pipewire/spa/plugins/audioconvert/channelmix-ops.c
Wim Taymans d8e399dee9 audioconvert: pass state to functions
Pass some state to convert and channelmix functions. This makes it
possible to select per channel optimized convert functions but
also makes it possible to implement noise shaping later.
Pass the channelmix matrix and volume in the state.
Handle specialized 2 channel s16 -> f32 conversion
2019-03-29 17:39:59 +01:00

375 lines
11 KiB
C

/* Spa
*
* Copyright © 2018 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <spa/param/audio/format-utils.h>
#include <spa/support/cpu.h>
#include <spa/support/log.h>
#include <spa/utils/defs.h>
#define VOLUME_MIN 0.0f
#define VOLUME_NORM 1.0f
#include "channelmix-ops.h"
#define _M(ch) (1UL << SPA_AUDIO_CHANNEL_ ## ch)
#define MASK_MONO _M(FC)|_M(MONO)|_M(UNKNOWN)
#define MASK_STEREO _M(FL)|_M(FR)|_M(UNKNOWN)
#define MASK_QUAD _M(FL)|_M(FR)|_M(RL)|_M(RR)|_M(UNKNOWN)
#define MASK_3_1 _M(FL)|_M(FR)|_M(FC)|_M(LFE)
#define MASK_5_1 _M(FL)|_M(FR)|_M(FC)|_M(LFE)|_M(SL)|_M(SR)|_M(RL)|_M(RR)
#define MASK_7_1 _M(FL)|_M(FR)|_M(FC)|_M(LFE)|_M(SL)|_M(SR)|_M(RL)|_M(RR)
#define ANY ((uint32_t)-1)
#define EQ ((uint32_t)-2)
typedef void (*channelmix_func_t) (struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRICT dst[n_dst],
uint32_t n_src, const void * SPA_RESTRICT src[n_src], uint32_t n_samples);
static const struct channelmix_info {
uint32_t src_chan;
uint64_t src_mask;
uint32_t dst_chan;
uint64_t dst_mask;
channelmix_func_t process;
uint32_t cpu_flags;
} channelmix_table[] =
{
#if defined (HAVE_SSE)
{ 2, MASK_MONO, 2, MASK_MONO, channelmix_copy_sse, SPA_CPU_FLAG_SSE },
{ 2, MASK_STEREO, 2, MASK_STEREO, channelmix_copy_sse, SPA_CPU_FLAG_SSE },
{ EQ, 0, EQ, 0, channelmix_copy_sse, SPA_CPU_FLAG_SSE },
#endif
{ 2, MASK_MONO, 2, MASK_MONO, channelmix_copy_c, 0 },
{ 2, MASK_STEREO, 2, MASK_STEREO, channelmix_copy_c, 0 },
{ EQ, 0, EQ, 0, channelmix_copy_c, 0 },
{ 1, MASK_MONO, 2, MASK_STEREO, channelmix_f32_1_2_c, 0 },
{ 2, MASK_STEREO, 1, MASK_MONO, channelmix_f32_2_1_c, 0 },
{ 4, MASK_QUAD, 1, MASK_MONO, channelmix_f32_4_1_c, 0 },
{ 4, MASK_3_1, 1, MASK_MONO, channelmix_f32_3p1_1_c, 0 },
#if defined (HAVE_SSE)
{ 2, MASK_STEREO, 4, MASK_QUAD, channelmix_f32_2_4_sse, SPA_CPU_FLAG_SSE },
#endif
{ 2, MASK_STEREO, 4, MASK_QUAD, channelmix_f32_2_4_c, 0 },
{ 2, MASK_STEREO, 4, MASK_3_1, channelmix_f32_2_3p1_c, 0 },
{ 2, MASK_STEREO, 6, MASK_5_1, channelmix_f32_2_5p1_c, 0 },
#if defined (HAVE_SSE)
{ 6, MASK_5_1, 2, MASK_STEREO, channelmix_f32_5p1_2_sse, SPA_CPU_FLAG_SSE },
#endif
{ 6, MASK_5_1, 2, MASK_STEREO, channelmix_f32_5p1_2_c, 0 },
#if defined (HAVE_SSE)
{ 6, MASK_5_1, 4, MASK_QUAD, channelmix_f32_5p1_4_sse, SPA_CPU_FLAG_SSE },
#endif
{ 6, MASK_5_1, 4, MASK_QUAD, channelmix_f32_5p1_4_c, 0 },
#if defined (HAVE_SSE)
{ 6, MASK_5_1, 4, MASK_3_1, channelmix_f32_5p1_3p1_sse, SPA_CPU_FLAG_SSE },
#endif
{ 6, MASK_5_1, 4, MASK_3_1, channelmix_f32_5p1_3p1_c, 0 },
{ 8, MASK_7_1, 2, MASK_STEREO, channelmix_f32_7p1_2_c, 0 },
{ 8, MASK_7_1, 4, MASK_QUAD, channelmix_f32_7p1_4_c, 0 },
{ 8, MASK_7_1, 4, MASK_3_1, channelmix_f32_7p1_3p1_c, 0 },
{ ANY, 0, ANY, 0, channelmix_f32_n_m_c, 0 },
};
#define MATCH_CHAN(a,b) ((a) == ANY || (a) == (b))
#define MATCH_CPU_FLAGS(a,b) ((a) == 0 || ((a) & (b)) == a)
#define MATCH_MASK(a,b) ((a) == 0 || ((a) & (b)) == (b))
static const struct channelmix_info *find_channelmix_info(uint32_t src_chan, uint64_t src_mask,
uint32_t dst_chan, uint64_t dst_mask, uint32_t cpu_flags)
{
size_t i;
for (i = 0; i < SPA_N_ELEMENTS(channelmix_table); i++) {
if (!MATCH_CPU_FLAGS(channelmix_table[i].cpu_flags, cpu_flags))
continue;
if (src_chan == dst_chan && src_mask == dst_mask)
return &channelmix_table[i];
if (MATCH_CHAN(channelmix_table[i].src_chan, src_chan) &&
MATCH_CHAN(channelmix_table[i].dst_chan, dst_chan) &&
MATCH_MASK(channelmix_table[i].src_mask, src_mask) &&
MATCH_MASK(channelmix_table[i].dst_mask, dst_mask))
return &channelmix_table[i];
}
return NULL;
}
#define M 0
#define FL 1
#define FR 2
#define FC 3
#define LFE 4
#define SL 5
#define SR 6
#define FLC 7
#define FRC 8
#define RC 9
#define RL 10
#define RR 11
#define TC 12
#define TFL 13
#define TFC 14
#define TFR 15
#define TRL 16
#define TRC 17
#define TRR 18
#define NUM_CHAN 19
#define SQRT3_2 1.224744871f /* sqrt(3/2) */
#define SQRT1_2 0.707106781f
#define SQRT2 1.414213562f
#define MATRIX_NORMAL 0
#define MATRIX_DOLBY 1
#define MATRIX_DPLII 2
#define _MASK(ch) (1ULL << SPA_AUDIO_CHANNEL_ ## ch)
#define STEREO (_MASK(FL)|_MASK(FR))
static int make_matrix(struct channelmix *mix)
{
float matrix[NUM_CHAN][NUM_CHAN] = {{ 0.0f }};
uint32_t src_chan = mix->src_chan;
uint64_t src_mask = mix->src_mask;
uint32_t dst_chan = mix->dst_chan;
uint64_t dst_mask = mix->dst_mask;
uint64_t unassigned;
uint32_t i, j, matrix_encoding = MATRIX_NORMAL, c;
float clev = SQRT1_2;
float slev = SQRT1_2;
float llev = 0.5f;
float max = 0.0f;
for (i = 0; i < NUM_CHAN; i++) {
if (src_mask & dst_mask & (1ULL << (i + 2)))
matrix[i][i]= 1.0f;
}
if ((dst_mask & _MASK(MONO)) == _MASK(MONO))
dst_mask = _MASK(FC);
unassigned = src_mask & ~dst_mask;
spa_log_debug(mix->log, "unassigned %08lx", unassigned);
if (unassigned & _MASK(FC)){
if ((dst_mask & STEREO) == STEREO){
if(src_mask & STEREO) {
matrix[FL][FC] += clev;
matrix[FR][FC] += clev;
} else {
matrix[FL][FC] += SQRT1_2;
matrix[FR][FC] += SQRT1_2;
}
} else {
spa_log_warn(mix->log, "can't assign FC");
}
}
if (unassigned & STEREO){
if (dst_mask & _MASK(FC)) {
matrix[FC][FL] += SQRT1_2;
matrix[FC][FR] += SQRT1_2;
if (src_mask & _MASK(FC))
matrix[FC][FC] = clev * SQRT2;
} else {
spa_log_warn(mix->log, "can't assign STEREO");
}
}
if (unassigned & _MASK(RC)) {
if (dst_mask & _MASK(RL)){
matrix[RL][RC] += SQRT1_2;
matrix[RR][RC] += SQRT1_2;
} else if (dst_mask & _MASK(SL)) {
matrix[SL][RC] += SQRT1_2;
matrix[SR][RC] += SQRT1_2;
} else if(dst_mask & _MASK(FL)) {
if (matrix_encoding == MATRIX_DOLBY ||
matrix_encoding == MATRIX_DPLII) {
if (unassigned & (_MASK(RL)|_MASK(RR))) {
matrix[FL][RC] -= slev * SQRT1_2;
matrix[FR][RC] += slev * SQRT1_2;
} else {
matrix[FL][RC] -= slev;
matrix[FR][RC] += slev;
}
} else {
matrix[FL][RC] += slev * SQRT1_2;
matrix[FR][RC] += slev * SQRT1_2;
}
} else if (dst_mask & _MASK(FC)) {
matrix[FC][RC] += slev * SQRT1_2;
} else {
spa_log_warn(mix->log, "can't assign RC");
}
}
if (unassigned & _MASK(RL)) {
if (dst_mask & _MASK(RC)) {
matrix[RC][RL] += SQRT1_2;
matrix[RC][RR] += SQRT1_2;
} else if (dst_mask & _MASK(SL)) {
if (src_mask & _MASK(SL)) {
matrix[SL][RL] += SQRT1_2;
matrix[SR][RR] += SQRT1_2;
} else {
matrix[SL][RL] += 1.0f;
matrix[SR][RR] += 1.0f;
}
} else if (dst_mask & _MASK(FL)) {
if (matrix_encoding == MATRIX_DOLBY) {
matrix[FL][RL] -= slev * SQRT1_2;
matrix[FL][RR] -= slev * SQRT1_2;
matrix[FR][RL] += slev * SQRT1_2;
matrix[FR][RR] += slev * SQRT1_2;
} else if (matrix_encoding == MATRIX_DPLII) {
matrix[FL][RL] -= slev * SQRT3_2;
matrix[FL][RR] -= slev * SQRT1_2;
matrix[FR][RL] += slev * SQRT1_2;
matrix[FR][RR] += slev * SQRT3_2;
} else {
matrix[FL][RL] += slev;
matrix[FR][RR] += slev;
}
} else if (dst_mask & _MASK(FC)) {
matrix[FC][RL]+= slev * SQRT1_2;
matrix[FC][RR]+= slev * SQRT1_2;
} else {
spa_log_warn(mix->log, "can't assign RL");
}
}
if (unassigned & _MASK(SL)) {
if (dst_mask & _MASK(RL)) {
if (src_mask & _MASK(RL)) {
matrix[RL][SL] += SQRT1_2;
matrix[RR][SR] += SQRT1_2;
} else {
matrix[RL][SL] += 1.0f;
matrix[RR][SR] += 1.0f;
}
} else if (dst_mask & _MASK(RC)) {
matrix[RC][SL]+= SQRT1_2;
matrix[RC][SR]+= SQRT1_2;
} else if (dst_mask & _MASK(FL)) {
if (matrix_encoding == MATRIX_DOLBY) {
matrix[FL][SL] -= slev * SQRT1_2;
matrix[FL][SR] -= slev * SQRT1_2;
matrix[FR][SL] += slev * SQRT1_2;
matrix[FR][SR] += slev * SQRT1_2;
} else if (matrix_encoding == MATRIX_DPLII) {
matrix[FL][SL] -= slev * SQRT3_2;
matrix[FL][SR] -= slev * SQRT1_2;
matrix[FR][SL] += slev * SQRT1_2;
matrix[FR][SR] += slev * SQRT3_2;
} else {
matrix[FL][SL] += slev;
matrix[FR][SR] += slev;
}
} else if (dst_mask & _MASK(FC)) {
matrix[FC][SL] += slev * SQRT1_2;
matrix[FC][SR] += slev * SQRT1_2;
} else {
spa_log_warn(mix->log, "can't assign SL");
}
}
if (unassigned & _MASK(FLC)) {
if (dst_mask & _MASK(FL)) {
matrix[FC][FLC]+= 1.0f;
matrix[FC][FRC]+= 1.0f;
} else if(dst_mask & _MASK(FC)) {
matrix[FC][FLC]+= SQRT1_2;
matrix[FC][FRC]+= SQRT1_2;
} else {
spa_log_warn(mix->log, "can't assign FLC");
}
}
if (unassigned & _MASK(LFE)) {
if (dst_mask & _MASK(FC)) {
matrix[FC][LFE] += llev;
} else if (dst_mask & _MASK(FL)) {
matrix[FL][LFE] += llev * SQRT1_2;
matrix[FR][LFE] += llev * SQRT1_2;
} else {
spa_log_warn(mix->log, "can't assign LFE");
}
}
c = 0;
for (i = 0; i < NUM_CHAN; i++) {
float sum = 0.0f;
if ((dst_mask & (1UL << (i + 2))) == 0)
continue;
for (j = 0; j < NUM_CHAN; j++) {
if ((src_mask & (1UL << (j + 2))) == 0)
continue;
mix->matrix[c++] = matrix[i][j];
sum += fabs(matrix[i][j]);
}
max = SPA_MAX(max, sum);
}
mix->is_identity = dst_chan == src_chan;
for (i = 0; i < dst_chan; i++) {
for (j = 0; j < src_chan; j++) {
float v = mix->matrix[i * src_chan + j];
spa_log_debug(mix->log, "%d %d: %f", i, j, v);
if ((i == j && v != 1.0f) ||
(i != j && v != 0.0f))
mix->is_identity = false;
}
}
return 0;
}
static void impl_channelmix_free(struct channelmix *mix)
{
mix->process = NULL;
}
int channelmix_init(struct channelmix *mix)
{
const struct channelmix_info *info;
info = find_channelmix_info(mix->src_chan, mix->src_mask, mix->dst_chan, mix->dst_mask,
mix->cpu_flags);
if (info == NULL)
return -ENOTSUP;
mix->free = impl_channelmix_free;
mix->process = info->process;
mix->cpu_flags = info->cpu_flags;
return make_matrix(mix);
}