mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-31 22:25:38 -04:00
1248 lines
36 KiB
C
1248 lines
36 KiB
C
/* Spa
|
|
*
|
|
* Copyright © 2018 Wim Taymans
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "fmt-ops.h"
|
|
|
|
#include <emmintrin.h>
|
|
|
|
static void
|
|
conv_s16_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in = _mm_setzero_si128();
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
|
|
|
|
if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 16)))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_insert_epi16(in, s[0*n_channels], 1);
|
|
in = _mm_insert_epi16(in, s[1*n_channels], 3);
|
|
in = _mm_insert_epi16(in, s[2*n_channels], 5);
|
|
in = _mm_insert_epi16(in, s[3*n_channels], 7);
|
|
in = _mm_srai_epi32(in, 16);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(factor, s[0]);
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s16_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i < n_channels; i++)
|
|
conv_s16_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
void
|
|
conv_s16_to_f32d_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src[0];
|
|
float *d0 = dst[0], *d1 = dst[1];
|
|
uint32_t n, unrolled;
|
|
__m128i in[2], t[4];
|
|
__m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16) &&
|
|
SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_load_si128((__m128i*)(s + 0));
|
|
in[1] = _mm_load_si128((__m128i*)(s + 8));
|
|
|
|
t[0] = _mm_slli_epi32(in[0], 16);
|
|
t[0] = _mm_srai_epi32(t[0], 16);
|
|
out[0] = _mm_cvtepi32_ps(t[0]);
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
|
|
t[1] = _mm_srai_epi32(in[0], 16);
|
|
out[1] = _mm_cvtepi32_ps(t[1]);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
|
|
t[2] = _mm_slli_epi32(in[1], 16);
|
|
t[2] = _mm_srai_epi32(t[2], 16);
|
|
out[2] = _mm_cvtepi32_ps(t[2]);
|
|
out[2] = _mm_mul_ps(out[2], factor);
|
|
|
|
t[3] = _mm_srai_epi32(in[1], 16);
|
|
out[3] = _mm_cvtepi32_ps(t[3]);
|
|
out[3] = _mm_mul_ps(out[3], factor);
|
|
|
|
_mm_store_ps(&d0[n + 0], out[0]);
|
|
_mm_store_ps(&d1[n + 0], out[1]);
|
|
_mm_store_ps(&d0[n + 4], out[2]);
|
|
_mm_store_ps(&d1[n + 4], out[3]);
|
|
|
|
s += 16;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(factor, s[0]);
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_cvtsi32_ss(factor, s[1]);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
s += 2;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const uint8_t *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in;
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) && n_samples > 0) {
|
|
unrolled = n_samples & ~3;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled -= 4;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_setr_epi32(
|
|
*((uint32_t*)&s[0 * n_channels]),
|
|
*((uint32_t*)&s[3 * n_channels]),
|
|
*((uint32_t*)&s[6 * n_channels]),
|
|
*((uint32_t*)&s[9 * n_channels]));
|
|
in = _mm_slli_epi32(in, 8);
|
|
in = _mm_srai_epi32(in, 8);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 12 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(factor, read_s24(s));
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += 3 * n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const uint8_t *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1];
|
|
uint32_t n, unrolled;
|
|
__m128i in[2];
|
|
__m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
n_samples > 0) {
|
|
unrolled = n_samples & ~3;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled -= 4;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[0 + 0*n_channels]),
|
|
*((uint32_t*)&s[0 + 3*n_channels]),
|
|
*((uint32_t*)&s[0 + 6*n_channels]),
|
|
*((uint32_t*)&s[0 + 9*n_channels]));
|
|
in[1] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[3 + 0*n_channels]),
|
|
*((uint32_t*)&s[3 + 3*n_channels]),
|
|
*((uint32_t*)&s[3 + 6*n_channels]),
|
|
*((uint32_t*)&s[3 + 9*n_channels]));
|
|
|
|
in[0] = _mm_slli_epi32(in[0], 8);
|
|
in[1] = _mm_slli_epi32(in[1], 8);
|
|
|
|
in[0] = _mm_srai_epi32(in[0], 8);
|
|
in[1] = _mm_srai_epi32(in[1], 8);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[1] = _mm_cvtepi32_ps(in[1]);
|
|
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
|
|
s += 12 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(factor, read_s24(s));
|
|
out[1] = _mm_cvtsi32_ss(factor, read_s24(s+3));
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
s += 3 * n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const uint8_t *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
|
|
uint32_t n, unrolled;
|
|
__m128i in[4];
|
|
__m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
SPA_IS_ALIGNED(d2, 16) &&
|
|
SPA_IS_ALIGNED(d3, 16) &&
|
|
n_samples > 0) {
|
|
unrolled = n_samples & ~3;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled -= 4;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[0 + 0*n_channels]),
|
|
*((uint32_t*)&s[0 + 3*n_channels]),
|
|
*((uint32_t*)&s[0 + 6*n_channels]),
|
|
*((uint32_t*)&s[0 + 9*n_channels]));
|
|
in[1] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[3 + 0*n_channels]),
|
|
*((uint32_t*)&s[3 + 3*n_channels]),
|
|
*((uint32_t*)&s[3 + 6*n_channels]),
|
|
*((uint32_t*)&s[3 + 9*n_channels]));
|
|
in[2] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[6 + 0*n_channels]),
|
|
*((uint32_t*)&s[6 + 3*n_channels]),
|
|
*((uint32_t*)&s[6 + 6*n_channels]),
|
|
*((uint32_t*)&s[6 + 9*n_channels]));
|
|
in[3] = _mm_setr_epi32(
|
|
*((uint32_t*)&s[9 + 0*n_channels]),
|
|
*((uint32_t*)&s[9 + 3*n_channels]),
|
|
*((uint32_t*)&s[9 + 6*n_channels]),
|
|
*((uint32_t*)&s[9 + 9*n_channels]));
|
|
|
|
in[0] = _mm_slli_epi32(in[0], 8);
|
|
in[1] = _mm_slli_epi32(in[1], 8);
|
|
in[2] = _mm_slli_epi32(in[2], 8);
|
|
in[3] = _mm_slli_epi32(in[3], 8);
|
|
|
|
in[0] = _mm_srai_epi32(in[0], 8);
|
|
in[1] = _mm_srai_epi32(in[1], 8);
|
|
in[2] = _mm_srai_epi32(in[2], 8);
|
|
in[3] = _mm_srai_epi32(in[3], 8);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[1] = _mm_cvtepi32_ps(in[1]);
|
|
out[2] = _mm_cvtepi32_ps(in[2]);
|
|
out[3] = _mm_cvtepi32_ps(in[3]);
|
|
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
out[2] = _mm_mul_ps(out[2], factor);
|
|
out[3] = _mm_mul_ps(out[3], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
|
|
s += 12 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(factor, read_s24(s));
|
|
out[1] = _mm_cvtsi32_ss(factor, read_s24(s+3));
|
|
out[2] = _mm_cvtsi32_ss(factor, read_s24(s+6));
|
|
out[3] = _mm_cvtsi32_ss(factor, read_s24(s+9));
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
out[2] = _mm_mul_ss(out[2], factor);
|
|
out[3] = _mm_mul_ss(out[3], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
_mm_store_ss(&d2[n], out[2]);
|
|
_mm_store_ss(&d3[n], out[3]);
|
|
s += 3 * n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s24_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int8_t *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_s24_to_f32d_4s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_s24_to_f32d_2s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_s24_to_f32d_1s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
|
|
}
|
|
|
|
|
|
void
|
|
conv_s32_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int32_t *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in;
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_setr_epi32(s[0*n_channels],
|
|
s[1*n_channels],
|
|
s[2*n_channels],
|
|
s[3*n_channels]);
|
|
in = _mm_srai_epi32(in, 8);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(factor, s[0]>>8);
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s32_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int32_t *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i < n_channels; i++)
|
|
conv_s32_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[1];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S32_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[0] = _mm_min_ps(in[0], int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[0] = _mm_mul_ss(in[0], scale);
|
|
in[0] = _mm_min_ss(in[0], int_max);
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2], t[2];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S32_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
|
|
|
|
in[0] = _mm_min_ps(in[0], int_max);
|
|
in[1] = _mm_min_ps(in[1], int_max);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
|
|
t[0] = _mm_unpacklo_epi32(out[0], out[1]);
|
|
t[1] = _mm_unpackhi_epi32(out[0], out[1]);
|
|
|
|
_mm_storel_pd((double*)(d + 0*n_channels), (__m128d)t[0]);
|
|
_mm_storeh_pd((double*)(d + 1*n_channels), (__m128d)t[0]);
|
|
_mm_storel_pd((double*)(d + 2*n_channels), (__m128d)t[1]);
|
|
_mm_storeh_pd((double*)(d + 3*n_channels), (__m128d)t[1]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[1] = _mm_load_ss(&s1[n]);
|
|
|
|
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
|
|
|
in[0] = _mm_mul_ps(in[0], scale);
|
|
in[0] = _mm_min_ps(in[0], int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
_mm_storel_epi64((__m128i*)d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S32_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale);
|
|
|
|
in[0] = _mm_min_ps(in[0], int_max);
|
|
in[1] = _mm_min_ps(in[1], int_max);
|
|
in[2] = _mm_min_ps(in[2], int_max);
|
|
in[3] = _mm_min_ps(in[3], int_max);
|
|
|
|
_MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[2] = _mm_cvtps_epi32(in[2]);
|
|
out[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
_mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]);
|
|
_mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]);
|
|
_mm_storeu_si128((__m128i*)(d + 2*n_channels), out[2]);
|
|
_mm_storeu_si128((__m128i*)(d + 3*n_channels), out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[1] = _mm_load_ss(&s1[n]);
|
|
in[2] = _mm_load_ss(&s2[n]);
|
|
in[3] = _mm_load_ss(&s3[n]);
|
|
|
|
in[0] = _mm_unpacklo_ps(in[0], in[2]);
|
|
in[1] = _mm_unpacklo_ps(in[1], in[3]);
|
|
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
|
|
|
in[0] = _mm_mul_ps(in[0], scale);
|
|
in[0] = _mm_min_ps(in[0], int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
_mm_storeu_si128((__m128i*)d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_f32d_to_s32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_f32d_to_s32_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_f32d_to_s32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
static inline void update_dither_sse2(struct convert *conv, uint32_t n_samples)
|
|
{
|
|
uint32_t n;
|
|
const uint32_t *r = SPA_PTR_ALIGN(conv->random, 16, uint32_t);
|
|
float *dither = SPA_PTR_ALIGN(conv->dither, 16, float);
|
|
__m128 scale = _mm_set1_ps(conv->scale), out[1];
|
|
__m128i in[1], t[1];
|
|
|
|
for (n = 0; n < n_samples; n += 4) {
|
|
/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */
|
|
in[0] = _mm_load_si128((__m128i*)r);
|
|
t[0] = _mm_slli_epi32(in[0], 13);
|
|
in[0] = _mm_xor_si128(in[0], t[0]);
|
|
t[0] = _mm_srli_epi32(in[0], 17);
|
|
in[0] = _mm_xor_si128(in[0], t[0]);
|
|
t[0] = _mm_slli_epi32(in[0], 5);
|
|
in[0] = _mm_xor_si128(in[0], t[0]);
|
|
_mm_store_si128((__m128i*)r, in[0]);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[0] = _mm_mul_ps(out[0], scale);
|
|
_mm_store_ps(&dither[n], out[0]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_1s_dither_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *dither = SPA_PTR_ALIGN(conv->dither, 16, float);
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[1];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S32_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S32_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), scale);
|
|
in[0] = _mm_add_ps(in[0], _mm_load_ps(&dither[n]));
|
|
in[0] = _mm_min_ps(in[0], int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s[n]);
|
|
in[0] = _mm_mul_ss(in[0], scale);
|
|
in[0] = _mm_add_ss(in[0], _mm_load_ss(&dither[n]));
|
|
in[0] = _mm_min_ss(in[0], int_max);
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s32_dither_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i, k, chunk, n_channels = conv->n_channels;
|
|
|
|
update_dither_sse2(conv, SPA_MIN(n_samples, conv->dither_size));
|
|
|
|
for(i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
for(k = 0; k < n_samples; k += chunk) {
|
|
chunk = SPA_MIN(n_samples - k, conv->dither_size);
|
|
conv_f32d_to_s32_1s_dither_sse2(conv, &d[i + k*n_channels], &s[k], n_channels, chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_interleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int32_t *s0 = src[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128i out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_si128((__m128i*)&s0[n]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
*d = s0[n];
|
|
d += n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_interleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
float *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_ps(&s0[n]);
|
|
out[1] = _mm_load_ps(&s1[n]);
|
|
out[2] = _mm_load_ps(&s2[n]);
|
|
out[3] = _mm_load_ps(&s3[n]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
_mm_storeu_ps((d + 0*n_channels), out[0]);
|
|
_mm_storeu_ps((d + 1*n_channels), out[1]);
|
|
_mm_storeu_ps((d + 2*n_channels), out[2]);
|
|
_mm_storeu_ps((d + 3*n_channels), out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
|
|
_mm_storeu_ps(d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32d_to_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_interleave_32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_interleave_32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
#define _MM_BSWAP_EPI32(x) \
|
|
({ \
|
|
__m128i a = _mm_or_si128( \
|
|
_mm_slli_epi16(x, 8), \
|
|
_mm_srli_epi16(x, 8)); \
|
|
a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
|
|
a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
|
|
})
|
|
|
|
static void
|
|
conv_interleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int32_t *s0 = src[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128i out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_si128((__m128i*)&s0[n]);
|
|
out[0] = _MM_BSWAP_EPI32(out[0]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
*d = bswap_32(s0[n]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_interleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
float *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_ps(&s0[n]);
|
|
out[1] = _mm_load_ps(&s1[n]);
|
|
out[2] = _mm_load_ps(&s2[n]);
|
|
out[3] = _mm_load_ps(&s3[n]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
|
|
out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
|
|
out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
|
|
out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
|
|
|
|
_mm_storeu_ps(&d[0*n_channels], out[0]);
|
|
_mm_storeu_ps(&d[1*n_channels], out[1]);
|
|
_mm_storeu_ps(&d[2*n_channels], out[2]);
|
|
_mm_storeu_ps(&d[3*n_channels], out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
|
|
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
|
|
_mm_storeu_ps(d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32sd_to_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_interleave_32s_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_interleave_32s_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128 out;
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out = _mm_setr_ps(s[0*n_channels],
|
|
s[1*n_channels],
|
|
s[2*n_channels],
|
|
s[3*n_channels]);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
d0[n] = *s;
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
SPA_IS_ALIGNED(d2, 16) &&
|
|
SPA_IS_ALIGNED(d3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_loadu_ps(&s[0 * n_channels]);
|
|
out[1] = _mm_loadu_ps(&s[1 * n_channels]);
|
|
out[2] = _mm_loadu_ps(&s[2 * n_channels]);
|
|
out[3] = _mm_loadu_ps(&s[3 * n_channels]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
d0[n] = s[0];
|
|
d1[n] = s[1];
|
|
d2[n] = s[2];
|
|
d3[n] = s[3];
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_deinterleave_32_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_deinterleave_32_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128 out;
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out = _mm_setr_ps(s[0*n_channels],
|
|
s[1*n_channels],
|
|
s[2*n_channels],
|
|
s[3*n_channels]);
|
|
out = (__m128) _MM_BSWAP_EPI32((__m128i)out);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
d0[n] = bswap_32(*s);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
SPA_IS_ALIGNED(d2, 16) &&
|
|
SPA_IS_ALIGNED(d3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_loadu_ps(&s[0 * n_channels]);
|
|
out[1] = _mm_loadu_ps(&s[1 * n_channels]);
|
|
out[2] = _mm_loadu_ps(&s[2 * n_channels]);
|
|
out[3] = _mm_loadu_ps(&s[3 * n_channels]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
|
|
out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
|
|
out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
|
|
out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
d0[n] = bswap_32(s[0]);
|
|
d1[n] = bswap_32(s[1]);
|
|
d2[n] = bswap_32(s[2]);
|
|
d3[n] = bswap_32(s[3]);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32s_to_32sd_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_deinterleave_32s_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_deinterleave_32s_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
_mm_storeu_si128((__m128i*)(d+0), out[0]);
|
|
d += 8;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
*d++ = _mm_cvtss_si32(in[0]);
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
uint32_t i, n_channels = conv->n_channels;
|
|
for(i = 0; i < n_channels; i++)
|
|
conv_f32_to_s16_1_sse2(conv, dst[i], src[i], n_samples);
|
|
}
|
|
|
|
void
|
|
conv_f32_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
conv_f32_to_s16_1_sse2(conv, dst[0], src[0], n_samples * conv->n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
|
|
d[0*n_channels] = _mm_extract_epi16(out[0], 0);
|
|
d[1*n_channels] = _mm_extract_epi16(out[0], 1);
|
|
d[2*n_channels] = _mm_extract_epi16(out[0], 2);
|
|
d[3*n_channels] = _mm_extract_epi16(out[0], 3);
|
|
d[4*n_channels] = _mm_extract_epi16(out[0], 4);
|
|
d[5*n_channels] = _mm_extract_epi16(out[0], 5);
|
|
d[6*n_channels] = _mm_extract_epi16(out[0], 6);
|
|
d[7*n_channels] = _mm_extract_epi16(out[0], 7);
|
|
d += 8*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[4], t[2];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
|
|
|
t[0] = _mm_cvtps_epi32(in[0]);
|
|
t[1] = _mm_cvtps_epi32(in[1]);
|
|
|
|
t[0] = _mm_packs_epi32(t[0], t[0]);
|
|
t[1] = _mm_packs_epi32(t[1], t[1]);
|
|
|
|
out[0] = _mm_unpacklo_epi16(t[0], t[1]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
*((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]);
|
|
*((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]);
|
|
*((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]);
|
|
*((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min));
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4], t[4];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_max);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_max);
|
|
|
|
t[0] = _mm_cvtps_epi32(in[0]);
|
|
t[1] = _mm_cvtps_epi32(in[1]);
|
|
t[2] = _mm_cvtps_epi32(in[2]);
|
|
t[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
t[0] = _mm_packs_epi32(t[0], t[2]);
|
|
t[1] = _mm_packs_epi32(t[1], t[3]);
|
|
|
|
out[0] = _mm_unpacklo_epi16(t[0], t[1]);
|
|
out[1] = _mm_unpackhi_epi16(t[0], t[1]);
|
|
out[2] = _mm_unpacklo_epi32(out[0], out[1]);
|
|
out[3] = _mm_unpackhi_epi32(out[0], out[1]);
|
|
|
|
_mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]);
|
|
_mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]);
|
|
_mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]);
|
|
_mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]);
|
|
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max);
|
|
in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_max);
|
|
in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min));
|
|
in[2] = _mm_min_ss(int_max, _mm_max_ss(in[2], int_min));
|
|
in[3] = _mm_min_ss(int_max, _mm_max_ss(in[3], int_min));
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d[2] = _mm_cvtss_si32(in[2]);
|
|
d[3] = _mm_cvtss_si32(in[3]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int16_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_f32d_to_s16_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_f32d_to_s16_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_f32d_to_s16_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1];
|
|
int16_t *d = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4];
|
|
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
|
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n+0]), int_max);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n+0]), int_max);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_max);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s1[n+4]), int_max);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[2] = _mm_cvtps_epi32(in[2]);
|
|
out[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
out[0] = _mm_packs_epi32(out[0], out[2]);
|
|
out[1] = _mm_packs_epi32(out[1], out[3]);
|
|
|
|
out[2] = _mm_unpacklo_epi16(out[0], out[1]);
|
|
out[3] = _mm_unpackhi_epi16(out[0], out[1]);
|
|
|
|
_mm_storeu_si128((__m128i*)(d+0), out[2]);
|
|
_mm_storeu_si128((__m128i*)(d+8), out[3]);
|
|
|
|
d += 16;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max);
|
|
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
|
in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min));
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d += 2;
|
|
}
|
|
}
|