pipewire/spa/plugins/audioconvert/fmt-ops.c
Wim Taymans 5196f7f053 audio: remove layout from audio
Make special format types for planar and interleaved instead of
having a field.
Add enum for audio channel positions
Add some default audio channel layouts
Place the channel layout in the audio format when possible
alsa: place audio channel positions in format
Add sse optimized channel mixing for some common cases
Remove name from port info, it's not mandatory and in the properties
Add direction to port info
2018-09-13 17:03:56 +02:00

777 lines
19 KiB
C

/* Spa
* Copyright (C) 2018 Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <stdio.h>
#include <spa/utils/defs.h>
#define U8_MIN 0
#define U8_MAX 255
#define U8_SCALE 127
#define U8_OFFS 128
#define S16_MIN -32767
#define S16_MAX 32767
#define S16_SCALE 32767
#define S24_MIN -8388607
#define S24_MAX 8388607
#define S24_MAX_F 8388607.0f
#define S24_SCALE 8388607
#define S32_MIN -2147483647
#define S32_MAX 2147483647
#define S32_SCALE 2147483647
#if defined (__SSE__)
#include "fmt-ops-sse.c"
#endif
static void
conv_copy(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i;
for (i = 0; i < n_src; i++)
memcpy(dst[i], src[i], n_bytes);
}
#define U8_TO_F32(v) (((v) * (1.0f / U8_OFFS)) - 1.0)
static void
conv_u8_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
for (i = 0; i < n_src; i++) {
const uint8_t *s = src[i];
float *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = U8_TO_F32(s[j]);
}
}
static void
conv_u8_to_f32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint8_t *s = src[0];
float **d = (float **) dst;
int i, j;
n_bytes /= n_dst;
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = U8_TO_F32(*s++);
}
}
static void
conv_u8d_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint8_t **s = (const uint8_t **) src;
float *d = dst[0];
int i, j;
n_bytes /= n_src;
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_src; i++)
*d++ = U8_TO_F32(s[i][j]);
}
}
#define S16_TO_F32(v) ((v) * (1.0f / S16_SCALE))
static void
conv_s16_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(int16_t);
for (i = 0; i < n_src; i++) {
const int16_t *s = src[i];
float *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = S16_TO_F32(s[j]);
}
}
static void
conv_s16_to_f32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int16_t *s = src[0];
float **d = (float **) dst;
int i, j;
n_bytes /= (sizeof(int16_t) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = S16_TO_F32(*s++);
}
}
static void
conv_s16d_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int16_t **s = (const int16_t **) src;
float *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(int16_t);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = S16_TO_F32(s[i][n]);
}
}
#define S32_TO_F32(v) ((v) * (1.0f / S32_SCALE))
static void
conv_s32_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(int32_t);
for (i = 0; i < n_src; i++) {
const int32_t *s = src[i];
float *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = S32_TO_F32(s[j]);
}
}
static void
conv_s32_to_f32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int32_t *s = src[0];
float **d = (float **) dst;
int i, j;
n_bytes /= (sizeof(int32_t) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = S32_TO_F32(*s++);
}
}
static void
conv_s32d_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int32_t **s = (const int32_t **) src;
float *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(int32_t);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = S32_TO_F32(s[i][n]);
}
}
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define READ24(s) (((uint32_t)s[2] << 16) | ((uint32_t)s[1] << 8) | ((uint32_t)s[0]))
#else
#define READ24(s) (((uint32_t)s[0] << 16) | ((uint32_t)s[1] << 8) | ((uint32_t)s[2]))
#endif
#define S24_TO_F32(v) ((((int32_t)v)<<8) * (1.0f / S32_SCALE))
static void
conv_s24_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= 3;
for (i = 0; i < n_src; i++) {
const int8_t *s = src[i];
float *d = dst[i];
for (j = 0; j < n_bytes; j++) {
d[j] = S24_TO_F32(READ24(s));
s += 3;
}
}
}
static void
conv_s24_to_f32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint8_t *s = src[0];
float **d = (float **) dst;
int i, j;
n_bytes /= (3 * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++) {
d[i][j] = S24_TO_F32(READ24(s));
s += 3;
}
}
}
static void
conv_s24d_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint8_t **s = (const uint8_t **) src;
float *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / 3;
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++) {
*d++ = S24_TO_F32(READ24(s[i]));
s += 3;
}
}
}
static void
conv_s24_32_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(int32_t);
for (i = 0; i < n_src; i++) {
const int32_t *s = src[i];
float *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = S24_TO_F32(s[j]);
}
}
static void
conv_s24_32_to_f32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int32_t *s = src[0];
float **d = (float **) dst;
int i, j;
n_bytes /= (sizeof(int32_t) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = S24_TO_F32(*s++);
}
}
static void
conv_s24_32d_to_f32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int32_t **s = (const int32_t **) src;
float *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(int32_t);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = S24_TO_F32(s[i][n]);
}
}
#define F32_TO_U8(v) \
({ \
typeof(v) _v = (v); \
_v < -1.0f ? U8_MIN : \
_v >= 1.0f ? U8_MAX : \
(_v * U8_SCALE) + U8_OFFS; \
})
static void
conv_f32_to_u8(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(float);
for (i = 0; i < n_src; i++) {
const float *s = src[i];
int8_t *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = F32_TO_U8(s[j]);
}
}
static void
conv_f32_to_u8d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float *s = src[0];
int8_t **d = (int8_t **) dst;
int i, j;
n_bytes /= (sizeof(float) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = F32_TO_U8(*s++);
}
}
static void
conv_f32d_to_u8(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float **s = (const float **) src;
int8_t *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(float);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = F32_TO_U8(s[i][n]);
}
}
#define F32_TO_S16(v) \
({ \
typeof(v) _v = (v); \
_v < -1.0f ? S16_MIN : \
_v >= 1.0f ? S16_MAX : \
_v * S16_SCALE; \
})
static void
conv_f32_to_s16(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, n, n_samples;
n_samples = n_bytes / sizeof(float);
for (i = 0; i < n_src; i++) {
const float *s = src[i];
int16_t *d = dst[i];
for (n = 0; n < n_samples; n++)
d[n] = F32_TO_S16(s[n]);
}
}
static void
conv_f32_to_s16d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float *s = src[0];
int16_t **d = (int16_t **) dst;
int i, n, n_samples;
n_samples = n_bytes / (sizeof(float) * n_dst);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_dst; i++)
d[i][n] = F32_TO_S16(*s++);
}
}
static void
conv_f32d_to_s16(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float **s = (const float **) src;
int16_t *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(float);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = F32_TO_S16(s[i][n]);
}
}
#define F32_TO_S32(v) \
({ \
typeof(v) _v = (v); \
_v < -1.0f ? S32_MIN : \
_v >= 1.0f ? S32_MAX : \
_v * S32_SCALE; \
})
static void
conv_f32_to_s32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(float);
for (i = 0; i < n_src; i++) {
const float *s = src[i];
int32_t *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = F32_TO_S32(s[j]);
}
}
static void
conv_f32_to_s32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float *s = src[0];
int32_t **d = (int32_t **) dst;
int i, j;
n_bytes /= (sizeof(float) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = F32_TO_S32(*s++);
}
}
static void
conv_f32d_to_s32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float **s = (const float **) src;
int32_t *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(float);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = F32_TO_S32(s[i][n]);
}
}
#define F32_TO_S24(v) \
({ \
typeof(v) _v = (v); \
_v < -1.0f ? S24_MIN : \
_v >= 1.0f ? S24_MAX : \
(uint32_t) (_v * S24_SCALE); \
})
#define WRITE24(d,v) \
({ \
typeof(v) _v = (v); \
d[0] = (uint8_t) (_v >> 16); \
d[1] = (uint8_t) (_v >> 8); \
d[2] = (uint8_t) _v; \
})
static void
conv_f32_to_s24(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(float);
for (i = 0; i < n_src; i++) {
const float *s = src[i];
int8_t *d = dst[i];
for (j = 0; j < n_bytes; j++)
WRITE24(d, F32_TO_S24(s[j]));
d += 3;
}
}
static void
conv_f32_to_s24d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float *s = src[0];
int8_t **d = (int8_t **) dst;
int i, j;
n_bytes /= (sizeof(float) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++) {
WRITE24(d[i], F32_TO_S24(*s++));
d[i] += 3;
}
}
}
static void
conv_f32d_to_s24(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float **s = (const float **) src;
int8_t *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(float);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++) {
WRITE24(d, F32_TO_S24(s[i][n]));
d += 3;
}
}
}
static void
conv_f32_to_s24_32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
int i, j;
n_bytes /= sizeof(float);
for (i = 0; i < n_src; i++) {
const float *s = src[i];
int32_t *d = dst[i];
for (j = 0; j < n_bytes; j++)
d[j] = F32_TO_S24(s[j]);
}
}
static void
conv_f32_to_s24_32d(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float *s = src[0];
int32_t **d = (int32_t **) dst;
int i, j;
n_bytes /= (sizeof(float) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = F32_TO_S24(*s++);
}
}
static void
conv_f32d_to_s24_32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const float **s = (const float **) src;
int32_t *d = dst[0];
int i, n, n_samples;
n_samples = n_bytes / sizeof(float);
for (n = 0; n < n_samples; n++) {
for (i = 0; i < n_src; i++)
*d++ = F32_TO_S24(s[i][n]);
}
}
static void
deinterleave_8(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint8_t *s = src[0];
uint8_t **d = (uint8_t **) dst;
int i, j;
n_bytes /= (sizeof(uint8_t) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = *s++;
}
}
static void
deinterleave_16(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint16_t *s = src[0];
uint16_t **d = (uint16_t **) dst;
int i, j;
n_bytes /= (sizeof(uint16_t) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = *s++;
}
}
static void
deinterleave_24(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint8_t *s = src[0];
uint8_t **d = (uint8_t **) dst;
int i, j;
n_bytes /= (3 * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++) {
WRITE24(d[i], READ24(s));
d += 3;
s += 3;
}
}
}
static void
deinterleave_32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const uint32_t *s = src[0];
uint32_t **d = (uint32_t **) dst;
int i, j;
n_bytes /= (sizeof(uint32_t) * n_dst);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_dst; i++)
d[i][j] = *s++;
}
}
static void
interleave_8(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int8_t **s = (const int8_t **) src;
uint8_t *d = dst[0];
int i, j;
n_bytes /= sizeof(uint8_t);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_src; i++)
*d++ = s[i][j];
}
}
static void
interleave_16(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int16_t **s = (const int16_t **) src;
uint16_t *d = dst[0];
int i, j;
n_bytes /= sizeof(uint16_t);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_src; i++)
*d++ = s[i][j];
}
}
static void
interleave_24(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int8_t **s = (const int8_t **) src;
uint8_t *d = dst[0];
int i, j;
n_bytes /= 3;
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_src; i++) {
WRITE24(d, READ24(s[i]));
d += 3;
s += 3;
}
}
}
static void
interleave_32(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
{
const int32_t **s = (const int32_t **) src;
uint32_t *d = dst[0];
int i, j;
n_bytes /= sizeof(uint32_t);
for (j = 0; j < n_bytes; j++) {
for (i = 0; i < n_src; i++)
*d++ = s[i][j];
}
}
typedef void (*convert_func_t) (void *data, int n_dst, void *dst[n_dst],
int n_src, const void *src[n_src], int n_bytes);
static const struct conv_info {
uint32_t src_fmt;
uint32_t dst_fmt;
#define FEATURE_SSE (1<<0)
uint32_t features;
convert_func_t func;
} conv_table[] =
{
/* to f32 */
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_F32, 0, conv_u8_to_f32 },
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_F32P, 0, conv_u8_to_f32d },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_F32, 0, conv_u8d_to_f32 },
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32, 0, conv_s16_to_f32 },
#if defined (__SSE2__)
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, FEATURE_SSE, conv_s16_to_f32d_sse },
#endif
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_F32P, 0, conv_s16_to_f32d },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_F32, 0, conv_s16d_to_f32 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32, 0, conv_copy },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32P, 0, conv_copy },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32P, 0, deinterleave_32 },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32, 0, interleave_32 },
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32, 0, conv_s32_to_f32 },
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_F32P, 0, conv_s32_to_f32d },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_F32, 0, conv_s32d_to_f32 },
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32, 0, conv_s24_to_f32 },
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_F32P, 0, conv_s24_to_f32d },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_F32, 0, conv_s24d_to_f32 },
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_F32, 0, conv_s24_32_to_f32 },
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_F32P, 0, conv_s24_32_to_f32d },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_F32, 0, conv_s24_32d_to_f32 },
/* from f32 */
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U8, 0, conv_f32_to_u8 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_U8P, 0, conv_f32_to_u8d },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_U8, 0, conv_f32d_to_u8 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16, 0, conv_f32_to_s16 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S16P, 0, conv_f32_to_s16d },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S16, 0, conv_f32d_to_s16 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S32, 0, conv_f32_to_s32 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S32P, 0, conv_f32_to_s32d },
#if defined (__SSE2__)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, FEATURE_SSE, conv_f32d_to_s32_sse },
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S32, 0, conv_f32d_to_s32 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24, 0, conv_f32_to_s24 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24P, 0, conv_f32_to_s24d },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24, 0, conv_f32d_to_s24 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24_32, 0, conv_f32_to_s24_32 },
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_S24_32P, 0, conv_f32_to_s24_32d },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_S24_32, 0, conv_f32d_to_s24_32 },
/* u8 */
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8, 0, conv_copy },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_U8P, 0, conv_copy },
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, 0, deinterleave_8 },
{ SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_U8, 0, interleave_8 },
/* s16 */
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_S16, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_S16P, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S16, SPA_AUDIO_FORMAT_S16P, 0, deinterleave_16 },
{ SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_S16, 0, interleave_16 },
/* s32 */
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32P, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32P, 0, deinterleave_32 },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32, 0, interleave_32 },
/* s24 */
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_S24, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_S24P, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S24, SPA_AUDIO_FORMAT_S24P, 0, deinterleave_24 },
{ SPA_AUDIO_FORMAT_S24P, SPA_AUDIO_FORMAT_S24, 0, interleave_24 },
/* s24_32 */
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32P, 0, conv_copy },
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32P, 0, deinterleave_32 },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32, 0, interleave_32 },
};
static const struct conv_info *find_conv_info(uint32_t src_fmt, uint32_t dst_fmt, uint32_t features)
{
int i;
for (i = 0; i < SPA_N_ELEMENTS(conv_table); i++) {
if (conv_table[i].src_fmt == src_fmt &&
conv_table[i].dst_fmt == dst_fmt &&
(conv_table[i].features == 0 || (conv_table[i].features & features) != 0))
return &conv_table[i];
}
return NULL;
}