pipewire/spa/plugins/audioconvert/channelmix-ops-sse.c
Wim Taymans c6a7b3eedb channelmix: implement per channel volume
Implement per channel volume on channelmix. Extend control on stream to
take an array of values when possible.

Remove name argument from pw_node_new and pw_device_new. We can pass
this as a property instead.

Improve properties on nodes to more closely match what pulseaudio does.
Don't let the monitor do too much with the udev properties but let the
session manager set the description and icon-names.

Remove some change_mask flags for things that don't change in
introspect. Use the flags to mark changes in -cli and -monitor.
2019-08-12 15:14:39 +02:00

386 lines
13 KiB
C

/* Spa
*
* Copyright © 2018 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "channelmix-ops.h"
#include <xmmintrin.h>
void channelmix_copy_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
{
uint32_t i, n, unrolled;
float **d = (float **)dst;
const float **s = (const float **)src;
float *m = mix->matrix;
float v = mix->volume;
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
for (i = 0; i < n_dst; i++)
spa_memcpy(d[i], s[i], n_samples * sizeof(float));
}
else {
for (i = 0; i < n_dst; i++) {
float *di = d[i];
const float *si = s[i];
__m128 t[4];
const __m128 vol = _mm_set1_ps(m[i * n_src + i]);
if (SPA_IS_ALIGNED(di, 16) &&
SPA_IS_ALIGNED(si, 16))
unrolled = n_samples & ~15;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 16) {
t[0] = _mm_load_ps(&si[n]);
t[1] = _mm_load_ps(&si[n+4]);
t[2] = _mm_load_ps(&si[n+8]);
t[3] = _mm_load_ps(&si[n+12]);
_mm_store_ps(&di[n], _mm_mul_ps(t[0], vol));
_mm_store_ps(&di[n+4], _mm_mul_ps(t[1], vol));
_mm_store_ps(&di[n+8], _mm_mul_ps(t[2], vol));
_mm_store_ps(&di[n+12], _mm_mul_ps(t[3], vol));
}
for(; n < n_samples; n++)
_mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol));
}
}
}
void
channelmix_f32_2_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
{
uint32_t i, n, unrolled;
float **d = (float **)dst;
const float **s = (const float **)src;
float v = mix->volume;
const __m128 vol = _mm_set1_ps(v);
__m128 in;
const float *sFL = s[0], *sFR = s[1];
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
if (SPA_IS_ALIGNED(sFL, 16) &&
SPA_IS_ALIGNED(sFR, 16) &&
SPA_IS_ALIGNED(dFL, 16) &&
SPA_IS_ALIGNED(dFR, 16) &&
SPA_IS_ALIGNED(dRL, 16) &&
SPA_IS_ALIGNED(dRR, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
for(n = 0; n < unrolled; n += 4) {
in = _mm_load_ps(&sFL[n]);
_mm_store_ps(&dFL[n], in);
_mm_store_ps(&dRL[n], in);
in = _mm_load_ps(&sFR[n]);
_mm_store_ps(&dFR[n], in);
_mm_store_ps(&dRR[n], in);
}
for(; n < n_samples; n++) {
in = _mm_load_ss(&sFL[n]);
_mm_store_ss(&dFL[n], in);
_mm_store_ss(&dRL[n], in);
in = _mm_load_ss(&sFR[n]);
_mm_store_ss(&dFR[n], in);
_mm_store_ss(&dRR[n], in);
}
}
else {
for(n = 0; n < unrolled; n += 4) {
in = _mm_mul_ps(_mm_load_ps(&sFL[n]), vol);
_mm_store_ps(&dFL[n], in);
_mm_store_ps(&dRL[n], in);
in = _mm_mul_ps(_mm_load_ps(&sFR[n]), vol);
_mm_store_ps(&dFR[n], in);
_mm_store_ps(&dRR[n], in);
}
for(; n < n_samples; n++) {
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol);
_mm_store_ss(&dFL[n], in);
_mm_store_ss(&dRL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol);
_mm_store_ss(&dFR[n], in);
_mm_store_ss(&dRR[n], in);
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
void
channelmix_f32_5p1_2_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
{
uint32_t n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
float v = mix->volume;
const float *m = mix->matrix;
const __m128 clev = _mm_set1_ps(m[2]);
const __m128 llev = _mm_set1_ps(m[3]);
const __m128 slev = _mm_set1_ps(m[4]);
const __m128 vol = _mm_set1_ps(v);
__m128 in, ctr;
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
float *dFL = d[0], *dFR = d[1];
if (SPA_IS_ALIGNED(sFL, 16) &&
SPA_IS_ALIGNED(sFR, 16) &&
SPA_IS_ALIGNED(sFC, 16) &&
SPA_IS_ALIGNED(sLFE, 16) &&
SPA_IS_ALIGNED(sSL, 16) &&
SPA_IS_ALIGNED(sSR, 16) &&
SPA_IS_ALIGNED(dFL, 16) &&
SPA_IS_ALIGNED(dFR, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
if (v <= VOLUME_MIN) {
memset(dFL, 0, n_samples * sizeof(float));
memset(dFR, 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
_mm_store_ps(&dFL[n], in);
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
_mm_store_ps(&dFR[n], in);
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
_mm_store_ss(&dFL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
_mm_store_ss(&dFR[n], in);
}
}
else {
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
in = _mm_mul_ps(in, vol);
_mm_store_ps(&dFL[n], in);
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
in = _mm_mul_ps(in, vol);
_mm_store_ps(&dFR[n], in);
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
in = _mm_mul_ss(in, vol);
_mm_store_ss(&dFL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
in = _mm_mul_ss(in, vol);
_mm_store_ss(&dFR[n], in);
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR+FC+LFE*/
void
channelmix_f32_5p1_3p1_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
{
uint32_t i, n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
float v = mix->volume;
const __m128 slev = _mm_set1_ps(v * 0.5f);
const __m128 vol = _mm_set1_ps(v);
__m128 avg[2];
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
float *dFL = d[0], *dFR = d[1], *dFC = d[2], *dLFE = d[3];
if (SPA_IS_ALIGNED(sFL, 16) &&
SPA_IS_ALIGNED(sFR, 16) &&
SPA_IS_ALIGNED(sFC, 16) &&
SPA_IS_ALIGNED(sLFE, 16) &&
SPA_IS_ALIGNED(sSL, 16) &&
SPA_IS_ALIGNED(sSR, 16) &&
SPA_IS_ALIGNED(dFL, 16) &&
SPA_IS_ALIGNED(dFR, 16) &&
SPA_IS_ALIGNED(dFC, 16) &&
SPA_IS_ALIGNED(dLFE, 16))
unrolled = n_samples & ~7;
else
unrolled = 0;
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
for(n = 0; n < unrolled; n += 8) {
avg[0] = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFL[n+4]), _mm_load_ps(&sSL[n+4]));
_mm_store_ps(&dFL[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFL[n+4], _mm_mul_ps(avg[1], slev));
avg[0] = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFR[n+4]), _mm_load_ps(&sSR[n+4]));
_mm_store_ps(&dFR[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFR[n+4], _mm_mul_ps(avg[1], slev));
_mm_store_ps(&dFC[n], _mm_load_ps(&sFC[n]));
_mm_store_ps(&dFC[n+4], _mm_load_ps(&sFC[n+4]));
_mm_store_ps(&dLFE[n], _mm_load_ps(&sLFE[n]));
_mm_store_ps(&dLFE[n+4], _mm_load_ps(&sLFE[n+4]));
}
for(; n < n_samples; n++) {
avg[0] = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
_mm_store_ss(&dFL[n], _mm_mul_ss(avg[0], slev));
avg[0] = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
_mm_store_ss(&dFR[n], _mm_mul_ss(avg[0], slev));
_mm_store_ss(&dFC[n], _mm_load_ss(&sFC[n]));
_mm_store_ss(&dLFE[n], _mm_load_ss(&sLFE[n]));
}
}
else {
for(n = 0; n < unrolled; n += 8) {
avg[0] = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFL[n+4]), _mm_load_ps(&sSL[n+4]));
_mm_store_ps(&dFL[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFL[n+4], _mm_mul_ps(avg[1], slev));
avg[0] = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFR[n+4]), _mm_load_ps(&sSR[n+4]));
_mm_store_ps(&dFR[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFR[n+4], _mm_mul_ps(avg[1], slev));
_mm_store_ps(&dFC[n], _mm_mul_ps(_mm_load_ps(&sFC[n]), vol));
_mm_store_ps(&dFC[n+4], _mm_mul_ps(_mm_load_ps(&sFC[n+4]), vol));
_mm_store_ps(&dLFE[n], _mm_mul_ps(_mm_load_ps(&sLFE[n]), vol));
_mm_store_ps(&dLFE[n+4], _mm_mul_ps(_mm_load_ps(&sLFE[n+4]), vol));
}
for(; n < n_samples; n++) {
avg[0] = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
_mm_store_ss(&dFL[n], _mm_mul_ss(avg[0], slev));
avg[0] = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
_mm_store_ss(&dFR[n], _mm_mul_ss(avg[0], slev));
_mm_store_ss(&dFC[n], _mm_mul_ss(_mm_load_ss(&sFC[n]), vol));
_mm_store_ss(&dLFE[n], _mm_mul_ss(_mm_load_ss(&sLFE[n]), vol));
}
}
}
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
void
channelmix_f32_5p1_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples)
{
uint32_t i, n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
const float *m = mix->matrix;
float v = mix->volume;
const __m128 clev = _mm_set1_ps(m[2]);
const __m128 llev = _mm_set1_ps(m[3]);
const __m128 vol = _mm_set1_ps(v);
__m128 ctr;
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
if (SPA_IS_ALIGNED(sFL, 16) &&
SPA_IS_ALIGNED(sFR, 16) &&
SPA_IS_ALIGNED(sFC, 16) &&
SPA_IS_ALIGNED(sLFE, 16) &&
SPA_IS_ALIGNED(sSL, 16) &&
SPA_IS_ALIGNED(sSR, 16) &&
SPA_IS_ALIGNED(dFL, 16) &&
SPA_IS_ALIGNED(dFR, 16) &&
SPA_IS_ALIGNED(dRL, 16) &&
SPA_IS_ALIGNED(dRR, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
if (v <= VOLUME_MIN) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
_mm_store_ps(&dFL[n], _mm_add_ps(_mm_load_ps(&sFL[n]), ctr));
_mm_store_ps(&dFR[n], _mm_add_ps(_mm_load_ps(&sFR[n]), ctr));
_mm_store_ps(&dRL[n], _mm_load_ps(&sSL[n]));
_mm_store_ps(&dRR[n], _mm_load_ps(&sSR[n]));
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
_mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr));
_mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr));
_mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n]));
_mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n]));
}
}
else {
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
_mm_store_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFL[n]), ctr), vol));
_mm_store_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFR[n]), ctr), vol));
_mm_store_ps(&dRL[n], _mm_mul_ps(_mm_load_ps(&sSL[n]), vol));
_mm_store_ps(&dRR[n], _mm_mul_ps(_mm_load_ps(&sSR[n]), vol));
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol));
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol));
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol));
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol));
}
}
}