#include #include #include #include #include #include #include #include #include "alsa-utils.h" static int verbose = 0; /* verbose flag */ #define CHECK(s,msg) if ((err = (s)) < 0) { printf (msg ": %s\n", snd_strerror(err)); return err; } static int spa_alsa_open (SpaALSAState *state) { int err; SpaALSAProps *props = &state->props[1]; if (state->opened) return 0; CHECK (snd_output_stdio_attach (&state->output, stderr, 0), "attach failed"); printf ("ALSA device open '%s'\n", props->device); CHECK (snd_pcm_open (&state->hndl, props->device, state->stream, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "open failed"); state->opened = true; return 0; } static int spa_alsa_close (SpaALSAState *state) { int err = 0; if (!state->opened) return 0; printf ("Playback device closing\n"); CHECK (snd_pcm_close (state->hndl), "close failed"); state->opened = false; return err; } static snd_pcm_format_t spa_alsa_format_to_alsa (SpaAudioFormat format) { switch (format) { case SPA_AUDIO_FORMAT_S8: return SND_PCM_FORMAT_S8; case SPA_AUDIO_FORMAT_U8: return SND_PCM_FORMAT_U8; /* 16 bit */ case SPA_AUDIO_FORMAT_S16LE: return SND_PCM_FORMAT_S16_LE; case SPA_AUDIO_FORMAT_S16BE: return SND_PCM_FORMAT_S16_BE; case SPA_AUDIO_FORMAT_U16LE: return SND_PCM_FORMAT_U16_LE; case SPA_AUDIO_FORMAT_U16BE: return SND_PCM_FORMAT_U16_BE; /* 24 bit in low 3 bytes of 32 bits */ case SPA_AUDIO_FORMAT_S24_32LE: return SND_PCM_FORMAT_S24_LE; case SPA_AUDIO_FORMAT_S24_32BE: return SND_PCM_FORMAT_S24_BE; case SPA_AUDIO_FORMAT_U24_32LE: return SND_PCM_FORMAT_U24_LE; case SPA_AUDIO_FORMAT_U24_32BE: return SND_PCM_FORMAT_U24_BE; /* 24 bit in 3 bytes */ case SPA_AUDIO_FORMAT_S24LE: return SND_PCM_FORMAT_S24_3LE; case SPA_AUDIO_FORMAT_S24BE: return SND_PCM_FORMAT_S24_3BE; case SPA_AUDIO_FORMAT_U24LE: return SND_PCM_FORMAT_U24_3LE; case SPA_AUDIO_FORMAT_U24BE: return SND_PCM_FORMAT_U24_3BE; /* 32 bit */ case SPA_AUDIO_FORMAT_S32LE: return SND_PCM_FORMAT_S32_LE; case SPA_AUDIO_FORMAT_S32BE: return SND_PCM_FORMAT_S32_BE; case SPA_AUDIO_FORMAT_U32LE: return SND_PCM_FORMAT_U32_LE; case SPA_AUDIO_FORMAT_U32BE: return SND_PCM_FORMAT_U32_BE; default: break; } return SND_PCM_FORMAT_UNKNOWN; } int spa_alsa_set_format (SpaALSAState *state, SpaFormatAudio *fmt, SpaPortFormatFlags flags) { unsigned int rrate, rchannels; snd_pcm_uframes_t size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t format; SpaAudioInfoRaw *info = &fmt->info.raw; snd_pcm_t *hndl; unsigned int buffer_time; unsigned int period_time; SpaALSAProps *props = &state->props[1]; if ((err = spa_alsa_open (state)) < 0) return err; hndl = state->hndl; snd_pcm_hw_params_alloca (¶ms); /* choose all parameters */ CHECK (snd_pcm_hw_params_any (hndl, params), "Broken configuration for playback: no configurations available"); /* set hardware resampling */ CHECK (snd_pcm_hw_params_set_rate_resample (hndl, params, 0), "set_rate_resample"); /* set the interleaved read/write format */ CHECK (snd_pcm_hw_params_set_access(hndl, params, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set_access"); /* set the sample format */ format = spa_alsa_format_to_alsa (info->format); printf ("Stream parameters are %iHz, %s, %i channels\n", info->rate, snd_pcm_format_name(format), info->channels); CHECK (snd_pcm_hw_params_set_format (hndl, params, format), "set_format"); /* set the count of channels */ rchannels = info->channels; CHECK (snd_pcm_hw_params_set_channels_near (hndl, params, &rchannels), "set_channels"); if (rchannels != info->channels) { fprintf (stderr, "Channels doesn't match (requested %u, get %u\n", info->channels, rchannels); if (flags & SPA_PORT_FORMAT_FLAG_NEAREST) info->channels = rchannels; else return -EINVAL; } /* set the stream rate */ rrate = info->rate; CHECK (snd_pcm_hw_params_set_rate_near (hndl, params, &rrate, 0), "set_rate_near"); if (rrate != info->rate) { fprintf (stderr, "Rate doesn't match (requested %iHz, get %iHz)\n", info->rate, rrate); if (flags & SPA_PORT_FORMAT_FLAG_NEAREST) info->rate = rrate; else return -EINVAL; } state->format = format; state->channels = info->channels; state->rate = info->rate; state->frame_size = info->channels * 2; /* set the buffer time */ buffer_time = props->buffer_time; CHECK (snd_pcm_hw_params_set_buffer_time_near (hndl, params, &buffer_time, &dir), "set_buffer_time_near"); CHECK (snd_pcm_hw_params_get_buffer_size (params, &size), "get_buffer_size"); state->buffer_frames = size; /* set the period time */ period_time = props->period_time; CHECK (snd_pcm_hw_params_set_period_time_near (hndl, params, &period_time, &dir), "set_period_time_near"); CHECK (snd_pcm_hw_params_get_period_size (params, &size, &dir), "get_period_size"); state->period_frames = size; /* write the parameters to device */ CHECK (snd_pcm_hw_params (hndl, params), "set_hw_params"); return 0; } static int set_swparams (SpaALSAState *state) { snd_pcm_t *hndl = state->hndl; int err = 0; snd_pcm_sw_params_t *params; SpaALSAProps *props = &state->props[1]; snd_pcm_sw_params_alloca (¶ms); /* get the current params */ CHECK (snd_pcm_sw_params_current (hndl, params), "sw_params_current"); CHECK (snd_pcm_sw_params_set_tstamp_mode (hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode"); /* start the transfer when the buffer is almost full: */ /* (buffer_frames / avail_min) * avail_min */ CHECK (snd_pcm_sw_params_set_start_threshold (hndl, params, (state->buffer_frames / state->period_frames) * state->period_frames), "set_start_threshold"); /* allow the transfer when at least period_size samples can be processed */ /* or disable this mechanism when period event is enabled (aka interrupt like style processing) */ CHECK (snd_pcm_sw_params_set_avail_min (hndl, params, props->period_event ? state->buffer_frames : state->period_frames), "set_avail_min"); /* enable period events when requested */ if (props->period_event) { CHECK (snd_pcm_sw_params_set_period_event (hndl, params, 1), "set_period_event"); } /* write the parameters to the playback device */ CHECK (snd_pcm_sw_params (hndl, params), "sw_params"); return 0; } /* * Underrun and suspend recovery */ static int xrun_recovery (snd_pcm_t *hndl, int err) { if (verbose) printf("stream recovery\n"); if (err == -EPIPE) { /* under-run */ err = snd_pcm_prepare(hndl); if (err < 0) printf("Can't recovery from underrun, prepare failed: %s\n", snd_strerror(err)); return 0; } else if (err == -ESTRPIPE) { while ((err = snd_pcm_resume(hndl)) == -EAGAIN) sleep(1); /* wait until the suspend flag is released */ if (err < 0) { err = snd_pcm_prepare(hndl); if (err < 0) printf("Can't recovery from suspend, prepare failed: %s\n", snd_strerror(err)); } return 0; } return err; } static void pull_input (SpaALSAState *state, void *data, snd_pcm_uframes_t frames) { SpaNodeEvent event; SpaNodeEventNeedInput ni; event.type = SPA_NODE_EVENT_TYPE_NEED_INPUT; event.size = sizeof (ni); event.data = ∋ ni.port_id = 0; state->event_cb (&state->node, &event, state->user_data); } static int mmap_write (SpaALSAState *state) { snd_pcm_t *hndl = state->hndl; int err; snd_pcm_sframes_t avail, commitres; snd_pcm_uframes_t offset, frames, size; const snd_pcm_channel_area_t *my_areas; if ((avail = snd_pcm_avail_update (hndl)) < 0) { if ((err = xrun_recovery (hndl, avail)) < 0) { printf ("Write error: %s\n", snd_strerror (err)); return -1; } } size = avail; while (size > 0) { frames = size; if ((err = snd_pcm_mmap_begin (hndl, &my_areas, &offset, &frames)) < 0) { if ((err = xrun_recovery(hndl, err)) < 0) { printf("MMAP begin avail error: %s\n", snd_strerror(err)); return -1; } } pull_input (state, (uint8_t *)my_areas[0].addr + (offset * sizeof (uint16_t) * 2), frames); commitres = snd_pcm_mmap_commit (hndl, offset, frames); if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) { if ((err = xrun_recovery (hndl, commitres >= 0 ? -EPIPE : commitres)) < 0) { printf("MMAP commit error: %s\n", snd_strerror(err)); return -1; } } size -= frames; } return 0; } static int mmap_read (SpaALSAState *state) { snd_pcm_t *hndl = state->hndl; int err; snd_pcm_sframes_t avail, commitres; snd_pcm_uframes_t offset, frames, size; snd_pcm_status_t *status; const snd_pcm_channel_area_t *my_areas; SpaALSABuffer *b; snd_htimestamp_t htstamp = { 0, 0 }; int64_t now; uint8_t *dest; snd_pcm_status_alloca(&status); if ((err = snd_pcm_status (hndl, status)) < 0) return err; avail = snd_pcm_status_get_avail (status); snd_pcm_status_get_htstamp (status, &htstamp); now = (int64_t)htstamp.tv_sec * SPA_NSEC_PER_SEC + (int64_t)htstamp.tv_nsec; state->last_ticks = state->sample_count * SPA_USEC_PER_SEC / state->rate; state->last_monotonic = now; SPA_QUEUE_POP_HEAD (&state->free, SpaALSABuffer, next, b); if (b == NULL) { fprintf (stderr, "no more buffers\n"); } else { dest = b->ptr; if (b->h) { b->h->seq = state->sample_count; b->h->pts = state->last_monotonic; b->h->dts_offset = 0; } } state->sample_count += avail; size = avail; while (size > 0) { frames = size; if ((err = snd_pcm_mmap_begin (hndl, &my_areas, &offset, &frames)) < 0) { if ((err = xrun_recovery(hndl, err)) < 0) { printf("MMAP begin avail error: %s\n", snd_strerror (err)); return -1; } } if (b) { size_t n_bytes = frames * state->frame_size; memcpy (dest, (uint8_t *)my_areas[0].addr + (offset * state->frame_size), n_bytes); dest += n_bytes; } else { snd_pcm_areas_silence (my_areas, offset, state->channels, frames, state->format); } commitres = snd_pcm_mmap_commit (hndl, offset, frames); if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) { if ((err = xrun_recovery (hndl, commitres >= 0 ? -EPIPE : commitres)) < 0) { printf("MMAP commit error: %s\n", snd_strerror(err)); return -1; } } size -= frames; } if (b) { SpaNodeEvent event; SpaNodeEventHaveOutput ho; SpaData *d; d = SPA_BUFFER_DATAS (b->outbuf); d[0].mem.size = avail * state->frame_size; b->next = NULL; SPA_QUEUE_PUSH_TAIL (&state->ready, SpaALSABuffer, next, b); event.type = SPA_NODE_EVENT_TYPE_HAVE_OUTPUT; event.size = sizeof (ho); event.data = &ho; ho.port_id = 0; state->event_cb (&state->node, &event, state->user_data); } return 0; } static int alsa_on_fd_events (SpaPollNotifyData *data) { SpaALSAState *state = data->user_data; snd_pcm_t *hndl = state->hndl; int err; unsigned short revents; snd_pcm_poll_descriptors_revents (hndl, (struct pollfd *)data->fds, data->n_fds, &revents); if (revents & POLLERR) { if (snd_pcm_state (hndl) == SND_PCM_STATE_XRUN || snd_pcm_state (hndl) == SND_PCM_STATE_SUSPENDED) { err = snd_pcm_state (hndl) == SND_PCM_STATE_XRUN ? -EPIPE : -ESTRPIPE; if ((err = xrun_recovery (hndl, err)) < 0) { printf ("error: %s\n", snd_strerror (err)); return -1; } } else { printf("Wait for poll failed\n"); return -1; } } if (state->stream == SND_PCM_STREAM_CAPTURE) { if (!(revents & POLLIN)) return -1; mmap_read (state); } else { if (!(revents & POLLOUT)) return -1; mmap_write (state); } return 0; } int spa_alsa_start (SpaALSAState *state) { int err; SpaNodeEvent event; if (spa_alsa_open (state) < 0) return -1; if (!state->have_buffers) return -1; CHECK (set_swparams (state), "swparams"); snd_pcm_dump (state->hndl, state->output); if ((state->poll.n_fds = snd_pcm_poll_descriptors_count (state->hndl)) <= 0) { printf ("Invalid poll descriptors count\n"); return state->poll.n_fds; } if ((err = snd_pcm_poll_descriptors (state->hndl, (struct pollfd *)state->fds, state->poll.n_fds)) < 0) { printf ("Unable to obtain poll descriptors for playback: %s\n", snd_strerror(err)); return err; } event.type = SPA_NODE_EVENT_TYPE_ADD_POLL; event.data = &state->poll; event.size = sizeof (state->poll); state->poll.id = 0; state->poll.enabled = true; state->poll.fds = state->fds; state->poll.idle_cb = NULL; state->poll.before_cb = NULL; state->poll.after_cb = alsa_on_fd_events; state->poll.user_data = state; state->event_cb (&state->node, &event, state->user_data); mmap_write (state); err = snd_pcm_start (state->hndl); return err; } int spa_alsa_stop (SpaALSAState *state) { SpaNodeEvent event; if (!state->opened) return 0; event.type = SPA_NODE_EVENT_TYPE_REMOVE_POLL; event.data = &state->poll; event.size = sizeof (state->poll); state->event_cb (&state->node, &event, state->user_data); snd_pcm_drop (state->hndl); spa_alsa_close (state); return 0; }