pipewire/src/modules/module-jack-tunnel.c
Wim Taymans 78219471ff spa: remove some obsolete functions
The spa_audio_info array now always holds enough positions for all
channels and we don't need to wrap around.
2025-10-24 09:35:59 +02:00

1237 lines
33 KiB
C

/* PipeWire */
/* SPDX-FileCopyrightText: Copyright © 2021 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include "config.h"
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
#include <limits.h>
#include <math.h>
#include <spa/utils/result.h>
#include <spa/utils/string.h>
#include <spa/utils/json.h>
#include <spa/utils/ratelimit.h>
#include <spa/debug/types.h>
#include <spa/pod/builder.h>
#include <spa/param/audio/format-utils.h>
#include <spa/param/latency-utils.h>
#include <spa/param/audio/raw.h>
#include <spa/param/audio/raw-json.h>
#include <spa/control/ump-utils.h>
#include <pipewire/impl.h>
#include <pipewire/i18n.h>
#include "module-jack-tunnel/weakjack.h"
/** \page page_module_jack_tunnel JACK Tunnel
*
* The jack-tunnel module provides a source or sink that tunnels all audio to
* a JACK server.
*
* This module is usually used together with \ref page_module_jackdbus_detect that will
* automatically load the tunnel with the right parameters based on dbus
* information.
*
* ## Module Name
*
* `libpipewire-module-jack-tunnel`
*
* ## Module Options
*
* - `jack.library`: the libjack to load, by default libjack.so.0 is searched in
* LIBJACK_PATH directories and then some standard library paths.
* Can be an absolute path.
* - `jack.server`: the name of the JACK server to tunnel to.
* - `jack.client-name`: the name of the JACK client.
* - `jack.connect`: if jack ports should be connected automatically. Can also be
* placed per stream.
* - `jack.connect-audio`: An array of audio ports to connect to. Can also be placed per
* stream. An empty array will not connect anything, even when
* jack.connect is true.
* - `jack.connect-midi`: An array of midi ports to connect to. Can also be placed per
* stream. An empty array will not connect anything, even when
* jack.connect is true.
* - `tunnel.mode`: the tunnel mode, sink|source|duplex, default duplex
* - `midi.ports`: the number of midi ports. Can also be added to the stream props.
* - `source.props`: Extra properties for the source filter.
* - `sink.props`: Extra properties for the sink filter.
*
* ## General options
*
* Options with well-known behavior.
*
* - \ref PW_KEY_REMOTE_NAME
* - \ref PW_KEY_AUDIO_CHANNELS
* - \ref SPA_KEY_AUDIO_POSITION
* - \ref PW_KEY_NODE_NAME
* - \ref PW_KEY_NODE_DESCRIPTION
* - \ref PW_KEY_NODE_GROUP
* - \ref PW_KEY_NODE_VIRTUAL
* - \ref PW_KEY_MEDIA_CLASS
* - \ref PW_KEY_TARGET_OBJECT to specify the remote node.name or serial.id to link to
*
* ## Example configuration of a duplex sink/source
*
*\code{.unparsed}
* # ~/.config/pipewire/pipewire.conf.d/my-jack-tunnel.conf
*
* context.modules = [
* { name = libpipewire-module-jack-tunnel
* args = {
* #jack.library = libjack.so.0
* #jack.server = null
* #jack.client-name = PipeWire
* #jack.connect = true
* #jack.connect-audio = [ playback_1 playback_2 ]
* #jack.connect-midi = [ midi_playback_1 ]
* #tunnel.mode = duplex
* #midi.ports = 0
* #audio.channels = 2
* #audio.position = [ FL FR ]
* source.props = {
* # extra sink properties
* }
* sink.props = {
* # extra sink properties
* }
* }
* }
* ]
*\endcode
*/
#define NAME "jack-tunnel"
PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME);
#define PW_LOG_TOPIC_DEFAULT mod_topic
#define MAX_CHANNELS SPA_AUDIO_MAX_CHANNELS
#define MAX_PORTS 128
#define DEFAULT_CLIENT_NAME "PipeWire"
#define DEFAULT_POSITION "[ FL FR ]"
#define DEFAULT_MIDI_PORTS 1
#define MODULE_USAGE "( remote.name=<remote> ] " \
"( jack.library=<jack library path> ) " \
"( jack.server=<server name> ) " \
"( jack.client-name=<name of the JACK client> ] " \
"( jack.connect=<bool, autoconnect ports> ] " \
"( jack.connect-audio=<array, port names to connect> ] "\
"( jack.connect-midi=<array, port names to connect> ] " \
"( tunnel.mode=<sink|source|duplex> ] " \
"( midi.ports=<number of midi ports> ] " \
"( audio.channels=<number of channels> ] " \
"( audio.position=<channel map> ] " \
"( source.props=<properties> ) " \
"( sink.props=<properties> ) "
static const struct spa_dict_item module_props[] = {
{ PW_KEY_MODULE_AUTHOR, "Wim Taymans <wim.taymans@gmail.com>" },
{ PW_KEY_MODULE_DESCRIPTION, "Create a JACK tunnel" },
{ PW_KEY_MODULE_USAGE, MODULE_USAGE },
{ PW_KEY_MODULE_VERSION, PACKAGE_VERSION },
};
static struct weakjack jack;
struct port {
jack_port_t *jack_port;
enum spa_direction direction;
struct spa_latency_info latency[2];
bool latency_changed[2];
unsigned int is_midi:1;
};
struct volume {
bool mute;
uint32_t n_volumes;
float volumes[MAX_CHANNELS];
};
struct stream {
struct impl *impl;
enum spa_direction direction;
struct pw_properties *props;
struct pw_filter *filter;
struct spa_hook listener;
struct spa_audio_info_raw info;
uint32_t n_midi;
uint32_t n_ports;
struct port *ports[MAX_PORTS];
struct volume volume;
unsigned int running:1;
};
struct impl {
struct pw_context *context;
struct pw_loop *main_loop;
struct spa_system *system;
#define MODE_SINK (1<<0)
#define MODE_SOURCE (1<<1)
#define MODE_DUPLEX (MODE_SINK|MODE_SOURCE)
uint32_t mode;
struct pw_properties *props;
struct pw_impl_module *module;
struct spa_hook module_listener;
struct pw_core *core;
struct spa_hook core_proxy_listener;
struct spa_hook core_listener;
struct spa_ratelimit rate_limit;
struct spa_io_position *position;
struct stream source;
struct stream sink;
uint32_t samplerate;
jack_client_t *client;
jack_nframes_t current_frames;
uint32_t pw_xrun;
uint32_t jack_xrun;
unsigned int do_disconnect:1;
unsigned int triggered:1;
unsigned int done:1;
unsigned int new_xrun:1;
unsigned int fix_midi:1;
};
static void reset_volume(struct volume *vol, uint32_t n_volumes)
{
uint32_t i;
vol->mute = false;
vol->n_volumes = n_volumes;
for (i = 0; i < n_volumes; i++)
vol->volumes[i] = 1.0f;
}
static inline void do_volume(float *dst, const float *src, struct volume *vol, uint32_t ch, uint32_t n_samples)
{
float v = vol->mute ? 0.0f : vol->volumes[ch];
if (v == 0.0f || src == NULL)
memset(dst, 0, n_samples * sizeof(float));
else if (v == 1.0f)
memcpy(dst, src, n_samples * sizeof(float));
else {
uint32_t i;
for (i = 0; i < n_samples; i++)
dst[i] = src[i] * v;
}
}
static inline void fix_midi_event(uint8_t *data, size_t size)
{
/* fixup NoteOn with vel 0 */
if (size > 2 && (data[0] & 0xF0) == 0x90 && data[2] == 0x00) {
data[0] = 0x80 + (data[0] & 0x0F);
data[2] = 0x40;
}
}
static void midi_to_jack(struct impl *impl, float *dst, float *src, uint32_t n_samples)
{
struct spa_pod_parser parser;
struct spa_pod_frame frame;
struct spa_pod_sequence seq;
struct spa_pod_control c;
const void *seq_body, *c_body;
int res;
bool in_sysex = false;
uint8_t tmp[n_samples * 4];
size_t tmp_size = 0;
jack.midi_clear_buffer(dst);
if (src == NULL)
return;
spa_pod_parser_init_from_data(&parser, src, n_samples * sizeof(float),
0, n_samples * sizeof(float));
if (spa_pod_parser_push_sequence_body(&parser, &frame, &seq, &seq_body) < 0)
return;
while (spa_pod_parser_get_control_body(&parser, &c, &c_body) >= 0) {
int size;
size_t c_size = c.value.size;
uint64_t state = 0;
if (c.type != SPA_CONTROL_UMP)
continue;
while (c_size > 0) {
size = spa_ump_to_midi((const uint32_t**)&c_body, &c_size,
&tmp[tmp_size], sizeof(tmp) - tmp_size, &state);
if (size <= 0)
break;
if (impl->fix_midi)
fix_midi_event(&tmp[tmp_size], size);
if (!in_sysex && tmp[tmp_size] == 0xf0)
in_sysex = true;
tmp_size += size;
if (in_sysex && tmp[tmp_size-1] == 0xf7)
in_sysex = false;
if (!in_sysex) {
if ((res = jack.midi_event_write(dst, c.offset, tmp, tmp_size)) < 0)
pw_log_warn("midi %p: can't write event: %s", dst,
spa_strerror(res));
tmp_size = 0;
}
}
}
}
static void jack_to_midi(float *dst, float *src, uint32_t size)
{
struct spa_pod_builder b = { 0, };
uint32_t i, count;
struct spa_pod_frame f;
count = src ? jack.midi_get_event_count(src) : 0;
spa_pod_builder_init(&b, dst, size);
spa_pod_builder_push_sequence(&b, &f, 0);
for (i = 0; i < count; i++) {
jack_midi_event_t ev;
uint64_t state = 0;
jack.midi_event_get(&ev, src, i);
while (ev.size > 0) {
uint32_t ump[4];
int ump_size = spa_ump_from_midi(&ev.buffer, &ev.size, ump, sizeof(ump), 0, &state);
if (ump_size <= 0)
break;
spa_pod_builder_control(&b, ev.time, SPA_CONTROL_UMP);
spa_pod_builder_bytes(&b, ump, ump_size);
}
}
spa_pod_builder_pop(&b, &f);
}
static void stream_destroy(void *d)
{
struct stream *s = d;
spa_hook_remove(&s->listener);
s->filter = NULL;
}
static void stream_state_changed(void *d, enum pw_filter_state old,
enum pw_filter_state state, const char *error)
{
struct stream *s = d;
struct impl *impl = s->impl;
switch (state) {
case PW_FILTER_STATE_UNCONNECTED:
pw_impl_module_schedule_destroy(impl->module);
break;
case PW_FILTER_STATE_ERROR:
pw_log_warn("stream %p: error: %s", s, error);
break;
case PW_FILTER_STATE_PAUSED:
s->running = false;
break;
case PW_FILTER_STATE_STREAMING:
s->running = true;
break;
default:
break;
}
}
static void sink_process(void *d, struct spa_io_position *position)
{
struct stream *s = d;
struct impl *impl = s->impl;
uint32_t i, n_samples = position->clock.duration;
if (impl->mode & MODE_SINK && impl->triggered) {
impl->triggered = false;
return;
}
for (i = 0; i < s->n_ports; i++) {
struct port *p = s->ports[i];
float *src, *dst;
if (p == NULL)
continue;
src = pw_filter_get_dsp_buffer(p, n_samples);
if (p->jack_port == NULL)
continue;
dst = jack.port_get_buffer(p->jack_port, n_samples);
if (dst == NULL)
continue;
if (SPA_UNLIKELY(p->is_midi))
midi_to_jack(impl, dst, src, n_samples);
else
do_volume(dst, src, &s->volume, i, n_samples);
}
pw_log_trace_fp("done %u %u", impl->current_frames, n_samples);
if (impl->mode & MODE_SINK) {
impl->done = true;
jack.cycle_signal(impl->client, 0);
}
}
static void source_process(void *d, struct spa_io_position *position)
{
struct stream *s = d;
struct impl *impl = s->impl;
uint32_t i, n_samples = position->clock.duration;
if (impl->mode == MODE_SOURCE && !impl->triggered) {
pw_log_trace_fp("done %u", impl->current_frames);
impl->done = true;
jack.cycle_signal(impl->client, 0);
return;
}
impl->triggered = false;
for (i = 0; i < s->n_ports; i++) {
struct port *p = s->ports[i];
float *src, *dst;
if (p == NULL)
continue;
dst = pw_filter_get_dsp_buffer(p, n_samples);
if (dst == NULL || p->jack_port == NULL)
continue;
src = jack.port_get_buffer (p->jack_port, n_samples);
if (SPA_UNLIKELY(p->is_midi))
jack_to_midi(dst, src, n_samples);
else
do_volume(dst, src, &s->volume, i, n_samples);
}
}
static void stream_io_changed(void *data, void *port_data, uint32_t id, void *area, uint32_t size)
{
struct stream *s = data;
struct impl *impl = s->impl;
if (port_data == NULL) {
switch (id) {
case SPA_IO_Position:
impl->position = area;
break;
default:
break;
}
}
}
static void param_latency_changed(struct stream *s, const struct spa_pod *param,
struct port *port)
{
struct spa_latency_info latency;
bool update = false;
enum spa_direction direction = port->direction;
if (param == NULL || spa_latency_parse(param, &latency) < 0)
return;
if (spa_latency_info_compare(&port->latency[direction], &latency)) {
port->latency[direction] = latency;
port->latency_changed[direction] = update = true;
}
if (update)
jack.recompute_total_latencies(s->impl->client);
}
static void make_stream_ports(struct stream *s)
{
struct impl *impl = s->impl;
uint32_t i;
struct pw_properties *props;
const char *str, *prefix, *type;
char name[256];
char **audio_ports = NULL, **midi_ports = NULL;
unsigned long jack_peer, jack_flags;
bool do_connect, is_midi, strv_audio = false, strv_midi = false;
int res, n_audio_ports = 0, n_midi_ports = 0;
if (s->direction == PW_DIRECTION_INPUT) {
/* sink */
jack_peer = JackPortIsInput;
jack_flags = JackPortIsOutput;
prefix = "playback";
} else {
/* source */
jack_peer = JackPortIsOutput;
jack_flags = JackPortIsInput;
prefix = "capture";
}
do_connect = pw_properties_get_bool(s->props, "jack.connect", true);
str = pw_properties_get(s->props, "jack.connect-audio");
if (str != NULL) {
audio_ports = pw_strv_parse(str, strlen(str), INT_MAX, NULL);
strv_audio = true;
} else if (do_connect) {
audio_ports = (char**)jack.get_ports(impl->client, NULL, JACK_DEFAULT_AUDIO_TYPE,
JackPortIsPhysical|jack_peer);
}
str = pw_properties_get(s->props, "jack.connect-midi");
if (str != NULL) {
midi_ports = pw_strv_parse(str, strlen(str), INT_MAX, NULL);
strv_midi = true;
} else if (do_connect) {
midi_ports = (char**)jack.get_ports(impl->client, NULL, JACK_DEFAULT_MIDI_TYPE,
JackPortIsPhysical|jack_peer);
}
for (i = 0; i < s->n_ports; i++) {
struct port *port = s->ports[i];
char *link_port = NULL;
char pos[8];
if (port != NULL) {
s->ports[i] = NULL;
if (port->jack_port)
jack.port_unregister(impl->client, port->jack_port);
pw_filter_remove_port(port);
}
if (i < s->info.channels) {
str = spa_type_audio_channel_make_short_name(
s->info.position[i], pos, sizeof(pos), NULL);
if (str)
snprintf(name, sizeof(name), "%s_%s", prefix, str);
else
snprintf(name, sizeof(name), "%s_%d", prefix, i+1);
props = pw_properties_new(
PW_KEY_FORMAT_DSP, "32 bit float mono audio",
PW_KEY_AUDIO_CHANNEL, str ? str : "UNK",
PW_KEY_PORT_PHYSICAL, "true",
PW_KEY_PORT_NAME, name,
NULL);
type = JACK_DEFAULT_AUDIO_TYPE;
if (audio_ports && audio_ports[n_audio_ports])
link_port = audio_ports[n_audio_ports++];
is_midi = false;
} else {
snprintf(name, sizeof(name), "midi_%s_%d", prefix, i - s->info.channels + 1);
props = pw_properties_new(
PW_KEY_FORMAT_DSP, "8 bit raw midi",
PW_KEY_PORT_NAME, name,
PW_KEY_PORT_PHYSICAL, "true",
NULL);
type = JACK_DEFAULT_MIDI_TYPE;
if (midi_ports && midi_ports[n_midi_ports])
link_port = midi_ports[n_midi_ports++];
is_midi = true;
}
port = pw_filter_add_port(s->filter,
s->direction,
PW_FILTER_PORT_FLAG_MAP_BUFFERS,
sizeof(struct port),
props, NULL, 0);
port->is_midi = is_midi;
port->jack_port = jack.port_register (impl->client, name, type, jack_flags, 0);
if (link_port != NULL) {
if (jack_flags & JackPortIsOutput) {
pw_log_info("connecting ports '%s' to '%s'",
jack.port_name(port->jack_port), link_port);
if ((res = jack.connect(impl->client, jack.port_name(port->jack_port), link_port)))
pw_log_warn("cannot connect ports '%s' to '%s': %s",
jack.port_name(port->jack_port), link_port, strerror(res));
} else {
pw_log_info("connecting ports '%s' to '%s'",
link_port, jack.port_name(port->jack_port));
if ((res = jack.connect(impl->client, link_port, jack.port_name(port->jack_port))))
pw_log_warn("cannot connect ports '%s' to '%s': %s",
link_port, jack.port_name(port->jack_port), strerror(res));
}
}
s->ports[i] = port;
}
if (audio_ports) {
if (strv_audio)
pw_free_strv(audio_ports);
else
jack.free(audio_ports);
}
if (midi_ports) {
if (strv_midi)
pw_free_strv(midi_ports);
else
jack.free(midi_ports);
}
}
static struct spa_pod *make_props_param(struct spa_pod_builder *b,
struct volume *vol)
{
return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_Props, SPA_PARAM_Props,
SPA_PROP_mute, SPA_POD_Bool(vol->mute),
SPA_PROP_channelVolumes, SPA_POD_Array(sizeof(float),
SPA_TYPE_Float, vol->n_volumes, vol->volumes));
}
static void parse_props(struct stream *s, const struct spa_pod *param)
{
struct spa_pod_object *obj = (struct spa_pod_object *) param;
struct spa_pod_prop *prop;
uint8_t buffer[1024];
struct spa_pod_builder b;
const struct spa_pod *params[1];
SPA_POD_OBJECT_FOREACH(obj, prop) {
switch (prop->key) {
case SPA_PROP_mute:
{
bool mute;
if (spa_pod_get_bool(&prop->value, &mute) == 0)
s->volume.mute = mute;
break;
}
case SPA_PROP_channelVolumes:
{
uint32_t n;
float vols[MAX_CHANNELS];
if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float,
vols, SPA_N_ELEMENTS(vols))) > 0) {
s->volume.n_volumes = n;
for (n = 0; n < s->volume.n_volumes; n++)
s->volume.volumes[n] = vols[n];
}
break;
}
default:
break;
}
}
spa_pod_builder_init(&b, buffer, sizeof(buffer));
params[0] = make_props_param(&b, &s->volume);
pw_filter_update_params(s->filter, NULL, params, 1);
}
static void stream_param_changed(void *data, void *port_data, uint32_t id,
const struct spa_pod *param)
{
struct stream *s = data;
if (port_data != NULL) {
switch (id) {
case SPA_PARAM_Latency:
param_latency_changed(s, param, port_data);
break;
}
} else {
switch (id) {
case SPA_PARAM_PortConfig:
pw_log_debug("PortConfig");
make_stream_ports(s);
break;
case SPA_PARAM_Props:
pw_log_debug("Props");
parse_props(s, param);
break;
}
}
}
static const struct pw_filter_events sink_events = {
PW_VERSION_FILTER_EVENTS,
.destroy = stream_destroy,
.state_changed = stream_state_changed,
.param_changed = stream_param_changed,
.io_changed = stream_io_changed,
.process = sink_process
};
static const struct pw_filter_events source_events = {
PW_VERSION_FILTER_EVENTS,
.destroy = stream_destroy,
.state_changed = stream_state_changed,
.param_changed = stream_param_changed,
.io_changed = stream_io_changed,
.process = source_process,
};
static int make_stream(struct stream *s, const char *name)
{
struct impl *impl = s->impl;
uint32_t n_params;
const struct spa_pod *params[4];
uint8_t buffer[1024];
struct spa_pod_builder b;
n_params = 0;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
s->filter = pw_filter_new(impl->core, name, pw_properties_copy(s->props));
if (s->filter == NULL)
return -errno;
if (s->direction == PW_DIRECTION_INPUT) {
pw_filter_add_listener(s->filter, &s->listener,
&sink_events, s);
} else {
pw_filter_add_listener(s->filter, &s->listener,
&source_events, s);
}
reset_volume(&s->volume, s->info.channels);
n_params = 0;
params[n_params++] = spa_format_audio_raw_build(&b,
SPA_PARAM_EnumFormat, &s->info);
params[n_params++] = spa_format_audio_raw_build(&b,
SPA_PARAM_Format, &s->info);
params[n_params++] = make_props_param(&b, &s->volume);
return pw_filter_connect(s->filter,
PW_FILTER_FLAG_DRIVER |
PW_FILTER_FLAG_RT_PROCESS |
PW_FILTER_FLAG_CUSTOM_LATENCY,
params, n_params);
}
static int create_filters(struct impl *impl)
{
int res = 0;
if (impl->mode & MODE_SINK)
res = make_stream(&impl->sink, "JACK Sink");
if (impl->mode & MODE_SOURCE)
res = make_stream(&impl->source, "JACK Source");
return res;
}
static inline uint64_t get_time_nsec(struct impl *impl)
{
uint64_t nsec;
if (impl->sink.filter)
nsec = pw_filter_get_nsec(impl->sink.filter);
else if (impl->source.filter)
nsec = pw_filter_get_nsec(impl->source.filter);
else
nsec = 0;
return nsec;
}
static void *jack_process_thread(void *arg)
{
struct impl *impl = arg;
bool source_running, sink_running;
jack_nframes_t nframes;
while (true) {
jack_nframes_t current_frames;
jack_time_t current_usecs;
jack_time_t next_usecs;
float period_usecs;
nframes = jack.cycle_wait (impl->client);
jack.get_cycle_times(impl->client,
&current_frames, &current_usecs,
&next_usecs, &period_usecs);
impl->current_frames = current_frames;
source_running = impl->source.running;
sink_running = impl->sink.running;
pw_log_trace_fp("process %d %u %u %p %d", nframes, source_running,
sink_running, impl->position, current_frames);
if (impl->new_xrun) {
int suppressed;
if ((suppressed = spa_ratelimit_test(&impl->rate_limit, current_usecs)) >= 0) {
pw_log_warn("Xrun: current_frames:%u JACK:%u PipeWire:%u (%d suppressed)",
current_frames, impl->jack_xrun, impl->pw_xrun, suppressed);
}
impl->new_xrun = false;
}
if (impl->position) {
struct spa_io_clock *c = &impl->position->clock;
jack_position_t pos;
uint64_t t1, t2, t3;
int64_t d1;
/* convert from JACK (likely MONOTONIC_RAW) to MONOTONIC */
t1 = get_time_nsec(impl) / 1000;
t2 = jack.get_time();
t3 = get_time_nsec(impl) / 1000;
d1 = t1 + (t3 - t1) / 2 - t2;
current_usecs += d1;
next_usecs += d1;
c->nsec = current_usecs * SPA_NSEC_PER_USEC;
c->rate = SPA_FRACTION(1, impl->samplerate);
c->position = current_frames;
c->duration = nframes;
c->delay = 0;
c->rate_diff = 1.0;
c->next_nsec = next_usecs * SPA_NSEC_PER_USEC;
c->target_rate = c->rate;
c->target_duration = c->duration;
jack.transport_query (impl->client, &pos);
}
if (impl->mode & MODE_SINK && sink_running) {
impl->done = false;
impl->triggered = true;
pw_filter_trigger_process(impl->sink.filter);
} else if (impl->mode == MODE_SOURCE && source_running) {
impl->done = false;
impl->triggered = true;
pw_filter_trigger_process(impl->source.filter);
} else {
pw_log_trace_fp("done %d", nframes);
jack.cycle_signal(impl->client, 0);
}
}
return NULL;
}
static int jack_xrun(void *arg)
{
struct impl *impl = arg;
if (impl->done)
impl->jack_xrun++;
else
impl->pw_xrun++;
impl->new_xrun = true;
return 0;
}
static int
do_schedule_destroy(struct spa_loop *loop,
bool async, uint32_t seq, const void *data, size_t size, void *user_data)
{
struct impl *impl = user_data;
pw_impl_module_schedule_destroy(impl->module);
return 0;
}
static void module_schedule_destroy(struct impl *impl)
{
pw_loop_invoke(impl->main_loop, do_schedule_destroy, 1, NULL, 0, false, impl);
}
static void jack_info_shutdown(jack_status_t code, const char* reason, void *arg)
{
struct impl *impl = arg;
pw_log_warn("shutdown: %s (%08x)", reason, code);
module_schedule_destroy(impl);
}
static void stream_update_latency(struct stream *s)
{
uint8_t buffer[1024];
struct spa_pod_builder b;
const struct spa_pod *params[2];
uint32_t i, n_params = 0;
for (i = 0; i < s->n_ports; i++) {
struct port *port = s->ports[i];
if (port == NULL)
continue;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
n_params = 0;
if (port->latency_changed[s->direction]) {
params[n_params++] = spa_latency_build(&b,
SPA_PARAM_Latency, &port->latency[s->direction]);
port->latency_changed[s->direction] = false;
}
if (s->filter)
pw_filter_update_params(s->filter, port, params, n_params);
}
}
static int
do_update_latency(struct spa_loop *loop,
bool async, uint32_t seq, const void *data, size_t size, void *user_data)
{
struct impl *impl = user_data;
if ((impl->mode & MODE_SINK))
stream_update_latency(&impl->sink);
if ((impl->mode & MODE_SOURCE))
stream_update_latency(&impl->source);
return 0;
}
static bool stream_handle_latency(struct stream *s, jack_latency_callback_mode_t mode)
{
uint32_t i;
struct spa_latency_info latency;
jack_latency_range_t range;
bool update = false;
enum spa_direction other = SPA_DIRECTION_REVERSE(s->direction);
struct port *port;
if (mode == JackPlaybackLatency) {
for (i = 0; i < s->n_ports; i++) {
port = s->ports[i];
if (port == NULL || port->jack_port == NULL)
continue;
jack.port_get_latency_range(port->jack_port, mode, &range);
latency = SPA_LATENCY_INFO(s->direction,
.min_rate = range.min,
.max_rate = range.max);
pw_log_debug("port latency %d %d %d", mode, range.min, range.max);
if (spa_latency_info_compare(&latency, &port->latency[s->direction])) {
port->latency[s->direction] = latency;
port->latency_changed[s->direction] = update = true;
}
}
} else if (mode == JackCaptureLatency) {
for (i = 0; i < s->n_ports; i++) {
port = s->ports[i];
if (port == NULL || port->jack_port == NULL)
continue;
if (port->latency_changed[other]) {
range.min = port->latency[other].min_rate;
range.max = port->latency[other].max_rate;
jack.port_set_latency_range(port->jack_port, mode, &range);
port->latency_changed[other] = false;
}
}
}
return update;
}
static void jack_latency(jack_latency_callback_mode_t mode, void *arg)
{
struct impl *impl = arg;
bool update = false;
if ((impl->mode & MODE_SINK))
update |= stream_handle_latency(&impl->sink, mode);
if ((impl->mode & MODE_SOURCE))
update |= stream_handle_latency(&impl->source, mode);
if (update)
pw_loop_invoke(impl->main_loop, do_update_latency, 0, NULL, 0, false, impl);
}
static int create_jack_client(struct impl *impl)
{
const char *server_name, *client_name;
jack_options_t options = JackNullOption;
jack_status_t status;
server_name = pw_properties_get(impl->props, "jack.server");
if (server_name != NULL)
options |= JackServerName;
client_name = pw_properties_get(impl->props, "jack.client-name");
if (client_name == NULL)
client_name = DEFAULT_CLIENT_NAME;
impl->client = jack.client_open(client_name, options, &status, server_name);
if (impl->client == NULL) {
pw_log_error ("jack_client_open() failed 0x%2.0x\n", status);
return -EIO;
}
jack.on_info_shutdown(impl->client, jack_info_shutdown, impl);
jack.set_process_thread(impl->client, jack_process_thread, impl);
jack.set_xrun_callback(impl->client, jack_xrun, impl);
jack.set_latency_callback(impl->client, jack_latency, impl);
impl->samplerate = jack.get_sample_rate(impl->client);
impl->source.info.rate = impl->samplerate;
impl->sink.info.rate = impl->samplerate;
jack.activate(impl->client);
return 0;
}
static void core_error(void *data, uint32_t id, int seq, int res, const char *message)
{
struct impl *impl = data;
pw_log_error("error id:%u seq:%d res:%d (%s): %s",
id, seq, res, spa_strerror(res), message);
if (id == PW_ID_CORE && res == -EPIPE)
pw_impl_module_schedule_destroy(impl->module);
}
static const struct pw_core_events core_events = {
PW_VERSION_CORE_EVENTS,
.error = core_error,
};
static void core_destroy(void *d)
{
struct impl *impl = d;
spa_hook_remove(&impl->core_listener);
impl->core = NULL;
pw_impl_module_schedule_destroy(impl->module);
}
static const struct pw_proxy_events core_proxy_events = {
.destroy = core_destroy,
};
static void impl_destroy(struct impl *impl)
{
if (impl->client) {
jack.deactivate(impl->client);
jack.client_close(impl->client);
}
if (impl->source.filter)
pw_filter_destroy(impl->source.filter);
if (impl->sink.filter)
pw_filter_destroy(impl->sink.filter);
if (impl->core && impl->do_disconnect)
pw_core_disconnect(impl->core);
pw_properties_free(impl->sink.props);
pw_properties_free(impl->source.props);
pw_properties_free(impl->props);
free(impl);
}
static void module_destroy(void *data)
{
struct impl *impl = data;
spa_hook_remove(&impl->module_listener);
impl_destroy(impl);
}
static const struct pw_impl_module_events module_events = {
PW_VERSION_IMPL_MODULE_EVENTS,
.destroy = module_destroy,
};
static int parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info)
{
return spa_audio_info_raw_init_dict_keys(info,
&SPA_DICT_ITEMS(
SPA_DICT_ITEM(SPA_KEY_AUDIO_FORMAT, "F32P"),
SPA_DICT_ITEM(SPA_KEY_AUDIO_POSITION, DEFAULT_POSITION)),
&props->dict,
SPA_KEY_AUDIO_CHANNELS,
SPA_KEY_AUDIO_POSITION, NULL);
}
static void copy_props(struct impl *impl, struct pw_properties *props, const char *key)
{
const char *str;
if ((str = pw_properties_get(props, key)) != NULL) {
if (pw_properties_get(impl->sink.props, key) == NULL)
pw_properties_set(impl->sink.props, key, str);
if (pw_properties_get(impl->source.props, key) == NULL)
pw_properties_set(impl->source.props, key, str);
}
}
SPA_EXPORT
int pipewire__module_init(struct pw_impl_module *module, const char *args)
{
struct pw_context *context = pw_impl_module_get_context(module);
struct pw_properties *props = NULL;
struct impl *impl;
const char *str;
int res;
PW_LOG_TOPIC_INIT(mod_topic);
impl = calloc(1, sizeof(struct impl));
if (impl == NULL)
return -errno;
pw_log_debug("module %p: new %s", impl, args);
if (args == NULL)
args = "";
props = pw_properties_new_string(args);
if (props == NULL) {
res = -errno;
pw_log_error( "can't create properties: %m");
goto error;
}
impl->props = props;
if ((str = pw_properties_get(props, "jack.library")) == NULL)
str = "libjack.so.0";
if ((res = weakjack_load(&jack, str)) < 0) {
pw_log_error( "can't load '%s': %s", str, spa_strerror(res));
goto error;
}
impl->sink.props = pw_properties_new(NULL, NULL);
impl->source.props = pw_properties_new(NULL, NULL);
if (impl->source.props == NULL || impl->sink.props == NULL) {
res = -errno;
pw_log_error( "can't create properties: %m");
goto error;
}
impl->module = module;
impl->context = context;
impl->main_loop = pw_context_get_main_loop(context);
impl->system = impl->main_loop->system;
impl->rate_limit.interval = 2 * SPA_USEC_PER_SEC;
impl->rate_limit.burst = 1;
impl->source.impl = impl;
impl->source.direction = PW_DIRECTION_OUTPUT;
impl->sink.impl = impl;
impl->sink.direction = PW_DIRECTION_INPUT;
impl->mode = MODE_DUPLEX;
if ((str = pw_properties_get(props, "tunnel.mode")) != NULL) {
if (spa_streq(str, "source")) {
impl->mode = MODE_SOURCE;
} else if (spa_streq(str, "sink")) {
impl->mode = MODE_SINK;
} else if (spa_streq(str, "duplex")) {
impl->mode = MODE_DUPLEX;
} else {
pw_log_error("invalid tunnel.mode '%s'", str);
res = -EINVAL;
goto error;
}
}
if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL)
pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true");
if (pw_properties_get(props, PW_KEY_NODE_GROUP) == NULL)
pw_properties_set(props, PW_KEY_NODE_GROUP, "jack-group");
if (pw_properties_get(props, PW_KEY_NODE_ALWAYS_PROCESS) == NULL)
pw_properties_set(props, PW_KEY_NODE_ALWAYS_PROCESS, "true");
pw_properties_set(impl->sink.props, PW_KEY_MEDIA_CLASS, "Audio/Sink");
pw_properties_set(impl->sink.props, PW_KEY_PRIORITY_DRIVER, "30001");
pw_properties_set(impl->sink.props, PW_KEY_NODE_NAME, "jack_sink");
pw_properties_set(impl->sink.props, PW_KEY_NODE_DESCRIPTION, "JACK Sink");
pw_properties_set(impl->source.props, PW_KEY_MEDIA_CLASS, "Audio/Source");
pw_properties_set(impl->source.props, PW_KEY_PRIORITY_DRIVER, "30000");
pw_properties_set(impl->source.props, PW_KEY_NODE_NAME, "jack_source");
pw_properties_set(impl->source.props, PW_KEY_NODE_DESCRIPTION, "JACK Source");
if ((str = pw_properties_get(props, "sink.props")) != NULL)
pw_properties_update_string(impl->sink.props, str, strlen(str));
if ((str = pw_properties_get(props, "source.props")) != NULL)
pw_properties_update_string(impl->source.props, str, strlen(str));
copy_props(impl, props, PW_KEY_AUDIO_CHANNELS);
copy_props(impl, props, SPA_KEY_AUDIO_POSITION);
copy_props(impl, props, PW_KEY_NODE_ALWAYS_PROCESS);
copy_props(impl, props, PW_KEY_NODE_GROUP);
copy_props(impl, props, PW_KEY_NODE_VIRTUAL);
copy_props(impl, props, "jack.connect");
copy_props(impl, props, "jack.connect-audio");
copy_props(impl, props, "jack.connect-midi");
if ((res = parse_audio_info(impl->source.props, &impl->source.info)) < 0 ||
(res = parse_audio_info(impl->sink.props, &impl->sink.info)) < 0) {
pw_log_error( "can't parse format: %s", spa_strerror(res));
goto error;
}
impl->source.n_midi = pw_properties_get_uint32(impl->source.props,
"midi.ports", DEFAULT_MIDI_PORTS);
impl->sink.n_midi = pw_properties_get_uint32(impl->sink.props,
"midi.ports", DEFAULT_MIDI_PORTS);
impl->source.n_ports = impl->source.n_midi + impl->source.info.channels;
impl->sink.n_ports = impl->sink.n_midi + impl->sink.info.channels;
if (impl->source.n_ports > MAX_PORTS || impl->sink.n_ports > MAX_PORTS) {
pw_log_error("too many ports");
res = -EINVAL;
goto error;
}
impl->core = pw_context_get_object(impl->context, PW_TYPE_INTERFACE_Core);
if (impl->core == NULL) {
str = pw_properties_get(props, PW_KEY_REMOTE_NAME);
impl->core = pw_context_connect(impl->context,
pw_properties_new(
PW_KEY_REMOTE_NAME, str,
NULL),
0);
impl->do_disconnect = true;
}
if (impl->core == NULL) {
res = -errno;
pw_log_error("can't connect: %m");
goto error;
}
pw_proxy_add_listener((struct pw_proxy*)impl->core,
&impl->core_proxy_listener,
&core_proxy_events, impl);
pw_core_add_listener(impl->core,
&impl->core_listener,
&core_events, impl);
if ((res = create_jack_client(impl)) < 0)
goto error;
if ((res = create_filters(impl)) < 0)
goto error;
pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl);
pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_props));
return 0;
error:
impl_destroy(impl);
return res;
}