mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
Make special format types for planar and interleaved instead of having a field. Add enum for audio channel positions Add some default audio channel layouts Place the channel layout in the audio format when possible alsa: place audio channel positions in format Add sse optimized channel mixing for some common cases Remove name from port info, it's not mandatory and in the properties Add direction to port info
262 lines
8 KiB
C
262 lines
8 KiB
C
/* Spa
|
|
* Copyright (C) 2018 Wim Taymans <wim.taymans@gmail.com>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
static void
|
|
channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **)dst;
|
|
float **s = (float **)src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 vol = _mm_set1_ps(v);
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memcpy(d[i], s[i], n_bytes);
|
|
}
|
|
else {
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for (i = 0; i < n_dst; i++) {
|
|
float *di = d[i], *si = s[i];
|
|
for(n = 0; unrolled--; n += 4)
|
|
_mm_storeu_ps(&di[n], _mm_mul_ps(_mm_loadu_ps(&si[n]), vol));
|
|
for(; remain--; n++)
|
|
_mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **)dst;
|
|
float **s = (float **)src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 in;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3], *s0 = s[0], *s1 = s[1];
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_loadu_ps(&s0[n]);
|
|
_mm_storeu_ps(&d0[n], in);
|
|
_mm_storeu_ps(&d2[n], in);
|
|
in = _mm_loadu_ps(&s1[n]);
|
|
_mm_storeu_ps(&d1[n], in);
|
|
_mm_storeu_ps(&d3[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
in = _mm_load_ss(&s0[n]);
|
|
_mm_store_ss(&d0[n], in);
|
|
_mm_store_ss(&d2[n], in);
|
|
in = _mm_load_ss(&s1[n]);
|
|
_mm_store_ss(&d1[n], in);
|
|
_mm_store_ss(&d3[n], in);
|
|
}
|
|
}
|
|
else {
|
|
float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3], *s0 = s[0], *s1 = s[1];
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_mul_ps(_mm_loadu_ps(&s0[n]), vol);
|
|
_mm_storeu_ps(&d0[n], in);
|
|
_mm_storeu_ps(&d2[n], in);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&s1[n]), vol);
|
|
_mm_storeu_ps(&d1[n], in);
|
|
_mm_storeu_ps(&d3[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
in = _mm_mul_ss(_mm_load_ss(&s0[n]), vol);
|
|
_mm_store_ss(&d0[n], in);
|
|
_mm_store_ss(&d2[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&s1[n]), vol);
|
|
_mm_store_ss(&d1[n], in);
|
|
_mm_store_ss(&d3[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+RL+RR+FC+LFE -> FL+FR */
|
|
static void
|
|
channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 clev = _mm_set1_ps(0.7071f);
|
|
__m128 slev = _mm_set1_ps(0.7071f);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 in, ctr;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
memset(d[0], 0, n_bytes);
|
|
memset(d[1], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
float *d0 = d[0], *d1 = d[1], *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = s[4];
|
|
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&s2[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&s0[n]));
|
|
_mm_storeu_ps(&d0[n], in);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&s3[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&s1[n]));
|
|
_mm_storeu_ps(&d1[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev);
|
|
in = _mm_mul_ss(_mm_load_ss(&s2[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&s0[n]));
|
|
_mm_store_ss(&d0[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&s3[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&s1[n]));
|
|
_mm_store_ss(&d1[n], in);
|
|
}
|
|
}
|
|
else {
|
|
float *d0 = d[0], *d1 = d[1], *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = s[4];
|
|
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&s2[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&s0[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_storeu_ps(&d0[n], in);
|
|
in = _mm_mul_ps(_mm_loadu_ps(&s3[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_loadu_ps(&s1[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_storeu_ps(&d1[n], in);
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev);
|
|
in = _mm_mul_ss(_mm_load_ss(&s2[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&s0[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&d0[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&s3[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&s1[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&d1[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+RL+RR+FC+LFE -> FL+FR+RL+RR*/
|
|
static void
|
|
channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, int n_bytes)
|
|
{
|
|
int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
float *m = matrix;
|
|
float v = m[0];
|
|
__m128 clev = _mm_set1_ps(0.7071f);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 ctr;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_bytes);
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = d[4];
|
|
float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3];
|
|
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev);
|
|
_mm_storeu_ps(&d0[n], _mm_add_ps(_mm_loadu_ps(&s0[n]), ctr));
|
|
_mm_storeu_ps(&d1[n], _mm_add_ps(_mm_loadu_ps(&s1[n]), ctr));
|
|
_mm_storeu_ps(&d2[n], _mm_loadu_ps(&s2[n]));
|
|
_mm_storeu_ps(&d3[n], _mm_loadu_ps(&s3[n]));
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev);
|
|
_mm_store_ss(&d0[n], _mm_add_ss(_mm_load_ss(&s0[n]), ctr));
|
|
_mm_store_ss(&d1[n], _mm_add_ss(_mm_load_ss(&s1[n]), ctr));
|
|
_mm_store_ss(&d2[n], _mm_load_ss(&s2[n]));
|
|
_mm_store_ss(&d3[n], _mm_load_ss(&s3[n]));
|
|
}
|
|
}
|
|
else {
|
|
float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = d[4];
|
|
float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3];
|
|
|
|
unrolled = n_samples / 4;
|
|
remain = n_samples & 3;
|
|
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev);
|
|
_mm_storeu_ps(&d0[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&s0[n]), ctr), vol));
|
|
_mm_storeu_ps(&d1[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&s1[n]), ctr), vol));
|
|
_mm_storeu_ps(&d2[n], _mm_mul_ps(_mm_loadu_ps(&s2[n]), vol));
|
|
_mm_storeu_ps(&d3[n], _mm_mul_ps(_mm_loadu_ps(&s3[n]), vol));
|
|
}
|
|
for(; remain--; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev);
|
|
_mm_store_ss(&d0[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&s0[n]), ctr), vol));
|
|
_mm_store_ss(&d1[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&s1[n]), ctr), vol));
|
|
_mm_store_ss(&d2[n], _mm_mul_ss(_mm_load_ss(&s2[n]), vol));
|
|
_mm_store_ss(&d3[n], _mm_mul_ss(_mm_load_ss(&s3[n]), vol));
|
|
}
|
|
}
|
|
}
|