pipewire/spa/plugins/bluez5/media-sink.c
Wim Taymans 13b8c23767 Don't use SPA_AUDIO_MAX_CHANNELS directly
Make a MAX_CHANNELS define and use that one in code. This makes it
easier to change the constant later.
2025-10-21 09:43:06 +02:00

2742 lines
72 KiB
C

/* Spa Media Sink */
/* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <unistd.h>
#include <stddef.h>
#include <stdio.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <spa/support/plugin.h>
#include <spa/support/loop.h>
#include <spa/support/log.h>
#include <spa/support/system.h>
#include <spa/utils/list.h>
#include <spa/utils/keys.h>
#include <spa/utils/names.h>
#include <spa/utils/result.h>
#include <spa/utils/string.h>
#include <spa/monitor/device.h>
#include <spa/node/node.h>
#include <spa/node/utils.h>
#include <spa/node/io.h>
#include <spa/node/keys.h>
#include <spa/param/param.h>
#include <spa/param/latency-utils.h>
#include <spa/param/audio/format.h>
#include <spa/param/audio/format-utils.h>
#include <spa/pod/filter.h>
#include <spa/debug/mem.h>
#include <spa/debug/log.h>
#include <bluetooth/bluetooth.h>
#include <sbc/sbc.h>
#include "defs.h"
#include "rtp.h"
#include "media-codecs.h"
#include "rate-control.h"
#include "iso-io.h"
SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.bluez5.sink.media");
#undef SPA_LOG_TOPIC_DEFAULT
#define SPA_LOG_TOPIC_DEFAULT &log_topic
#include "bt-latency.h"
#define DEFAULT_CLOCK_NAME "clock.system.monotonic"
struct props {
int64_t latency_offset;
char clock_name[64];
};
#define FILL_FRAMES 4
#define MIN_BUFFERS 3
#define MAX_BUFFERS 32
#define BUFFER_SIZE (8192*8)
#define RATE_CTL_DIFF_MAX 0.01
#define LATENCY_PERIOD (200 * SPA_NSEC_PER_MSEC)
/* Wait for two cycles before trying to sync ISO. On start/driver reassign,
* first cycle may have strange number of samples. */
#define RESYNC_CYCLES 2
struct buffer {
uint32_t id;
#define BUFFER_FLAG_OUT (1<<0)
uint32_t flags;
struct spa_buffer *buf;
struct spa_meta_header *h;
struct spa_list link;
};
struct port {
struct spa_audio_info current_format;
uint32_t frame_size;
unsigned int have_format:1;
uint64_t info_all;
struct spa_port_info info;
struct spa_io_buffers *io;
struct spa_io_rate_match *rate_match;
struct spa_latency_info latency;
#define IDX_EnumFormat 0
#define IDX_Meta 1
#define IDX_IO 2
#define IDX_Format 3
#define IDX_Buffers 4
#define IDX_Latency 5
#define N_PORT_PARAMS 6
struct spa_param_info params[N_PORT_PARAMS];
struct buffer buffers[MAX_BUFFERS];
uint32_t n_buffers;
struct spa_list free;
struct spa_list ready;
size_t ready_offset;
struct spa_bt_rate_control ratectl;
};
#define ASHA_ENCODED_PKT_SZ 161 /* 160 bytes encoded + 1 byte sequence number */
#define ASHA_CONN_INTERVAL (20 * SPA_NSEC_PER_MSEC)
struct spa_bt_asha {
struct spa_source flush_source;
struct spa_source timer_source;
int timerfd;
uint8_t buf[512];
uint64_t ref_t0;
uint64_t next_time;
unsigned int flush_pending:1;
unsigned int set_timer:1;
};
struct impl {
struct spa_handle handle;
struct spa_node node;
struct spa_log *log;
struct spa_loop *data_loop;
struct spa_system *data_system;
struct spa_loop_utils *loop_utils;
struct spa_hook_list hooks;
struct spa_callbacks callbacks;
uint32_t quantum_limit;
uint64_t info_all;
struct spa_node_info info;
#define IDX_PropInfo 0
#define IDX_Props 1
#define N_NODE_PARAMS 2
struct spa_param_info params[N_NODE_PARAMS];
struct props props;
struct spa_bt_transport *transport;
struct spa_hook transport_listener;
struct port port;
unsigned int started:1;
unsigned int start_ready:1;
unsigned int transport_started:1;
unsigned int following:1;
unsigned int is_output:1;
unsigned int flush_pending:1;
unsigned int iso_pending:1;
unsigned int own_codec_data:1;
unsigned int is_duplex:1;
unsigned int is_internal:1;
struct spa_source source;
int timerfd;
struct spa_source flush_source;
struct spa_source flush_timer_source;
int flush_timerfd;
struct spa_io_clock *clock;
struct spa_io_position *position;
uint64_t current_time;
uint64_t next_time;
uint64_t last_error;
uint64_t process_time;
uint64_t process_duration;
uint64_t process_rate;
double process_rate_diff;
uint64_t prev_flush_time;
uint64_t next_flush_time;
uint64_t packet_delay_ns;
struct spa_source *update_delay_event;
uint32_t encoder_delay;
const struct media_codec *codec;
bool codec_props_changed;
void *codec_props;
void *codec_data;
struct spa_audio_info codec_format;
int need_flush;
bool fragment;
uint32_t resync;
uint32_t block_size;
uint8_t buffer[BUFFER_SIZE];
uint32_t buffer_used;
uint32_t header_size;
uint32_t block_count;
uint16_t seqnum;
uint64_t last_seqnum;
uint32_t timestamp;
uint64_t sample_count;
uint8_t tmp_buffer[BUFFER_SIZE];
uint32_t tmp_buffer_used;
uint32_t fd_buffer_size;
uint32_t silence_frames;
struct spa_bt_asha *asha;
struct spa_list asha_link;
struct spa_bt_latency tx_latency;
};
#define CHECK_PORT(this,d,p) ((d) == SPA_DIRECTION_INPUT && (p) == 0)
static struct spa_list asha_sinks = SPA_LIST_INIT(&asha_sinks);
static void drop_frames(struct impl *this, uint32_t req);
static uint64_t get_reference_time(struct impl *this, uint64_t *duration_ns_ret);
static struct impl *find_other_asha(struct impl *this)
{
struct impl *other;
spa_list_for_each(other, &asha_sinks, asha_link) {
if (this == other)
continue;
if (this->transport->hisyncid == other->transport->hisyncid) {
return other;
}
}
return NULL;
}
static void reset_props(struct impl *this, struct props *props)
{
props->latency_offset = 0;
strncpy(props->clock_name, DEFAULT_CLOCK_NAME, sizeof(props->clock_name));
}
static int impl_node_enum_params(void *object, int seq,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[1024];
struct spa_result_node_params result;
uint32_t count = 0, index_offset = 0;
bool enum_codec = false;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
switch (id) {
case SPA_PARAM_PropInfo:
{
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_PropInfo, id,
SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_latencyOffsetNsec),
SPA_PROP_INFO_description, SPA_POD_String("Latency offset (ns)"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(0LL, INT64_MIN, INT64_MAX));
break;
default:
enum_codec = true;
index_offset = 1;
}
break;
}
case SPA_PARAM_Props:
{
struct props *p = &this->props;
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_Props, id,
SPA_PROP_latencyOffsetNsec, SPA_POD_Long(p->latency_offset));
break;
default:
enum_codec = true;
index_offset = 1;
}
break;
}
default:
return -ENOENT;
}
if (enum_codec) {
int res;
if (this->codec->enum_props == NULL || this->codec_props == NULL ||
this->transport == NULL)
return 0;
else if ((res = this->codec->enum_props(this->codec_props,
this->transport->device->settings,
id, result.index - index_offset, &b, &param)) != 1)
return res;
}
if (spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int set_timeout(struct impl *this, uint64_t time)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
return spa_system_timerfd_settime(this->data_system,
this->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
}
static int set_timers(struct impl *this)
{
struct timespec now;
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now);
this->next_time = SPA_TIMESPEC_TO_NSEC(&now);
return set_timeout(this, this->following ? 0 : this->next_time);
}
static int set_asha_timeout(struct impl *this, uint64_t time)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
return spa_system_timerfd_settime(this->data_system,
this->asha->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
}
static int set_asha_timer(struct impl *this, struct impl *other)
{
uint64_t time;
if (other) {
/* Try to line up our timer with the other side, and drop samples so we're sending
* the same sample position on both sides */
uint64_t other_samples = (get_reference_time(other, NULL) - other->asha->ref_t0) *
this->port.current_format.info.raw.rate / SPA_NSEC_PER_SEC;
if (other->asha->next_time < this->process_time) {
/* Other side has not yet been scheduled in this graph cycle, we expect
* there might be one packet left from the previous cycle at most */
time = other->asha->next_time + ASHA_CONN_INTERVAL;
other_samples += ASHA_CONN_INTERVAL *
this->port.current_format.info.raw.rate / SPA_NSEC_PER_SEC;
} else {
/* Other side has set up its next cycle, catch up */
time = other->asha->next_time;
}
/* Since the quantum and packet size aren't correlated, drop any samples from this
* cycle that might have been used to send a packet starting in the previous cycle */
drop_frames(this, other_samples % this->process_duration);
} else {
time = this->process_time;
}
this->asha->next_time = time;
return set_asha_timeout(this, this->asha->next_time);
}
static inline bool is_following(struct impl *this)
{
return this->position && this->clock && this->position->clock.id != this->clock->id;
}
struct reassign_io_info {
struct impl *this;
struct spa_io_position *position;
struct spa_io_clock *clock;
};
static int do_reassign_io(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct reassign_io_info *info = user_data;
struct impl *this = info->this;
bool following;
if (this->position != info->position || this->clock != info->clock)
this->resync = RESYNC_CYCLES;
this->position = info->position;
this->clock = info->clock;
following = is_following(this);
if (following != this->following) {
spa_log_debug(this->log, "%p: reassign follower %d->%d", this, this->following, following);
this->following = following;
set_timers(this);
}
return 0;
}
static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size)
{
struct impl *this = object;
struct reassign_io_info info = { .this = this, .position = this->position, .clock = this->clock };
spa_return_val_if_fail(this != NULL, -EINVAL);
switch (id) {
case SPA_IO_Clock:
info.clock = data;
if (info.clock != NULL) {
spa_scnprintf(info.clock->name,
sizeof(info.clock->name),
"%s", this->props.clock_name);
}
break;
case SPA_IO_Position:
info.position = data;
break;
default:
return -ENOENT;
}
if (this->started) {
spa_loop_locked(this->data_loop, do_reassign_io, 0, NULL, 0, &info);
} else {
this->clock = info.clock;
this->position = info.position;
}
return 0;
}
static void emit_node_info(struct impl *this, bool full);
static void emit_port_info(struct impl *this, struct port *port, bool full);
static void set_latency(struct impl *this, bool emit_latency)
{
struct port *port = &this->port;
int64_t delay;
/* in main loop */
if (this->transport == NULL || !port->have_format)
return;
/*
* We start flushing data immediately, so the delay is:
*
* (packet delay) + (codec internal delay) + (transport delay) + (latency offset)
*
* and doesn't depend on the quantum. Kernel knows the latency due to
* socket/controller queue, but doesn't tell us, so not included but
* hopefully in < 10 ms range.
*/
delay = __atomic_load_n(&this->packet_delay_ns, __ATOMIC_RELAXED);
delay += (int64_t)this->encoder_delay * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate;
delay += spa_bt_transport_get_delay_nsec(this->transport);
delay += SPA_CLAMP(this->props.latency_offset, -delay, INT64_MAX / 2);
delay = SPA_MAX(delay, 0);
port->latency.min_ns = port->latency.max_ns = delay;
port->latency.min_rate = port->latency.max_rate = 0;
if (this->codec->kind == MEDIA_CODEC_BAP) {
/* ISO has different delay */
port->latency.min_quantum = port->latency.max_quantum = 1.0f;
} else {
port->latency.min_quantum = port->latency.max_quantum = 0.0f;
}
spa_log_info(this->log, "%p: total latency:%d ms", this, (int)(delay / SPA_NSEC_PER_MSEC));
if (emit_latency) {
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL;
emit_port_info(this, port, false);
}
}
static void update_delay_event(void *data, uint64_t count)
{
struct impl *this = data;
/* in main loop */
set_latency(this, true);
}
static void update_packet_delay(struct impl *this, uint64_t delay)
{
uint64_t old_delay = this->packet_delay_ns;
/* in data thread */
delay = SPA_MAX(delay, old_delay);
if (delay == old_delay)
return;
__atomic_store_n(&this->packet_delay_ns, delay, __ATOMIC_RELAXED);
if (this->update_delay_event)
spa_loop_utils_signal_event(this->loop_utils, this->update_delay_event);
}
static int apply_props(struct impl *this, const struct spa_pod *param)
{
struct props new_props = this->props;
int changed = 0;
if (param == NULL) {
reset_props(this, &new_props);
} else {
spa_pod_parse_object(param,
SPA_TYPE_OBJECT_Props, NULL,
SPA_PROP_latencyOffsetNsec, SPA_POD_OPT_Long(&new_props.latency_offset));
}
changed = (memcmp(&new_props, &this->props, sizeof(struct props)) != 0);
this->props = new_props;
if (changed)
set_latency(this, true);
return changed;
}
static int impl_node_set_param(void *object, uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
switch (id) {
case SPA_PARAM_Props:
{
int res, codec_res = 0;
res = apply_props(this, param);
if (this->codec_props && this->codec->set_props) {
codec_res = this->codec->set_props(this->codec_props, param);
if (codec_res > 0)
this->codec_props_changed = true;
}
if (res > 0 || codec_res > 0) {
this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
this->params[IDX_Props].flags ^= SPA_PARAM_INFO_SERIAL;
emit_node_info(this, false);
}
break;
}
default:
return -ENOENT;
}
return 0;
}
static uint32_t get_queued_frames(struct impl *this)
{
struct port *port = &this->port;
uint32_t bytes = 0;
struct buffer *b;
spa_list_for_each(b, &port->ready, link) {
struct spa_data *d = b->buf->datas;
bytes += d[0].chunk->size;
}
if (bytes > port->ready_offset)
bytes -= port->ready_offset;
else
bytes = 0;
bytes += this->silence_frames * this->block_size;
/* Count (partially) encoded packet */
bytes += this->tmp_buffer_used;
bytes += this->block_count * this->block_size;
return bytes / port->frame_size;
}
static uint64_t get_reference_time(struct impl *this, uint64_t *duration_ns_ret)
{
struct port *port = &this->port;
uint64_t duration_ns;
int64_t t;
bool resampling;
if (!this->process_rate || !this->process_duration) {
if (this->position) {
this->process_duration = this->position->clock.duration;
this->process_rate = this->position->clock.rate.denom;
this->process_rate_diff = this->position->clock.rate_diff;
} else {
this->process_duration = 1024;
this->process_rate = 48000;
this->process_rate_diff = 1.0;
}
}
duration_ns = ((uint64_t)this->process_duration * SPA_NSEC_PER_SEC / this->process_rate);
if (duration_ns_ret)
*duration_ns_ret = duration_ns;
/* Time at the first sample in the current packet. */
t = duration_ns;
t -= ((uint64_t)get_queued_frames(this) * SPA_NSEC_PER_SEC
/ port->current_format.info.raw.rate);
/* Account for resampling delay */
resampling = (port->current_format.info.raw.rate != this->process_rate) || this->following;
if (port->rate_match && this->position && resampling) {
t -= (port->rate_match->delay * SPA_NSEC_PER_SEC + port->rate_match->delay_frac)
/ port->current_format.info.raw.rate;
}
if (this->process_rate_diff > 0)
t = (int64_t)(t / this->process_rate_diff);
if (this->transport && this->transport->iso_io && this->transport->iso_io->size)
t -= this->transport->iso_io->duration;
return this->process_time + t;
}
static int reset_buffer(struct impl *this)
{
if (this->codec_props_changed && this->codec_props
&& this->codec->update_props) {
this->codec->update_props(this->codec_data, this->codec_props);
this->codec_props_changed = false;
}
this->need_flush = 0;
this->block_count = 0;
this->fragment = false;
if (this->codec->kind == MEDIA_CODEC_BAP || this->codec->kind == MEDIA_CODEC_ASHA)
this->timestamp = get_reference_time(this, NULL) / SPA_NSEC_PER_USEC;
else
this->timestamp = this->sample_count;
this->buffer_used = this->codec->start_encode(this->codec_data,
this->buffer, sizeof(this->buffer),
++this->seqnum, this->timestamp);
this->header_size = this->buffer_used;
return 0;
}
static int setup_matching(struct impl *this)
{
struct port *port = &this->port;
if (!this->transport_started)
port->ratectl.corr = 1.0;
if (port->rate_match) {
port->rate_match->rate = 1 / port->ratectl.corr;
/* We rate match in the system clock domain. If driver ticks at a
* different rate, we as follower must compensate.
*/
if (this->following && SPA_LIKELY(this->position &&
this->position->clock.rate_diff > 0))
port->rate_match->rate /= this->position->clock.rate_diff;
SPA_FLAG_UPDATE(port->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, this->following);
}
return 0;
}
static int get_transport_unsent_size(struct impl *this)
{
int res, value;
if (this->tx_latency.enabled) {
res = 0;
value = this->tx_latency.unsent;
} else if (this->codec->kind == MEDIA_CODEC_HFP) {
value = 0;
} else {
res = ioctl(this->flush_source.fd, TIOCOUTQ, &value);
if (res < 0) {
spa_log_error(this->log, "%p: ioctl fail: %m", this);
return -errno;
}
if ((unsigned int)value > this->fd_buffer_size)
return -EIO;
value = this->fd_buffer_size - value;
}
spa_log_trace(this->log, "%p: fd unsent size:%d/%d", this, value, this->fd_buffer_size);
return value;
}
static int send_buffer(struct impl *this)
{
int written, unsent;
struct timespec ts_pre;
if (this->codec->abr_process) {
unsent = get_transport_unsent_size(this);
if (unsent >= 0)
this->codec->abr_process(this->codec_data, unsent);
}
spa_system_clock_gettime(this->data_system, CLOCK_REALTIME, &ts_pre);
if (this->codec->kind == MEDIA_CODEC_HFP) {
written = spa_bt_sco_io_write(this->transport->sco_io, this->buffer, this->buffer_used);
} else {
written = spa_bt_send(this->flush_source.fd, this->buffer, this->buffer_used,
&this->tx_latency, SPA_TIMESPEC_TO_NSEC(&ts_pre));
}
if (SPA_UNLIKELY(spa_log_level_topic_enabled(this->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_TRACE))) {
struct timespec ts;
uint64_t now;
uint64_t dt;
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts);
now = SPA_TIMESPEC_TO_NSEC(&ts);
dt = now - this->prev_flush_time;
this->prev_flush_time = now;
spa_log_trace(this->log,
"%p: send blocks:%d block:%u seq:%u ts:%u size:%u "
"wrote:%d dt:%"PRIu64,
this, this->block_count, this->block_size, this->seqnum,
this->timestamp, this->buffer_used, written, dt);
}
if (written < 0) {
spa_log_debug(this->log, "%p: %m", this);
return -errno;
}
return written;
}
static int encode_buffer(struct impl *this, const void *data, uint32_t size)
{
int processed;
size_t out_encoded;
struct port *port = &this->port;
const void *from_data = data;
int from_size = size;
spa_log_trace(this->log, "%p: encode %d used %d, %d %d %d",
this, size, this->buffer_used, port->frame_size, this->block_size,
this->block_count);
if (this->need_flush)
return 0;
if (this->buffer_used >= sizeof(this->buffer))
return -ENOSPC;
if (size < this->block_size - this->tmp_buffer_used) {
memcpy(this->tmp_buffer + this->tmp_buffer_used, data, size);
this->tmp_buffer_used += size;
return size;
} else if (this->tmp_buffer_used > 0) {
memcpy(this->tmp_buffer + this->tmp_buffer_used, data, this->block_size - this->tmp_buffer_used);
from_data = this->tmp_buffer;
from_size = this->block_size;
this->tmp_buffer_used = this->block_size - this->tmp_buffer_used;
}
processed = this->codec->encode(this->codec_data,
from_data, from_size,
this->buffer + this->buffer_used,
sizeof(this->buffer) - this->buffer_used,
&out_encoded, &this->need_flush);
if (processed < 0)
return processed;
this->sample_count += processed / port->frame_size;
this->block_count += processed / this->block_size;
this->buffer_used += out_encoded;
spa_log_trace(this->log, "%p: processed %d %zd used %d",
this, processed, out_encoded, this->buffer_used);
if (this->tmp_buffer_used) {
processed = this->tmp_buffer_used;
this->tmp_buffer_used = 0;
}
return processed;
}
static int encode_fragment(struct impl *this)
{
int res;
size_t out_encoded;
struct port *port = &this->port;
spa_log_trace(this->log, "%p: encode fragment used %d, %d %d %d",
this, this->buffer_used, port->frame_size, this->block_size,
this->block_count);
if (this->need_flush)
return 0;
res = this->codec->encode(this->codec_data,
NULL, 0,
this->buffer + this->buffer_used,
sizeof(this->buffer) - this->buffer_used,
&out_encoded, &this->need_flush);
if (res < 0)
return res;
if (res != 0)
return -EINVAL;
this->buffer_used += out_encoded;
spa_log_trace(this->log, "%p: processed fragment %zd used %d",
this, out_encoded, this->buffer_used);
return 0;
}
static int flush_buffer(struct impl *this)
{
spa_log_trace(this->log, "%p: used:%d block_size:%d need_flush:%d", this,
this->buffer_used, this->block_size, this->need_flush);
if (this->need_flush)
return send_buffer(this);
return 0;
}
static int add_data(struct impl *this, const void *data, uint32_t size)
{
int processed, total = 0;
while (size > 0) {
processed = encode_buffer(this, data, size);
if (processed <= 0)
return total > 0 ? total : processed;
data = SPA_PTROFF(data, processed, void);
size -= processed;
total += processed;
}
return total;
}
static void enable_flush_timer(struct impl *this, bool enabled)
{
struct itimerspec ts;
if (!enabled)
this->next_flush_time = 0;
ts.it_value.tv_sec = this->next_flush_time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = this->next_flush_time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
spa_system_timerfd_settime(this->data_system,
this->flush_timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
this->flush_pending = enabled;
}
static int flush_data(struct impl *this, uint64_t now_time)
{
struct port *port = &this->port;
bool is_asha = this->codec->kind == MEDIA_CODEC_ASHA;
bool is_sco = this->codec->kind == MEDIA_CODEC_HFP;
uint32_t total_frames;
int written;
int unsent_buffer;
spa_assert(this->transport_started);
/* I/O in error state? */
if (this->transport == NULL || (!this->flush_source.loop && !is_asha && !is_sco))
return -EIO;
if (!this->flush_timer_source.loop && !this->transport->iso_io && !is_asha)
return -EIO;
if (!this->transport->sco_io && is_sco)
return -EIO;
if (this->transport->iso_io && !this->iso_pending)
return 0;
total_frames = 0;
again:
written = 0;
if (this->fragment && !this->need_flush) {
int res;
this->fragment = false;
if ((res = encode_fragment(this)) < 0) {
/* Error */
reset_buffer(this);
return res;
}
}
while (this->silence_frames && !this->need_flush) {
static const uint8_t empty[1024] = {};
uint32_t avail = SPA_MIN(this->silence_frames, sizeof(empty) / port->frame_size)
* port->frame_size;
written = add_data(this, empty, avail);
if (written <= 0)
break;
this->silence_frames -= written / port->frame_size;
spa_log_trace(this->log, "%p: written %d silence frames", this,
written / port->frame_size);
}
while (!spa_list_is_empty(&port->ready) && !this->need_flush) {
uint8_t *src;
uint32_t n_bytes, n_frames;
struct buffer *b;
struct spa_data *d;
uint32_t index, offs, avail, l0, l1;
b = spa_list_first(&port->ready, struct buffer, link);
d = b->buf->datas;
src = d[0].data;
index = d[0].chunk->offset + port->ready_offset;
avail = d[0].chunk->size - port->ready_offset;
avail /= port->frame_size;
offs = index % d[0].maxsize;
n_frames = avail;
n_bytes = n_frames * port->frame_size;
l0 = SPA_MIN(n_bytes, d[0].maxsize - offs);
l1 = n_bytes - l0;
written = add_data(this, src + offs, l0);
if (written > 0 && l1 > 0)
written += add_data(this, src, l1);
if (written <= 0) {
if (written < 0 && written != -ENOSPC) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
this->port.io->buffer_id = b->id;
spa_log_warn(this->log, "%p: error %s, reuse buffer %u",
this, spa_strerror(written), b->id);
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
port->ready_offset = 0;
}
break;
}
n_frames = written / port->frame_size;
port->ready_offset += written;
if (port->ready_offset >= d[0].chunk->size) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_log_trace(this->log, "%p: reuse buffer %u", this, b->id);
this->port.io->buffer_id = b->id;
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
port->ready_offset = 0;
}
total_frames += n_frames;
spa_log_trace(this->log, "%p: written %u frames", this, total_frames);
}
if (this->transport->iso_io) {
struct spa_bt_iso_io *iso_io = this->transport->iso_io;
if (this->need_flush) {
size_t avail = SPA_MIN(this->buffer_used, sizeof(iso_io->buf));
uint64_t delay = 0;
spa_log_trace(this->log, "%p: ISO put fd:%d size:%u sn:%u ts:%u now:%"PRIu64,
this, this->transport->fd, (unsigned)avail,
(unsigned)this->seqnum, (unsigned)this->timestamp,
iso_io->now);
memcpy(iso_io->buf, this->buffer, avail);
iso_io->size = avail;
iso_io->timestamp = this->timestamp;
this->iso_pending = false;
reset_buffer(this);
if (this->process_rate) {
/* Match target delay in media_iso_pull() */
delay = this->process_duration * SPA_NSEC_PER_SEC / this->process_rate;
if (delay < iso_io->duration*3/2)
delay = iso_io->duration*3/2 - delay;
else
delay = 0;
}
update_packet_delay(this, delay);
}
return 0;
}
if (is_asha) {
struct spa_bt_asha *asha = this->asha;
if (this->need_flush && !asha->flush_pending) {
/*
* For ASHA, we cannot send more than one encoded
* packet at a time and can only send them spaced
* 20 ms apart which is the ASHA connection interval.
* All encoded packets will be 160 bytes + 1 byte
* sequence number.
*
* Unlike the A2DP flow below, we cannot delay the
* output by 1 packet. While that might work for the
* mono case, for stereo that make the two sides be
* out of sync with each other and if the two sides
* differ by more than 3 credits, we would have to
* drop packets or the devices themselves might drop
* the connection.
*/
memcpy(asha->buf, this->buffer, this->buffer_used);
asha->flush_pending = true;
reset_buffer(this);
}
return 0;
}
if (this->flush_pending) {
spa_log_trace(this->log, "%p: wait for flush timer", this);
return 0;
}
/*
* Get packet queue size before writing to it. This should be zero to increase
* bitpool. Bitpool shouldn't be increased when there is unsent data.
*/
unsent_buffer = get_transport_unsent_size(this);
written = flush_buffer(this);
if (written == -EAGAIN) {
spa_log_trace(this->log, "%p: fail flush", this);
if (now_time - this->last_error > SPA_NSEC_PER_SEC / 2) {
int res = 0;
if (this->codec->reduce_bitpool)
res = this->codec->reduce_bitpool(this->codec_data);
spa_log_debug(this->log, "%p: reduce bitpool: %i", this, res);
this->last_error = now_time;
}
/*
* The socket buffer is full, and the device is not processing data
* fast enough, so should just skip this packet. There will be a sound
* glitch in any case.
*/
written = this->buffer_used;
}
if (written < 0) {
spa_log_trace(this->log, "%p: error flushing %s", this,
spa_strerror(written));
reset_buffer(this);
enable_flush_timer(this, false);
return written;
}
else if (written > 0) {
/*
* We cannot write all data we have at once, since this can exceed device
* buffers (esp. for the A2DP low-latency codecs) and socket buffers, so
* flush needs to be delayed.
*/
uint32_t packet_samples = this->block_count * this->block_size
/ port->frame_size;
uint64_t packet_time = (uint64_t)packet_samples * SPA_NSEC_PER_SEC
/ port->current_format.info.raw.rate;
if (SPA_LIKELY(this->position)) {
uint64_t duration_ns;
/*
* Flush at the time position of the next buffered sample.
*/
this->next_flush_time = get_reference_time(this, &duration_ns)
+ packet_time;
/*
* We can delay the output by one packet to avoid waiting
* for the next buffer and so make send intervals exactly regular.
* However, this is not needed for A2DP or BAP. The controller
* will do the scheduling for us, and there's also the socket buffer
* in between.
*
* Although in principle this should not be needed, we
* do it regardless in case it helps.
*/
#if 1
this->next_flush_time += SPA_MIN(packet_time,
duration_ns * (SPA_MAX(port->n_buffers, 2u) - 2));
#endif
} else {
if (this->next_flush_time == 0)
this->next_flush_time = this->process_time;
this->next_flush_time += packet_time;
}
update_packet_delay(this, packet_time);
if (this->need_flush == NEED_FLUSH_FRAGMENT) {
reset_buffer(this);
this->fragment = true;
goto again;
}
if (now_time - this->last_error > SPA_NSEC_PER_SEC) {
if (unsent_buffer == 0) {
int res = 0;
if (this->codec->increase_bitpool)
res = this->codec->increase_bitpool(this->codec_data);
spa_log_debug(this->log, "%p: increase bitpool: %i", this, res);
}
this->last_error = now_time;
}
spa_log_trace(this->log, "%p: flush at:%"PRIu64" process:%"PRIu64, this,
this->next_flush_time, this->process_time);
reset_buffer(this);
enable_flush_timer(this, true);
/* Encode next packet already now; it will be flushed later on timer */
goto again;
}
else {
/* Don't want to flush yet, or failed to write anything */
spa_log_trace(this->log, "%p: skip flush", this);
enable_flush_timer(this, false);
}
return 0;
}
static void drop_frames(struct impl *this, uint32_t req)
{
struct port *port = &this->port;
if (this->silence_frames > req) {
this->silence_frames -= req;
req = 0;
} else {
req -= this->silence_frames;
this->silence_frames = 0;
}
while (req > 0 && !spa_list_is_empty(&port->ready)) {
struct buffer *b;
struct spa_data *d;
uint32_t avail;
b = spa_list_first(&port->ready, struct buffer, link);
d = b->buf->datas;
avail = d[0].chunk->size - port->ready_offset;
avail /= port->frame_size;
avail = SPA_MIN(avail, req);
port->ready_offset += avail * port->frame_size;
req -= avail;
if (port->ready_offset >= d[0].chunk->size) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_log_trace(this->log, "%p: reuse buffer %u", this, b->id);
this->port.io->buffer_id = b->id;
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
port->ready_offset = 0;
}
spa_log_trace(this->log, "%p: skipped %u frames", this, avail);
}
}
static void media_iso_rate_match(struct impl *this)
{
struct spa_bt_iso_io *iso_io = this->transport ? this->transport->iso_io : NULL;
struct port *port = &this->port;
const double period = 0.05 * SPA_NSEC_PER_SEC;
uint64_t ref_time;
uint64_t duration_ns;
double value, target, err, max_err;
if (!iso_io || !this->transport_started)
return;
if (this->resync || !this->position) {
spa_bt_rate_control_init(&port->ratectl, 0);
setup_matching(this);
return;
}
/*
* Rate match sample position so that the graph is max(ISO interval*3/2, quantum)
* ahead of the time instant we have to send data.
*
* Being 1 ISO interval ahead is unavoidable otherwise we underrun, and the
* rest is safety margin for the graph to deliver data in time.
*
* This is then the part of the TX latency on PipeWire side. There is
* another part of TX latency on kernel/controller side before the
* controller starts processing the packet.
*/
ref_time = get_reference_time(this, &duration_ns);
value = (int64_t)iso_io->now - (int64_t)ref_time;
if (this->process_rate)
target = this->process_duration * SPA_NSEC_PER_SEC / this->process_rate;
else
target = 0;
target = SPA_MAX(target, iso_io->duration*3/2);
err = value - target;
max_err = SPA_MAX(40 * SPA_NSEC_PER_MSEC, target);
if (iso_io->resync && err >= 0) {
unsigned int req = (unsigned int)(err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC);
if (req > 0) {
spa_bt_rate_control_init(&port->ratectl, 0);
drop_frames(this, req);
}
spa_log_debug(this->log, "%p: ISO sync skip frames:%u", this, req);
} else if (iso_io->resync && -err >= 0) {
unsigned int req = (unsigned int)(-err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC);
if (req > 0) {
spa_bt_rate_control_init(&port->ratectl, 0);
this->silence_frames += req;
}
spa_log_debug(this->log, "%p: ISO sync pad frames:%u", this, req);
} else if (err > max_err || -err > max_err) {
iso_io->need_resync = true;
spa_log_debug(this->log, "%p: ISO sync need resync err:%+.3f",
this, err / SPA_NSEC_PER_MSEC);
} else {
spa_bt_rate_control_update(&port->ratectl, err, 0,
duration_ns, period, RATE_CTL_DIFF_MAX);
spa_log_trace(this->log, "%p: ISO sync err:%+.3g value:%.6f target:%.6f (ms) corr:%g",
this,
port->ratectl.avg / SPA_NSEC_PER_MSEC,
value / SPA_NSEC_PER_MSEC,
target / SPA_NSEC_PER_MSEC,
port->ratectl.corr);
}
iso_io->resync = false;
}
static void media_iso_pull(struct spa_bt_iso_io *iso_io)
{
struct impl *this = iso_io->user_data;
this->iso_pending = true;
flush_data(this, this->current_time);
}
static void media_on_flush_error(struct spa_source *source)
{
struct impl *this = source->data;
if (source->rmask & SPA_IO_ERR) {
/* TX timestamp info? */
if (this->transport && this->transport->iso_io) {
if (spa_bt_iso_io_recv_errqueue(this->transport->iso_io) == 0)
return;
} else {
if (spa_bt_latency_recv_errqueue(&this->tx_latency, this->flush_source.fd, this->log) == 0)
return;
}
/* Otherwise: actual error */
}
spa_log_trace(this->log, "%p: flush event", this);
if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) {
spa_log_warn(this->log, "%p: connection (%s) terminated unexpectedly",
this, this->transport ? this->transport->path : "");
if (this->flush_source.loop) {
spa_bt_latency_flush(&this->tx_latency, this->flush_source.fd, this->log);
spa_loop_remove_source(this->data_loop, &this->flush_source);
}
enable_flush_timer(this, false);
if (this->flush_timer_source.loop)
spa_loop_remove_source(this->data_loop, &this->flush_timer_source);
if (this->transport && this->transport->iso_io)
spa_bt_iso_io_set_cb(this->transport->iso_io, NULL, NULL);
return;
}
}
static void media_on_flush_timeout(struct spa_source *source)
{
struct impl *this = source->data;
uint64_t exp;
int res;
spa_log_trace(this->log, "%p: flush on timeout", this);
if ((res = spa_system_timerfd_read(this->data_system, this->flush_timerfd, &exp)) < 0) {
if (res != -EAGAIN)
spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res));
return;
}
if (this->transport == NULL) {
enable_flush_timer(this, false);
return;
}
while (exp-- > 0) {
this->flush_pending = false;
flush_data(this, this->current_time);
}
}
static void media_on_timeout(struct spa_source *source)
{
struct impl *this = source->data;
struct port *port = &this->port;
uint64_t exp, duration;
uint32_t rate;
struct spa_io_buffers *io = port->io;
uint64_t prev_time, now_time;
int status, res;
if (this->started) {
if ((res = spa_system_timerfd_read(this->data_system, this->timerfd, &exp)) < 0) {
if (res != -EAGAIN)
spa_log_warn(this->log, "error reading timerfd: %s",
spa_strerror(res));
return;
}
}
prev_time = this->current_time;
now_time = this->current_time = this->next_time;
spa_log_debug(this->log, "%p: timer %"PRIu64" %"PRIu64"", this,
now_time, now_time - prev_time);
if (SPA_LIKELY(this->position)) {
duration = this->position->clock.target_duration;
rate = this->position->clock.target_rate.denom;
} else {
duration = 1024;
rate = 48000;
}
setup_matching(this);
this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / rate * port->ratectl.corr);
if (SPA_LIKELY(this->clock)) {
this->clock->nsec = now_time;
this->clock->rate = this->clock->target_rate;
this->clock->position += this->clock->duration;
this->clock->duration = duration;
this->clock->rate_diff = 1 / port->ratectl.corr;
this->clock->next_nsec = this->next_time;
this->clock->delay = 0;
}
status = this->transport_started ? SPA_STATUS_NEED_DATA : SPA_STATUS_HAVE_DATA;
spa_log_trace(this->log, "%p: %d -> %d", this, io->status, status);
io->status = status;
io->buffer_id = SPA_ID_INVALID;
spa_node_call_ready(&this->callbacks, status);
set_timeout(this, this->next_time);
}
static uint64_t asha_seqnum(struct impl *this)
{
uint64_t tn = get_reference_time(this, NULL);
uint64_t dt = tn - this->asha->ref_t0;
uint64_t num_packets = (dt + ASHA_CONN_INTERVAL / 2) / ASHA_CONN_INTERVAL;
spa_log_trace(this->log, "%" PRIu64 " - %" PRIu64 " / 20ms = %"PRIu64,
tn, this->asha->ref_t0, num_packets);
if (this->asha->ref_t0 > tn)
return 0;
return num_packets % 256;
}
static void media_asha_flush_timeout(struct spa_source *source)
{
struct impl *this = source->data;
struct port *port = &this->port;
struct spa_bt_asha *asha = this->asha;
const char *address = this->transport->device->address;
struct timespec ts;
int res, written;
uint64_t exp, now;
if (this->started) {
if ((res = spa_system_timerfd_read(this->data_system, asha->timerfd, &exp)) < 0) {
if (res != -EAGAIN)
spa_log_warn(this->log, "error reading ASHA timerfd: %s",
spa_strerror(res));
return;
}
}
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts);
now = SPA_TIMESPEC_TO_NSEC(&ts);
asha->next_time += (uint64_t)(ASHA_CONN_INTERVAL * port->ratectl.corr);
if (asha->flush_pending) {
asha->buf[0] = this->seqnum;
written = send(asha->flush_source.fd, asha->buf,
ASHA_ENCODED_PKT_SZ, MSG_DONTWAIT | MSG_NOSIGNAL);
/*
* For ASHA, when we are out of LE credits and cannot write to
* the socket, return value of `send` will be -EAGAIN.
*/
if (written < 0) {
asha->flush_pending = false;
spa_log_warn(this->log, "%p: ASHA failed to flush %d seqnum on timer for %s, written:%d",
this, this->seqnum, address, -errno);
goto skip_flush;
}
if (written > 0) {
asha->flush_pending = false;
spa_log_trace(this->log, "%p: ASHA flush %d seqnum for %s, ts:%u",
this, this->seqnum, address, this->timestamp);
}
}
this->seqnum = asha_seqnum(this);
flush_data(this, now);
skip_flush:
set_asha_timeout(this, asha->next_time);
}
static void media_asha_cb(struct spa_source *source)
{
struct impl *this = source->data;
struct spa_bt_asha *asha = this->asha;
const char *address = this->transport->device->address;
if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) {
spa_log_error(this->log, "%p: ASHA source error %d on %s", this, source->rmask, address);
if (asha->flush_source.loop)
spa_loop_remove_source(this->data_loop, &asha->flush_source);
return;
}
}
static int do_start_transport(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
struct impl *this = user_data;
this->transport_started = true;
if (this->transport->iso_io)
spa_bt_iso_io_set_cb(this->transport->iso_io, media_iso_pull, this);
return 0;
}
static int transport_start(struct impl *this)
{
int val, size;
struct port *port;
socklen_t len;
uint8_t *conf;
uint32_t flags;
bool is_asha;
bool is_sco;
if (this->transport_started)
return 0;
if (!this->start_ready)
return -EIO;
spa_return_val_if_fail(this->transport, -EIO);
spa_log_debug(this->log, "%p: start transport", this);
port = &this->port;
conf = this->transport->configuration;
size = this->transport->configuration_len;
is_asha = this->codec->kind == MEDIA_CODEC_ASHA;
is_sco = this->codec->kind == MEDIA_CODEC_HFP;
spa_log_debug(this->log, "Transport configuration:");
spa_debug_log_mem(this->log, SPA_LOG_LEVEL_DEBUG, 2, conf, (size_t)size);
flags = this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0;
if (!this->transport->iso_io) {
this->own_codec_data = true;
this->codec_data = this->codec->init(this->codec,
flags,
this->transport->configuration,
this->transport->configuration_len,
&port->current_format,
this->codec_props,
this->transport->write_mtu);
if (this->codec_data == NULL) {
spa_log_error(this->log, "%p: codec %s initialization failed", this,
this->codec->description);
return -EIO;
}
} else {
this->own_codec_data = false;
this->codec_data = this->transport->iso_io->codec_data;
this->codec_props_changed = true;
}
this->encoder_delay = 0;
if (this->codec->get_delay)
this->codec->get_delay(this->codec_data, &this->encoder_delay, NULL);
const char *codec_profile = media_codec_kind_str(this->codec);
spa_log_info(this->log, "%p: using %s codec %s, delay:%.2f ms, codec-delay:%.2f ms", this,
codec_profile, this->codec->description,
(double)spa_bt_transport_get_delay_nsec(this->transport) / SPA_NSEC_PER_MSEC,
(double)this->encoder_delay * SPA_MSEC_PER_SEC / port->current_format.info.raw.rate);
this->seqnum = UINT16_MAX;
this->block_size = this->codec->get_block_size(this->codec_data);
if (this->block_size > sizeof(this->tmp_buffer)) {
spa_log_error(this->log, "block-size %d > %zu",
this->block_size, sizeof(this->tmp_buffer));
goto fail;
}
spa_log_debug(this->log, "%p: block_size %d", this, this->block_size);
val = this->codec->send_buf_size > 0
/* The kernel doubles the SO_SNDBUF option value set by setsockopt(). */
? this->codec->send_buf_size / 2 + this->codec->send_buf_size % 2
: FILL_FRAMES * this->transport->write_mtu;
if (setsockopt(this->transport->fd, SOL_SOCKET, SO_SNDBUF, &val, sizeof(val)) < 0)
spa_log_warn(this->log, "%p: SO_SNDBUF %m", this);
len = sizeof(val);
if (getsockopt(this->transport->fd, SOL_SOCKET, SO_SNDBUF, &val, &len) < 0) {
spa_log_warn(this->log, "%p: SO_SNDBUF %m", this);
}
else {
spa_log_debug(this->log, "%p: SO_SNDBUF: %d", this, val);
}
this->fd_buffer_size = val;
val = 6;
if (setsockopt(this->transport->fd, SOL_SOCKET, SO_PRIORITY, &val, sizeof(val)) < 0)
spa_log_warn(this->log, "SO_PRIORITY failed: %m");
reset_buffer(this);
spa_bt_rate_control_init(&port->ratectl, 0);
this->update_delay_event = spa_loop_utils_add_event(this->loop_utils, update_delay_event, this);
spa_zero(this->tx_latency);
if (is_sco) {
int res;
if ((res = spa_bt_transport_ensure_sco_io(this->transport, this->data_loop, this->data_system)) < 0)
goto fail;
spa_bt_sco_io_write_start(this->transport->sco_io);
}
if (!this->transport->iso_io && !is_asha) {
this->flush_timer_source.data = this;
this->flush_timer_source.fd = this->flush_timerfd;
this->flush_timer_source.func = media_on_flush_timeout;
this->flush_timer_source.mask = SPA_IO_IN;
this->flush_timer_source.rmask = 0;
spa_loop_add_source(this->data_loop, &this->flush_timer_source);
if (!is_sco)
spa_bt_latency_init(&this->tx_latency, this->transport, LATENCY_PERIOD, this->log);
}
if (!is_asha && !is_sco) {
this->flush_source.data = this;
this->flush_source.fd = this->transport->fd;
this->flush_source.func = media_on_flush_error;
this->flush_source.mask = SPA_IO_ERR | SPA_IO_HUP;
this->flush_source.rmask = 0;
spa_loop_add_source(this->data_loop, &this->flush_source);
}
this->resync = 0;
this->flush_pending = false;
this->iso_pending = false;
spa_loop_locked(this->data_loop, do_start_transport, 0, NULL, 0, this);
if (is_asha) {
struct spa_bt_asha *asha = this->asha;
asha->flush_pending = false;
asha->set_timer = false;
asha->timer_source.data = this;
asha->timer_source.fd = this->asha->timerfd;
asha->timer_source.func = media_asha_flush_timeout;
asha->timer_source.mask = SPA_IO_IN;
asha->timer_source.rmask = 0;
spa_loop_add_source(this->data_loop, &asha->timer_source);
asha->flush_source.data = this;
asha->flush_source.fd = this->transport->fd;
asha->flush_source.func = media_asha_cb;
asha->flush_source.mask = SPA_IO_ERR | SPA_IO_HUP;
asha->flush_source.rmask = 0;
spa_loop_add_source(this->data_loop, &asha->flush_source);
spa_list_append(&asha_sinks, &this->asha_link);
}
set_latency(this, true);
return 0;
fail:
if (this->codec_data) {
if (this->own_codec_data)
this->codec->deinit(this->codec_data);
this->own_codec_data = false;
this->codec_data = NULL;
}
return -EIO;
}
static int do_start(struct impl *this)
{
struct port *port = &this->port;
int res;
if (this->started)
return 0;
spa_return_val_if_fail(this->transport, -EIO);
this->following = is_following(this);
spa_log_debug(this->log, "%p: start following:%d", this, this->following);
this->start_ready = true;
bool do_accept = this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY;
if ((res = spa_bt_transport_acquire(this->transport, do_accept)) < 0) {
this->start_ready = false;
return res;
}
this->packet_delay_ns = 0;
this->source.data = this;
this->source.fd = this->timerfd;
this->source.func = media_on_timeout;
this->source.mask = SPA_IO_IN;
this->source.rmask = 0;
spa_loop_add_source(this->data_loop, &this->source);
spa_bt_rate_control_init(&port->ratectl, 0);
setup_matching(this);
set_timers(this);
this->started = true;
return 0;
}
static int do_remove_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct impl *this = user_data;
if (this->source.loop)
spa_loop_remove_source(this->data_loop, &this->source);
set_timeout(this, 0);
if (this->update_delay_event) {
spa_loop_utils_destroy_source(this->loop_utils, this->update_delay_event);
this->update_delay_event = NULL;
}
return 0;
}
static int do_remove_transport_source(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct impl *this = user_data;
this->transport_started = false;
if (this->flush_source.loop) {
spa_bt_latency_flush(&this->tx_latency, this->flush_source.fd, this->log);
spa_loop_remove_source(this->data_loop, &this->flush_source);
}
if (this->flush_timer_source.loop)
spa_loop_remove_source(this->data_loop, &this->flush_timer_source);
if (this->codec->kind == MEDIA_CODEC_ASHA) {
if (this->asha->timer_source.loop)
spa_loop_remove_source(this->data_loop, &this->asha->timer_source);
if (this->asha->flush_source.loop)
spa_loop_remove_source(this->data_loop, &this->asha->flush_source);
spa_list_remove(&this->asha_link);
}
enable_flush_timer(this, false);
if (this->transport->iso_io)
spa_bt_iso_io_set_cb(this->transport->iso_io, NULL, NULL);
/* Drop queued data */
drop_frames(this, UINT32_MAX);
return 0;
}
static void transport_stop(struct impl *this)
{
if (!this->transport_started)
return;
spa_log_trace(this->log, "%p: stop transport", this);
spa_loop_locked(this->data_loop, do_remove_transport_source, 0, NULL, 0, this);
if (this->codec_data && this->own_codec_data)
this->codec->deinit(this->codec_data);
this->codec_data = NULL;
}
static int do_stop(struct impl *this)
{
int res = 0;
if (!this->started)
return 0;
spa_log_debug(this->log, "%p: stop", this);
this->start_ready = false;
spa_loop_locked(this->data_loop, do_remove_source, 0, NULL, 0, this);
transport_stop(this);
if (this->transport)
res = spa_bt_transport_release(this->transport);
this->started = false;
return res;
}
static int impl_node_send_command(void *object, const struct spa_command *command)
{
struct impl *this = object;
struct port *port;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(command != NULL, -EINVAL);
port = &this->port;
switch (SPA_NODE_COMMAND_ID(command)) {
case SPA_NODE_COMMAND_Start:
if (!port->have_format)
return -EIO;
if (port->n_buffers == 0)
return -EIO;
if ((res = do_start(this)) < 0)
return res;
break;
case SPA_NODE_COMMAND_Suspend:
case SPA_NODE_COMMAND_Pause:
if ((res = do_stop(this)) < 0)
return res;
break;
default:
return -ENOTSUP;
}
return 0;
}
static void emit_node_info(struct impl *this, bool full)
{
char node_group_buf[256];
char *node_group = NULL;
const char *media_role = NULL;
const char *codec_profile = media_codec_kind_str(this->codec);
if (this->transport && (this->transport->profile & SPA_BT_PROFILE_BAP_SINK)) {
spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-iso-%s-cig-%d\"]",
this->transport->device->adapter->address,
this->transport->bap_cig);
node_group = node_group_buf;
} else if (this->transport && (this->transport->profile & SPA_BT_PROFILE_BAP_BROADCAST_SINK)) {
spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-iso-%s-big-%d\"]",
this->transport->device->adapter->address,
this->transport->bap_big);
node_group = node_group_buf;
} else if (this->transport && (this->transport->profile & SPA_BT_PROFILE_ASHA_SINK)) {
spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-asha-%" PRIu64 "d\"]",
this->transport->hisyncid);
node_group = node_group_buf;
}
if (!this->is_output && this->transport &&
(this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY))
media_role = "Communication";
struct spa_dict_item node_info_items[] = {
{ SPA_KEY_DEVICE_API, "bluez5" },
{ SPA_KEY_MEDIA_CLASS, this->is_internal ? "Audio/Sink/Internal" :
this->is_output ? "Audio/Sink" : "Stream/Input/Audio" },
{ "media.name", ((this->transport && this->transport->device->name) ?
this->transport->device->name : codec_profile ) },
{ SPA_KEY_NODE_DRIVER, this->is_output ? "true" : "false" },
{ "node.group", node_group },
{ SPA_KEY_MEDIA_ROLE, media_role },
};
uint64_t old = full ? this->info.change_mask : 0;
if (full)
this->info.change_mask = this->info_all;
if (this->info.change_mask) {
this->info.props = &SPA_DICT_INIT_ARRAY(node_info_items);
spa_node_emit_info(&this->hooks, &this->info);
this->info.change_mask = old;
}
}
static void emit_port_info(struct impl *this, struct port *port, bool full)
{
uint64_t old = full ? port->info.change_mask : 0;
if (full)
port->info.change_mask = port->info_all;
if (port->info.change_mask) {
spa_node_emit_port_info(&this->hooks,
SPA_DIRECTION_INPUT, 0, &port->info);
port->info.change_mask = old;
}
}
static int
impl_node_add_listener(void *object,
struct spa_hook *listener,
const struct spa_node_events *events,
void *data)
{
struct impl *this = object;
struct spa_hook_list save;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_hook_list_isolate(&this->hooks, &save, listener, events, data);
emit_node_info(this, true);
emit_port_info(this, &this->port, true);
spa_hook_list_join(&this->hooks, &save);
return 0;
}
static int
impl_node_set_callbacks(void *object,
const struct spa_node_callbacks *callbacks,
void *data)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
this->callbacks = SPA_CALLBACKS_INIT(callbacks, data);
return 0;
}
static int impl_node_sync(void *object, int seq)
{
struct impl *this = object;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_node_emit_result(&this->hooks, seq, 0, 0, NULL);
return 0;
}
static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id,
const struct spa_dict *props)
{
return -ENOTSUP;
}
static int impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id)
{
return -ENOTSUP;
}
static int
impl_node_port_enum_params(void *object, int seq,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
struct impl *this = object;
struct port *port;
struct spa_pod *param;
struct spa_pod_builder b = { 0 };
uint8_t buffer[1024];
struct spa_result_node_params result;
uint32_t count = 0;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(num != 0, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = &this->port;
result.id = id;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
switch (id) {
case SPA_PARAM_EnumFormat:
if (this->codec == NULL)
return -EIO;
if (this->transport == NULL)
return -EIO;
if ((res = this->codec->enum_config(this->codec,
this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0,
this->transport->configuration,
this->transport->configuration_len,
id, result.index, &b, &param)) != 1)
return res;
break;
case SPA_PARAM_Format:
if (!port->have_format)
return -EIO;
if (result.index > 0)
return 0;
param = spa_format_audio_raw_build(&b, id, &port->current_format.info.raw);
break;
case SPA_PARAM_Buffers:
if (!port->have_format)
return -EIO;
if (result.index > 0)
return 0;
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamBuffers, id,
SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int(
MIN_BUFFERS,
MIN_BUFFERS,
MAX_BUFFERS),
SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(1),
SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int(
this->quantum_limit * port->frame_size,
16 * port->frame_size,
INT32_MAX),
SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->frame_size));
break;
case SPA_PARAM_Meta:
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamMeta, id,
SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header),
SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header)));
break;
default:
return 0;
}
break;
case SPA_PARAM_IO:
switch (result.index) {
case 0:
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamIO, id,
SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers),
SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers)));
break;
case 1:
if (this->codec->kind != MEDIA_CODEC_BAP)
return 0;
param = spa_pod_builder_add_object(&b,
SPA_TYPE_OBJECT_ParamIO, id,
SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_RateMatch),
SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_rate_match)));
break;
default:
return 0;
}
break;
case SPA_PARAM_Latency:
switch (result.index) {
case 0:
param = spa_latency_build(&b, id, &port->latency);
break;
default:
return 0;
}
break;
default:
return -ENOENT;
}
if (spa_pod_filter(&b, &result.param, param, filter) < 0)
goto next;
spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
return 0;
}
static int clear_buffers(struct impl *this, struct port *port)
{
do_stop(this);
if (port->n_buffers > 0) {
spa_list_init(&port->ready);
port->n_buffers = 0;
}
return 0;
}
static int port_set_format(struct impl *this, struct port *port,
uint32_t flags,
const struct spa_pod *format)
{
int err;
if (format == NULL) {
spa_log_debug(this->log, "clear format");
clear_buffers(this, port);
port->have_format = false;
} else {
struct spa_audio_info info = { 0 };
if ((err = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0)
return err;
if (info.media_type != SPA_MEDIA_TYPE_audio ||
info.media_subtype != SPA_MEDIA_SUBTYPE_raw)
return -EINVAL;
if (spa_format_audio_raw_parse(format, &info.info.raw) < 0)
return -EINVAL;
if (info.info.raw.rate == 0 ||
info.info.raw.channels == 0 ||
info.info.raw.channels > MAX_CHANNELS)
return -EINVAL;
if (this->transport && this->transport->iso_io) {
if (memcmp(&info.info.raw, &this->transport->iso_io->format.info.raw,
sizeof(info.info.raw))) {
spa_log_error(this->log, "unexpected incompatible "
"BAP audio format");
return -EINVAL;
}
}
port->frame_size = info.info.raw.channels;
switch (info.info.raw.format) {
case SPA_AUDIO_FORMAT_S16_LE:
case SPA_AUDIO_FORMAT_S16_BE:
port->frame_size *= 2;
break;
case SPA_AUDIO_FORMAT_S24:
port->frame_size *= 3;
break;
case SPA_AUDIO_FORMAT_S24_32:
case SPA_AUDIO_FORMAT_S32:
case SPA_AUDIO_FORMAT_F32:
port->frame_size *= 4;
break;
default:
return -EINVAL;
}
port->current_format = info;
port->have_format = true;
}
set_latency(this, false);
port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
if (port->have_format) {
port->info.change_mask |= SPA_PORT_CHANGE_MASK_RATE;
port->info.rate = SPA_FRACTION(1, port->current_format.info.raw.rate);
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ);
port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL;
} else {
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
}
emit_port_info(this, port, false);
return 0;
}
static int
impl_node_port_set_param(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t id, uint32_t flags,
const struct spa_pod *param)
{
struct impl *this = object;
struct port *port;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(node, direction, port_id), -EINVAL);
port = &this->port;
switch (id) {
case SPA_PARAM_Format:
res = port_set_format(this, port, flags, param);
break;
case SPA_PARAM_Latency:
res = 0;
break;
default:
res = -ENOENT;
break;
}
return res;
}
static int
impl_node_port_use_buffers(void *object,
enum spa_direction direction, uint32_t port_id,
uint32_t flags,
struct spa_buffer **buffers, uint32_t n_buffers)
{
struct impl *this = object;
struct port *port;
uint32_t i;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = &this->port;
spa_log_debug(this->log, "%p: use buffers %d", this, n_buffers);
clear_buffers(this, port);
if (n_buffers > 0 && !port->have_format)
return -EIO;
if (n_buffers > MAX_BUFFERS)
return -ENOSPC;
for (i = 0; i < n_buffers; i++) {
struct buffer *b = &port->buffers[i];
b->buf = buffers[i];
b->id = i;
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
b->h = spa_buffer_find_meta_data(buffers[i], SPA_META_Header, sizeof(*b->h));
if (buffers[i]->datas[0].data == NULL) {
spa_log_error(this->log, "%p: need mapped memory", this);
return -EINVAL;
}
}
port->n_buffers = n_buffers;
return 0;
}
static int
impl_node_port_set_io(void *object,
enum spa_direction direction,
uint32_t port_id,
uint32_t id,
void *data, size_t size)
{
struct impl *this = object;
struct port *port;
spa_return_val_if_fail(this != NULL, -EINVAL);
spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL);
port = &this->port;
switch (id) {
case SPA_IO_Buffers:
port->io = data;
break;
case SPA_IO_RateMatch:
if (this->codec->kind != MEDIA_CODEC_BAP)
return -ENOENT;
port->rate_match = data;
break;
default:
return -ENOENT;
}
return 0;
}
static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id)
{
return -ENOTSUP;
}
static int impl_node_process(void *object)
{
struct impl *this = object;
struct port *port;
struct spa_io_buffers *io;
int res;
spa_return_val_if_fail(this != NULL, -EINVAL);
port = &this->port;
if ((io = port->io) == NULL)
return -EIO;
if (this->position && this->position->clock.flags & SPA_IO_CLOCK_FLAG_FREEWHEEL) {
io->status = SPA_STATUS_NEED_DATA;
return SPA_STATUS_HAVE_DATA;
}
if (!this->started || !this->transport_started) {
if (io->status != SPA_STATUS_HAVE_DATA) {
io->status = SPA_STATUS_HAVE_DATA;
io->buffer_id = SPA_ID_INVALID;
}
return SPA_STATUS_HAVE_DATA;
}
if (io->status == SPA_STATUS_HAVE_DATA && io->buffer_id < port->n_buffers) {
struct buffer *b = &port->buffers[io->buffer_id];
struct spa_data *d = b->buf->datas;
unsigned int frames;
if (!SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) {
spa_log_warn(this->log, "%p: buffer %u in use", this, io->buffer_id);
io->status = -EINVAL;
return -EINVAL;
}
frames = d ? d[0].chunk->size / port->frame_size : 0;
spa_log_trace(this->log, "%p: queue buffer %u frames:%u", this, io->buffer_id, frames);
spa_list_append(&port->ready, &b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT);
io->buffer_id = SPA_ID_INVALID;
io->status = SPA_STATUS_OK;
}
if (this->following) {
if (this->position) {
this->current_time = this->position->clock.nsec;
} else {
struct timespec now;
spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now);
this->current_time = SPA_TIMESPEC_TO_NSEC(&now);
}
}
/* Make copies of current position values, so that they can be used later at any
* time without shared memory races
*/
if (this->position) {
this->process_duration = this->position->clock.duration;
this->process_rate = this->position->clock.rate.denom;
this->process_rate_diff = this->position->clock.rate_diff;
} else {
this->process_duration = 1024;
this->process_rate = 48000;
this->process_rate_diff = 1.0;
}
this->process_time = this->current_time;
if (this->resync)
--this->resync;
setup_matching(this);
media_iso_rate_match(this);
if (this->codec->kind == MEDIA_CODEC_ASHA && !this->asha->set_timer) {
struct impl *other = find_other_asha(this);
if (other && other->asha->ref_t0 != 0) {
this->asha->ref_t0 = other->asha->ref_t0;
this->seqnum = asha_seqnum(this);
set_asha_timer(this, other);
} else {
this->asha->ref_t0 = get_reference_time(this, NULL);
this->seqnum = 0;
set_asha_timer(this, NULL);
}
this->asha->set_timer = true;
}
spa_log_trace(this->log, "%p: on process time:%"PRIu64, this, this->process_time);
if ((res = flush_data(this, this->current_time)) < 0) {
io->status = res;
return SPA_STATUS_STOPPED;
}
return SPA_STATUS_HAVE_DATA;
}
static const struct spa_node_methods impl_node = {
SPA_VERSION_NODE_METHODS,
.add_listener = impl_node_add_listener,
.set_callbacks = impl_node_set_callbacks,
.sync = impl_node_sync,
.enum_params = impl_node_enum_params,
.set_param = impl_node_set_param,
.set_io = impl_node_set_io,
.send_command = impl_node_send_command,
.add_port = impl_node_add_port,
.remove_port = impl_node_remove_port,
.port_enum_params = impl_node_port_enum_params,
.port_set_param = impl_node_port_set_param,
.port_use_buffers = impl_node_port_use_buffers,
.port_set_io = impl_node_port_set_io,
.port_reuse_buffer = impl_node_port_reuse_buffer,
.process = impl_node_process,
};
static void transport_delay_changed(void *data)
{
struct impl *this = data;
spa_log_debug(this->log, "transport %p delay changed", this->transport);
set_latency(this, true);
}
static int do_transport_destroy(struct spa_loop *loop,
bool async,
uint32_t seq,
const void *data,
size_t size,
void *user_data)
{
struct impl *this = user_data;
this->transport = NULL;
return 0;
}
static void transport_destroy(void *data)
{
struct impl *this = data;
spa_log_debug(this->log, "transport %p destroy", this->transport);
spa_loop_locked(this->data_loop, do_transport_destroy, 0, NULL, 0, this);
}
static void transport_state_changed(void *data,
enum spa_bt_transport_state old,
enum spa_bt_transport_state state)
{
struct impl *this = data;
bool was_started = this->transport_started;
spa_log_debug(this->log, "%p: transport %p state %d->%d", this, this->transport, old, state);
if (state == SPA_BT_TRANSPORT_STATE_ACTIVE)
transport_start(this);
else
transport_stop(this);
if (state < SPA_BT_TRANSPORT_STATE_ACTIVE && was_started && !this->is_duplex && this->is_output) {
/*
* If establishing connection fails due to remote end not activating
* the transport, we won't get a write error, but instead see a transport
* state change.
*
* Treat this as a transport error, so that upper levels don't try to
* retry too often.
*/
spa_log_debug(this->log, "%p: transport %p becomes inactive: stop and indicate error",
this, this->transport);
spa_bt_transport_set_state(this->transport, SPA_BT_TRANSPORT_STATE_ERROR);
return;
}
if (state == SPA_BT_TRANSPORT_STATE_ERROR) {
uint8_t buffer[1024];
struct spa_pod_builder b = { 0 };
spa_pod_builder_init(&b, buffer, sizeof(buffer));
spa_node_emit_event(&this->hooks,
spa_pod_builder_add_object(&b,
SPA_TYPE_EVENT_Node, SPA_NODE_EVENT_Error));
}
}
static const struct spa_bt_transport_events transport_events = {
SPA_VERSION_BT_TRANSPORT_EVENTS,
.delay_changed = transport_delay_changed,
.state_changed = transport_state_changed,
.destroy = transport_destroy,
};
static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface)
{
struct impl *this;
spa_return_val_if_fail(handle != NULL, -EINVAL);
spa_return_val_if_fail(interface != NULL, -EINVAL);
this = (struct impl *) handle;
if (spa_streq(type, SPA_TYPE_INTERFACE_Node))
*interface = &this->node;
else
return -ENOENT;
return 0;
}
static int impl_clear(struct spa_handle *handle)
{
struct impl *this = (struct impl *) handle;
do_stop(this);
if (this->codec_props && this->codec->clear_props)
this->codec->clear_props(this->codec_props);
if (this->transport)
spa_hook_remove(&this->transport_listener);
spa_system_close(this->data_system, this->timerfd);
spa_system_close(this->data_system, this->flush_timerfd);
if (this->codec->kind == MEDIA_CODEC_ASHA) {
spa_system_close(this->data_system, this->asha->timerfd);
free(this->asha);
}
return 0;
}
static size_t
impl_get_size(const struct spa_handle_factory *factory,
const struct spa_dict *params)
{
return sizeof(struct impl);
}
static int
impl_init(const struct spa_handle_factory *factory,
struct spa_handle *handle,
const struct spa_dict *info,
const struct spa_support *support,
uint32_t n_support)
{
struct impl *this;
struct port *port;
const char *str;
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(handle != NULL, -EINVAL);
handle->get_interface = impl_get_interface;
handle->clear = impl_clear;
this = (struct impl *) handle;
this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log);
this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop);
this->data_system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataSystem);
this->loop_utils = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_LoopUtils);
spa_log_topic_init(this->log, &log_topic);
if (this->data_loop == NULL) {
spa_log_error(this->log, "a data loop is needed");
return -EINVAL;
}
if (this->data_system == NULL) {
spa_log_error(this->log, "a data system is needed");
return -EINVAL;
}
if (this->loop_utils == NULL) {
spa_log_error(this->log, "loop utils are needed");
return -EINVAL;
}
this->node.iface = SPA_INTERFACE_INIT(
SPA_TYPE_INTERFACE_Node,
SPA_VERSION_NODE,
&impl_node, this);
spa_hook_list_init(&this->hooks);
this->info_all = SPA_NODE_CHANGE_MASK_FLAGS |
SPA_NODE_CHANGE_MASK_PARAMS |
SPA_NODE_CHANGE_MASK_PROPS;
this->info = SPA_NODE_INFO_INIT();
this->info.max_input_ports = 1;
this->info.max_output_ports = 0;
this->info.flags = SPA_NODE_FLAG_RT;
this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ);
this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE);
this->info.params = this->params;
this->info.n_params = N_NODE_PARAMS;
port = &this->port;
port->info_all = SPA_PORT_CHANGE_MASK_FLAGS |
SPA_PORT_CHANGE_MASK_PARAMS;
port->info = SPA_PORT_INFO_INIT();
port->info.flags = SPA_PORT_FLAG_LIVE |
SPA_PORT_FLAG_PHYSICAL |
SPA_PORT_FLAG_TERMINAL;
port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ);
port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ);
port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ);
port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE);
port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0);
port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE);
port->info.params = port->params;
port->info.n_params = N_PORT_PARAMS;
port->latency = SPA_LATENCY_INFO(SPA_DIRECTION_INPUT);
spa_list_init(&port->ready);
this->quantum_limit = 8192;
if (info && (str = spa_dict_lookup(info, "clock.quantum-limit")))
spa_atou32(str, &this->quantum_limit, 0);
if (info && (str = spa_dict_lookup(info, "api.bluez5.a2dp-duplex")) != NULL)
this->is_duplex = spa_atob(str);
if (info && (str = spa_dict_lookup(info, "api.bluez5.internal")) != NULL)
this->is_internal = spa_atob(str);
if (info && (str = spa_dict_lookup(info, SPA_KEY_API_BLUEZ5_TRANSPORT)))
sscanf(str, "pointer:%p", &this->transport);
if (this->transport == NULL) {
spa_log_error(this->log, "a transport is needed");
return -EINVAL;
}
if (this->transport->media_codec == NULL) {
spa_log_error(this->log, "a transport codec is needed");
return -EINVAL;
}
this->codec = this->transport->media_codec;
if (this->is_duplex) {
if (!this->codec->duplex_codec) {
spa_log_error(this->log, "transport codec doesn't support duplex");
return -EINVAL;
}
this->codec = this->codec->duplex_codec;
}
if (this->codec->init_props != NULL)
this->codec_props = this->codec->init_props(this->codec,
this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0,
this->transport->device->settings);
if (this->codec->kind == MEDIA_CODEC_BAP)
this->is_output = this->transport->bap_initiator;
else if (this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY)
this->is_output = false;
else
this->is_output = true;
reset_props(this, &this->props);
set_latency(this, false);
spa_bt_transport_add_listener(this->transport,
&this->transport_listener, &transport_events, this);
this->timerfd = spa_system_timerfd_create(this->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK);
this->flush_timerfd = spa_system_timerfd_create(this->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK);
if (this->codec->kind == MEDIA_CODEC_ASHA) {
this->asha = calloc(1, sizeof(struct spa_bt_asha));
if (this->asha == NULL)
return -ENOMEM;
this->asha->timerfd = spa_system_timerfd_create(this->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK);
}
return 0;
}
static const struct spa_interface_info impl_interfaces[] = {
{SPA_TYPE_INTERFACE_Node,},
};
static int
impl_enum_interface_info(const struct spa_handle_factory *factory,
const struct spa_interface_info **info, uint32_t *index)
{
spa_return_val_if_fail(factory != NULL, -EINVAL);
spa_return_val_if_fail(info != NULL, -EINVAL);
spa_return_val_if_fail(index != NULL, -EINVAL);
switch (*index) {
case 0:
*info = &impl_interfaces[*index];
break;
default:
return 0;
}
(*index)++;
return 1;
}
static const struct spa_dict_item info_items[] = {
{ SPA_KEY_FACTORY_AUTHOR, "Wim Taymans <wim.taymans@gmail.com>" },
{ SPA_KEY_FACTORY_DESCRIPTION, "Play audio with the media" },
{ SPA_KEY_FACTORY_USAGE, SPA_KEY_API_BLUEZ5_TRANSPORT"=<transport>" },
};
static const struct spa_dict info = SPA_DICT_INIT_ARRAY(info_items);
const struct spa_handle_factory spa_media_sink_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_API_BLUEZ5_MEDIA_SINK,
&info,
impl_get_size,
impl_init,
impl_enum_interface_info,
};
/* Retained for backward compatibility: */
const struct spa_handle_factory spa_a2dp_sink_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_API_BLUEZ5_A2DP_SINK,
&info,
impl_get_size,
impl_init,
impl_enum_interface_info,
};
/* Retained for backward compatibility: */
const struct spa_handle_factory spa_sco_sink_factory = {
SPA_VERSION_HANDLE_FACTORY,
SPA_NAME_API_BLUEZ5_SCO_SINK,
&info,
impl_get_size,
impl_init,
impl_enum_interface_info,
};