav_stage(this, ctx);
if (!in_passthrough) {
if (filter_passthrough && mix_passthrough && resample_passthrough && out_passthrough)
ctx->dst_idx = ctx->final_idx;
else
ctx->dst_idx = CTX_DATA_TMP_0 + ((tmp++) & 1);
add_src_convert_stage(this, ctx);
} else {
if (in_need_remap)
add_src_remap_stage(this, ctx);
}
if (this->direction == SPA_DIRECTION_INPUT) {
if (!resample_passthrough) {
if (filter_passthrough && mix_passthrough && out_passthrough)
ctx->dst_idx = ctx->final_idx;
else
ctx->dst_idx = CTX_DATA_TMP_0 + ((tmp++) & 1);
add_resample_stage(this, ctx);
resample_passthrough = true;
}
}
if (!filter_passthrough) {
for (i = 0; i < this->n_graph; i++) {
struct filter_graph *fg = this->filter_graph[i];
if (mix_passthrough && resample_passthrough && out_passthrough &&
i + 1 == this->n_graph)
ctx->dst_idx = ctx->final_idx;
else
ctx->dst_idx = CTX_DATA_TMP_0 + ((tmp++) & 1);
add_filter_stage(this, i, fg, ctx);
}
}
if (!mix_passthrough) {
if (resample_passthrough && out_passthrough)
ctx->dst_idx = ctx->final_idx;
else
ctx->dst_idx = CTX_DATA_TMP_0 + ((tmp++) & 1);
add_channelmix_stage(this, ctx);
}
if (this->direction == SPA_DIRECTION_OUTPUT) {
if (!resample_passthrough) {
if (out_passthrough)
ctx->dst_idx = ctx->final_idx;
else
ctx->dst_idx = CTX_DATA_TMP_0 + ((tmp++) & 1);
add_resample_stage(this, ctx);
}
}
if (!out_passthrough) {
add_dst_convert_stage(this, ctx);
}
if (this->direction == SPA_DIRECTION_OUTPUT &&
(this->props.wav_path[0] || this->wav_file != NULL))
add_wav_stage(this, ctx);
spa_log_trace(this->log, "got %u processing stages", this->n_stages);
}
static int impl_node_process(void *object)
{
struct impl *this = object;
const void *src_datas[MAX_PORTS];
void *dst_datas[MAX_PORTS], *remap_src_datas[MAX_PORTS], *remap_dst_datas[MAX_PORTS], *data;
uint32_t i, j, n_src_datas = 0, n_dst_datas = 0, n_mon_datas = 0, remap;
uint32_t n_samples, max_in, n_out, max_out, quant_samples;
struct port *port, *ctrlport = NULL;
struct buffer *buf, *out_bufs[MAX_PORTS];
struct spa_data *bd;
struct dir *dir;
int res = 0, suppressed;
bool in_avail = false, flush_in = false, flush_out = false;
bool draining = false, in_empty = this->out_offset == 0;
struct spa_io_buffers *io;
const struct spa_pod_sequence *ctrl = NULL;
uint64_t current_time;
struct stage_context ctx;
/* calculate quantum scale, this is how many samples we need to produce or
* consume. Also update the rate scale, this is sent to the resampler to adjust
* the rate, either when the graph clock changed or when the user adjusted the
* rate. */
if (SPA_LIKELY(this->io_position)) {
double r = this->rate_scale;
current_time = this->io_position->clock.nsec;
quant_samples = this->io_position->clock.duration;
if (this->direction == SPA_DIRECTION_INPUT) {
if (this->io_position->clock.rate.denom != this->resample.o_rate)
r = (double) this->io_position->clock.rate.denom / this->resample.o_rate;
else
r = 1.0;
} else {
if (this->io_position->clock.rate.denom != this->resample.i_rate)
r = (double) this->resample.i_rate / this->io_position->clock.rate.denom;
else
r = 1.0;
}
if (this->rate_scale != r) {
spa_log_info(this->log, "scale graph:%u in:%u out:%u scale:%f->%f",
this->io_position->clock.rate.denom,
this->resample.i_rate, this->resample.o_rate,
this->rate_scale, r);
this->rate_scale = r;
}
}
else {
current_time = get_time_ns(this);
quant_samples = this->quantum_limit;
}
dir = &this->dir[SPA_DIRECTION_INPUT];
max_in = UINT32_MAX;
/* collect input port data */
for (i = 0; i < dir->n_ports; i++) {
port = GET_IN_PORT(this, i);
if (SPA_UNLIKELY((io = port->io) == NULL)) {
spa_log_trace_fp(this->log, "%p: no io on input port %d",
this, port->id);
buf = NULL;
} else if (SPA_UNLIKELY(io->status != SPA_STATUS_HAVE_DATA)) {
if (io->status & SPA_STATUS_DRAINED) {
spa_log_debug(this->log, "%p: port %d drained", this, port->id);
in_avail = flush_in = draining = true;
} else {
spa_log_trace_fp(this->log, "%p: empty input port %d %p %d %d %d",
this, port->id, io, io->status, io->buffer_id,
port->n_buffers);
this->drained = false;
}
buf = NULL;
} else if (SPA_UNLIKELY(io->buffer_id >= port->n_buffers)) {
spa_log_trace_fp(this->log, "%p: invalid input buffer port %d %p %d %d %d",
this, port->id, io, io->status, io->buffer_id,
port->n_buffers);
io->status = -EINVAL;
buf = NULL;
} else {
spa_log_trace_fp(this->log, "%p: input buffer port %d io:%p status:%d id:%d n:%d",
this, port->id, io, io->status, io->buffer_id,
port->n_buffers);
buf = &port->buffers[io->buffer_id];
}
if (SPA_UNLIKELY(buf == NULL)) {
for (j = 0; j < port->blocks; j++) {
if (port->is_control) {
spa_log_trace_fp(this->log, "%p: empty control %d", this,
i * port->blocks + j);
} else {
remap = n_src_datas++;
src_datas[remap] = SPA_PTR_ALIGN(this->empty, MAX_ALIGN, void);
spa_log_trace_fp(this->log, "%p: empty input %d->%d", this,
i * port->blocks + j, remap);
max_in = SPA_MIN(max_in, this->scratch_size / port->stride);
}
}
} else {
in_avail = true;
for (j = 0; j < port->blocks; j++) {
uint32_t offs, size;
bd = &buf->buf->datas[j];
data = bd->data ? bd->data : buf->datas[j];
offs = SPA_MIN(bd->chunk->offset, bd->maxsize);
size = SPA_MIN(bd->maxsize - offs, bd->chunk->size);
if (!SPA_FLAG_IS_SET(bd->chunk->flags, SPA_CHUNK_FLAG_EMPTY))
in_empty = false;
if (SPA_UNLIKELY(port->is_control)) {
spa_log_trace_fp(this->log, "%p: control %d", this,
i * port->blocks + j);
ctrlport = port;
ctrl = spa_pod_from_data(data, bd->maxsize,
bd->chunk->offset, bd->chunk->size);
if (ctrl && !spa_pod_is_sequence(&ctrl->pod))
ctrl = NULL;
if (ctrl != ctrlport->ctrl) {
ctrlport->ctrl = ctrl;
ctrlport->ctrl_offset = 0;
this->recalc = true;
}
} else {
max_in = SPA_MIN(max_in, size / port->stride);
remap = n_src_datas++;
offs += this->in_offset * port->stride;
src_datas[remap] = SPA_PTROFF(data, offs, void);
spa_log_trace_fp(this->log, "%p: input %d:%d:%d %d %d %d->%d", this,
offs, size, port->stride, this->in_offset, max_in,
i * port->blocks + j, remap);
}
}
}
}
bool resample_passthrough = resample_is_passthrough(this);
if (this->resample_passthrough != resample_passthrough)
this->recalc = true;
/* calculate how many samples we are going to produce. */
if (this->direction == SPA_DIRECTION_INPUT) {
/* in split mode we need to output exactly the size of the
* duration so we don't try to flush early */
max_out = quant_samples;
if (!in_avail || this->drained) {
n_out = max_out - SPA_MIN(max_out, this->out_offset);
/* no input, ask for more, update rate-match first */
resample_update_rate_match(this, resample_passthrough, n_out, 0);
spa_log_trace_fp(this->log, "%p: no input drained:%d", this, this->drained);
res |= this->drained ? SPA_STATUS_DRAINED : SPA_STATUS_NEED_DATA;
return res;
}
flush_out = false;
} else {
/* in merge mode we consume one duration of samples and
* always output the resulting data */
max_out = this->quantum_limit;
flush_out = true;
}
dir = &this->dir[SPA_DIRECTION_OUTPUT];
/* collect output ports and monitor ports data */
for (i = 0; i < dir->n_ports; i++) {
port = GET_OUT_PORT(this, i);
if (SPA_UNLIKELY((io = port->io) == NULL ||
io->status == SPA_STATUS_HAVE_DATA)) {
buf = NULL;
}
else {
if (SPA_LIKELY(io->buffer_id < port->n_buffers))
queue_buffer(this, port, io->buffer_id);
buf = peek_buffer(this, port);
if (buf == NULL && port->n_buffers > 0 &&
(suppressed = spa_ratelimit_test(&this->rate_limit, current_time)) >= 0) {
spa_log_warn(this->log, "%p: (%d suppressed) out of buffers on port %d %d",
this, suppressed, port->id, port->n_buffers);
}
}
out_bufs[i] = buf;
if (SPA_UNLIKELY(buf == NULL)) {
for (j = 0; j < port->blocks; j++) {
if (port->is_monitor) {
remap = n_mon_datas++;
spa_log_trace_fp(this->log, "%p: empty monitor %d", this,
remap);
} else if (port->is_control) {
spa_log_trace_fp(this->log, "%p: empty control %d", this, j);
} else {
remap = n_dst_datas++;
dst_datas[remap] = SPA_PTR_ALIGN(this->scratch, MAX_ALIGN, void);
spa_log_trace_fp(this->log, "%p: empty output %d->%d", this,
i * port->blocks + j, remap);
max_out = SPA_MIN(max_out, this->scratch_size / port->stride);
}
}
} else {
for (j = 0; j < port->blocks; j++) {
bd = &buf->buf->datas[j];
data = bd->data ? bd->data : buf->datas[j];
bd->chunk->offset = 0;
bd->chunk->size = 0;
if (port->is_monitor) {
float volume;
uint32_t mon_max;
remap = n_mon_datas++;
volume = this->props.monitor.mute ?
0.0f : this->props.monitor.volumes[remap];
if (this->monitor_channel_volumes)
volume *= this->props.channel.mute ? 0.0f :
this->props.channel.volumes[remap];
volume = SPA_CLAMPF(volume, this->props.min_volume,
this->props.max_volume);
mon_max = SPA_MIN(bd->maxsize / port->stride, max_in);
volume_process(&this->volume, data, src_datas[remap],
volume, mon_max);
bd->chunk->size = mon_max * port->stride;
bd->chunk->stride = port->stride;
spa_log_trace_fp(this->log, "%p: monitor %d %d", this,
remap, mon_max);
dequeue_buffer(this, port, buf);
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = buf->id;
res |= SPA_STATUS_HAVE_DATA;
} else if (SPA_UNLIKELY(port->is_control)) {
spa_log_trace_fp(this->log, "%p: control %d", this, j);
} else {
remap = n_dst_datas++;
dst_datas[remap] = SPA_PTROFF(data,
this->out_offset * port->stride, void);
max_out = SPA_MIN(max_out, bd->maxsize / port->stride);
spa_log_trace_fp(this->log, "%p: output %d offs:%d %d->%d", this,
max_out, this->out_offset,
i * port->blocks + j, remap);
}
}
}
}
/* calculate how many samples at most we are going to consume. If we're
* draining, we consume as much as we can. Otherwise we consume what is
* left. */
if (SPA_UNLIKELY(draining))
n_samples = SPA_MIN(max_in, this->quantum_limit);
else {
n_samples = max_in - SPA_MIN(max_in, this->in_offset);
}
/* we only need to output the remaining samples */
n_out = max_out - SPA_MIN(max_out, this->out_offset);
/* calculate how many samples we are going to consume. */
if (this->direction == SPA_DIRECTION_INPUT) {
/* figure out how much input samples we need to consume */
n_samples = SPA_MIN(n_samples,
resample_get_in_size(this, resample_passthrough, n_out));
} else {
/* in merge mode we consume one duration of samples */
n_samples = SPA_MIN(n_samples, quant_samples);
flush_in = true;
}
ctx.datas[CTX_DATA_SRC] = (void **)src_datas;
ctx.datas[CTX_DATA_DST] = dst_datas;
ctx.datas[CTX_DATA_REMAP_DST] = remap_dst_datas;
ctx.datas[CTX_DATA_REMAP_SRC] = remap_src_datas;
ctx.datas[CTX_DATA_TMP_0] = (void**)this->tmp_datas[0];
ctx.datas[CTX_DATA_TMP_1] = (void**)this->tmp_datas[1];
ctx.in_samples = n_samples;
ctx.n_samples = n_samples;
ctx.n_out = n_out;
ctx.ctrlport = ctrlport;
if (SPA_UNLIKELY(this->recalc)) {
ctx.src_idx = CTX_DATA_SRC;
ctx.dst_idx = CTX_DATA_DST;
ctx.final_idx = CTX_DATA_DST;
recalc_stages(this, &ctx);
}
for (i = 0; i < this->n_stages; i++) {
struct stage *s = &this->stages[i];
s->run(s, &ctx);
}
this->in_offset += ctx.in_samples;
this->out_offset += ctx.n_samples;
spa_log_trace_fp(this->log, "%d/%d %d/%d %d->%d", this->in_offset, max_in,
this->out_offset, max_out, n_samples, n_out);
dir = &this->dir[SPA_DIRECTION_INPUT];
if (SPA_LIKELY(this->in_offset >= max_in || flush_in)) {
/* return input buffers */
for (i = 0; i < dir->n_ports; i++) {
port = GET_IN_PORT(this, i);
if (port->is_control)
continue;
if (SPA_UNLIKELY((io = port->io) == NULL))
continue;
spa_log_trace_fp(this->log, "return: input %d %d", port->id, io->buffer_id);
if (!draining)
io->status = SPA_STATUS_NEED_DATA;
}
this->in_offset = 0;
max_in = 0;
res |= SPA_STATUS_NEED_DATA;
}
dir = &this->dir[SPA_DIRECTION_OUTPUT];
if (SPA_LIKELY(this->out_offset > 0 && (this->out_offset >= max_out || flush_out))) {
/* queue output buffers */
for (i = 0; i < dir->n_ports; i++) {
port = GET_OUT_PORT(this, i);
if (SPA_UNLIKELY(port->is_monitor || port->is_control))
continue;
if (SPA_UNLIKELY((io = port->io) == NULL))
continue;
if (SPA_UNLIKELY((buf = out_bufs[i]) == NULL))
continue;
dequeue_buffer(this, port, buf);
for (j = 0; j < port->blocks; j++) {
bd = &buf->buf->datas[j];
bd->chunk->size = this->out_offset * port->stride;
bd->chunk->stride = port->stride;
SPA_FLAG_UPDATE(bd->chunk->flags, SPA_CHUNK_FLAG_EMPTY, in_empty);
spa_log_trace_fp(this->log, "out: offs:%d stride:%d size:%d",
this->out_offset, port->stride, bd->chunk->size);
}
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = buf->id;
}
res |= SPA_STATUS_HAVE_DATA;
this->drained = draining;
this->out_offset = 0;
}
else if (n_samples == 0 && this->resample_peaks) {
for (i = 0; i < dir->n_ports; i++) {
port = GET_OUT_PORT(this, i);
if (port->is_monitor || port->is_control)
continue;
if (SPA_UNLIKELY((io = port->io) == NULL))
continue;
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = SPA_ID_INVALID;
res |= SPA_STATUS_HAVE_DATA;
spa_log_trace_fp(this->log, "%p: no output buffer", this);
}
}
{
uint32_t size, queued;
if (this->direction == SPA_DIRECTION_INPUT) {
size = max_out - this->out_offset;
queued = max_in - this->in_offset;
} else {
size = quant_samples;
queued = 0;
}
if (resample_update_rate_match(this, resample_passthrough,
size, queued) > 0)
res |= SPA_STATUS_NEED_DATA;
}
return res;
}
static const struct spa_node_methods impl_node = {
SPA_VERSION_NODE_METHODS,
.add_listener = impl_node_add_listener,
.set_callbacks = impl_node_set_callbacks,
.enum_params = impl_node_enum_params,
.set_param = impl_node_set_param,
.set_io = impl_node_set_io,
.send_command = impl_node_send_command,
.add_port = impl_node_add_port,
.remove_port = impl_node_remove_port,
.port_enum_params = impl_node_port_enum_params,
.port_set_param = impl_node_port_set_param,
.port_use_buffers = impl_node_port_use_buffers,
.port_set_io = impl_node_port_set_io,
.port_reuse_buffer = impl_node_port_reuse_buffer,
.process = impl_node_process,
};
static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface)
{
struct impl *this;
spa_return_val_if_fail(handle != NULL, -EINVAL);
spa_return_val_if_fail(interface != NULL, -EINVAL);
this = (struct impl *) handle;
if (spa_streq(type, SPA_TYPE_INTERFACE_Node))
*interface = &this->node;
else
return -ENOENT;
return 0;
}
static void free_dir(struct dir *dir)
{
uint32_t i;
for (i = 0; i < MAX_PORTS; i++)
free(dir->ports[i]);
if (dir->conv.free)
convert_free(&dir->conv);
free(dir->tag);
}
static int impl_clear(struct spa_handle *handle)
{
struct impl *this;
spa_return_val_if_fail(handle != NULL, -EINVAL);
this = (struct impl *) handle;
free_dir(&this->dir[SPA_DIRECTION_INPUT]);
free_dir(&this->dir[SPA_DIRECTION_OUTPUT]);
free_tmp(this);
clean_filter_handles(this, true);
if (this->resample.free)
resample_free(&this->resample);
if (this->wav_file != NULL)
wav_file_close(this->wav_file);
free (this->vol_ramp_sequence);
return 0;
}
static size_t
impl_get_size(const struct spa_handle_factory *factory,
const struct spa_dict *params)
{
return sizeof(struct impl);
}
static int
impl_init(const struct spa_handle_factory *factory,
struct spa_handle *handle,
const struct spa_dict *info,
const struct spa_support *support,
uint32_t n_support)
{
struct impl *this;
uint32_t i;
bool filter_graph_disabled = false;
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(handle != NULL, -EINVAL);
handle->get_interface = impl_get_interface;
handle->clear = impl_clear;
this = (struct impl *) handle;
this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop);
this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log);
spa_log_topic_init(this->log, &log_topic);
this->cpu = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_CPU);
if (this->cpu) {
this->cpu_flags = spa_cpu_get_flags(this->cpu);
this->max_align = SPA_MIN(MAX_ALIGN, spa_cpu_get_max_align(this->cpu));
}
this->loader = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_PluginLoader);
props_reset(&this->props);
filter_graph_disabled = this->props.filter_graph_disabled;
spa_list_init(&this->active_graphs);
spa_list_init(&this->free_graphs);
for (i = 0; i < MAX_GRAPH; i++) {
struct filter_graph *g = &this->graphs[i];
g->impl = this;
spa_list_append(&this->free_graphs, &g->link);
}
this->rate_limit.interval = 2 * SPA_NSEC_PER_SEC;
this->rate_limit.burst = 1;
this->mix.options = CHANNELMIX_OPTION_UPMIX | CHANNELMIX_OPTION_MIX_LFE;
this->mix.upmix = CHANNELMIX_UPMIX_NONE;
this->mix.log = this->log;
this->mix.lfe_cutoff = 0.0f;
this->mix.fc_cutoff = 0.0f;
this->mix.rear_delay = 0.0f;
this->mix.widen = 0.0f;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;
if (spa_streq(k, "clock.quantum-limit"))
spa_atou32(s, &this->quantum_limit, 0);
else if (spa_streq(k, "resample.peaks"))
this->resample_peaks = spa_atob(s);
else if (spa_streq(k, "resample.prefill"))
SPA_FLAG_UPDATE(this->resample.options,
RESAMPLE_OPTION_PREFILL, spa_atob(s));
else if (spa_streq(k, "convert.direction")) {
if (spa_streq(s, "output"))
this->direction = SPA_DIRECTION_OUTPUT;
else
this->direction = SPA_DIRECTION_INPUT;
}
else if (spa_streq(k, SPA_KEY_AUDIO_POSITION)) {
if (s != NULL)
spa_audio_parse_position(s, strlen(s), this->props.channel_map,
&this->props.n_channels);
}
else if (spa_streq(k, SPA_KEY_PORT_IGNORE_LATENCY))
this->port_ignore_latency = spa_atob(s);
else if (spa_streq(k, SPA_KEY_PORT_GROUP))
spa_scnprintf(this->group_name, sizeof(this->group_name), "%s", s);
else if (spa_streq(k, "monitor.passthrough"))
this->monitor_passthrough = spa_atob(s);
}
this->props.channel.n_volumes = this->props.n_channels;
this->props.soft.n_volumes = this->props.n_channels;
this->props.monitor.n_volumes = this->props.n_channels;
this->dir[SPA_DIRECTION_INPUT].direction = SPA_DIRECTION_INPUT;
this->dir[SPA_DIRECTION_OUTPUT].direction = SPA_DIRECTION_OUTPUT;
this->node.iface = SPA_INTERFACE_INIT(
SPA_TYPE_INTERFACE_Node,
SPA_VERSION_NODE,
&impl_node, this);
spa_hook_list_init(&this->hooks);
this->info_all = SPA_NODE_CHANGE_MASK_FLAGS |
SPA_NODE_CHANGE_MASK_PARAMS;
this->info = SPA_NODE_INFO_INIT();
this->info.max_input_ports = MAX_PORTS;
this->info.max_output_ports = MAX_PORTS;
this->info.flags = SPA_NODE_FLAG_RT |
SPA_NODE_FLAG_IN_PORT_CONFIG |
SPA_NODE_FLAG_OUT_PORT_CONFIG |
SPA_NODE_FLAG_NEED_CONFIGURE;
this->params[IDX_EnumPortConfig] = SPA_PARAM_INFO(SPA_PARAM_EnumPortConfig, SPA_PARAM_INFO_READ);
this->params[IDX_PortConfig] = SPA_PARAM_INFO(SPA_PARAM_PortConfig, SPA_PARAM_INFO_READWRITE);
this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ);
this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE);
this->info.params = this->params;
this->info.n_params = N_NODE_PARAMS;
this->volume.cpu_flags = this->cpu_flags;
volume_init(&this->volume);
this->rate_scale = 1.0;
reconfigure_mode(this, SPA_PARAM_PORT_CONFIG_MODE_convert, SPA_DIRECTION_INPUT, false, false, NULL);
reconfigure_mode(this, SPA_PARAM_PORT_CONFIG_MODE_convert, SPA_DIRECTION_OUTPUT, false, false, NULL);
filter_graph_disabled = this->props.filter_graph_disabled;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;
audioconvert_set_param(this, k, s, &filter_graph_disabled);
}
this->props.filter_graph_disabled = filter_graph_disabled;
return 0;
}
static const struct spa_interface_info impl_interfaces[] = {
{SPA_TYPE_INTERFACE_Node,},
};
static int
impl_enum_interface_info(const struct spa_handle_factory *factory,
const struct spa_interface_info **info,
uint32_t *index)
{
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(info != NULL, -EINVAL);
spa_return_val_if_fail(index != NULL, -EINVAL);
switch (*index) {
case 0:
*info = &impl_interfaces[*index];
break;
default:
return 0;
}
(*index)++;
return 1;
}
const struct spa_handle_factory spa_audioconvert_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_AUDIO_CONVERT,
NULL,
impl_get_size,
impl_init,
impl_enum_interface_info,
};