/* Spa * Copyright (C) 2018 Wim Taymans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include static void channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **)dst; float **s = (float **)src; float *m = matrix; float v = m[0]; __m128 vol = _mm_set1_ps(v); if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_bytes); } else if (v == VOLUME_NORM) { for (i = 0; i < n_dst; i++) memcpy(d[i], s[i], n_bytes); } else { unrolled = n_samples / 4; remain = n_samples & 3; for (i = 0; i < n_dst; i++) { float *di = d[i], *si = s[i]; for(n = 0; unrolled--; n += 4) _mm_storeu_ps(&di[n], _mm_mul_ps(_mm_loadu_ps(&si[n]), vol)); for(; remain--; n++) _mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol)); } } } static void channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **)dst; float **s = (float **)src; float *m = matrix; float v = m[0]; __m128 vol = _mm_set1_ps(v); __m128 in; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_bytes); } else if (v == VOLUME_NORM) { float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3], *s0 = s[0], *s1 = s[1]; unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { in = _mm_loadu_ps(&s0[n]); _mm_storeu_ps(&d0[n], in); _mm_storeu_ps(&d2[n], in); in = _mm_loadu_ps(&s1[n]); _mm_storeu_ps(&d1[n], in); _mm_storeu_ps(&d3[n], in); } for(; remain--; n++) { in = _mm_load_ss(&s0[n]); _mm_store_ss(&d0[n], in); _mm_store_ss(&d2[n], in); in = _mm_load_ss(&s1[n]); _mm_store_ss(&d1[n], in); _mm_store_ss(&d3[n], in); } } else { float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3], *s0 = s[0], *s1 = s[1]; unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { in = _mm_mul_ps(_mm_loadu_ps(&s0[n]), vol); _mm_storeu_ps(&d0[n], in); _mm_storeu_ps(&d2[n], in); in = _mm_mul_ps(_mm_loadu_ps(&s1[n]), vol); _mm_storeu_ps(&d1[n], in); _mm_storeu_ps(&d3[n], in); } for(; remain--; n++) { in = _mm_mul_ss(_mm_load_ss(&s0[n]), vol); _mm_store_ss(&d0[n], in); _mm_store_ss(&d2[n], in); in = _mm_mul_ss(_mm_load_ss(&s1[n]), vol); _mm_store_ss(&d1[n], in); _mm_store_ss(&d3[n], in); } } } /* FL+FR+RL+RR+FC+LFE -> FL+FR */ static void channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **) dst; float **s = (float **) src; float *m = matrix; float v = m[0]; __m128 clev = _mm_set1_ps(0.7071f); __m128 slev = _mm_set1_ps(0.7071f); __m128 vol = _mm_set1_ps(v); __m128 in, ctr; if (v <= VOLUME_MIN) { memset(d[0], 0, n_bytes); memset(d[1], 0, n_bytes); } else if (v == VOLUME_NORM) { float *d0 = d[0], *d1 = d[1], *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = s[4]; unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev); in = _mm_mul_ps(_mm_loadu_ps(&s2[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&s0[n])); _mm_storeu_ps(&d0[n], in); in = _mm_mul_ps(_mm_loadu_ps(&s3[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&s1[n])); _mm_storeu_ps(&d1[n], in); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev); in = _mm_mul_ss(_mm_load_ss(&s2[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&s0[n])); _mm_store_ss(&d0[n], in); in = _mm_mul_ss(_mm_load_ss(&s3[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&s1[n])); _mm_store_ss(&d1[n], in); } } else { float *d0 = d[0], *d1 = d[1], *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = s[4]; unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev); in = _mm_mul_ps(_mm_loadu_ps(&s2[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&s0[n])); in = _mm_mul_ps(in, vol); _mm_storeu_ps(&d0[n], in); in = _mm_mul_ps(_mm_loadu_ps(&s3[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&s1[n])); in = _mm_mul_ps(in, vol); _mm_storeu_ps(&d1[n], in); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev); in = _mm_mul_ss(_mm_load_ss(&s2[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&s0[n])); in = _mm_mul_ss(in, vol); _mm_store_ss(&d0[n], in); in = _mm_mul_ss(_mm_load_ss(&s3[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&s1[n])); in = _mm_mul_ss(in, vol); _mm_store_ss(&d1[n], in); } } } /* FL+FR+RL+RR+FC+LFE -> FL+FR+RL+RR*/ static void channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **) dst; float **s = (float **) src; float *m = matrix; float v = m[0]; __m128 clev = _mm_set1_ps(0.7071f); __m128 vol = _mm_set1_ps(v); __m128 ctr; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_bytes); } else if (v == VOLUME_NORM) { float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = s[4]; float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3]; unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev); _mm_storeu_ps(&d0[n], _mm_add_ps(_mm_loadu_ps(&s0[n]), ctr)); _mm_storeu_ps(&d1[n], _mm_add_ps(_mm_loadu_ps(&s1[n]), ctr)); _mm_storeu_ps(&d2[n], _mm_loadu_ps(&s2[n])); _mm_storeu_ps(&d3[n], _mm_loadu_ps(&s3[n])); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev); _mm_store_ss(&d0[n], _mm_add_ss(_mm_load_ss(&s0[n]), ctr)); _mm_store_ss(&d1[n], _mm_add_ss(_mm_load_ss(&s1[n]), ctr)); _mm_store_ss(&d2[n], _mm_load_ss(&s2[n])); _mm_store_ss(&d3[n], _mm_load_ss(&s3[n])); } } else { float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3], *s4 = s[4]; float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3]; unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&s4[n]), clev); _mm_storeu_ps(&d0[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&s0[n]), ctr), vol)); _mm_storeu_ps(&d1[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&s1[n]), ctr), vol)); _mm_storeu_ps(&d2[n], _mm_mul_ps(_mm_loadu_ps(&s2[n]), vol)); _mm_storeu_ps(&d3[n], _mm_mul_ps(_mm_loadu_ps(&s3[n]), vol)); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&s4[n]), clev); _mm_store_ss(&d0[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&s0[n]), ctr), vol)); _mm_store_ss(&d1[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&s1[n]), ctr), vol)); _mm_store_ss(&d2[n], _mm_mul_ss(_mm_load_ss(&s2[n]), vol)); _mm_store_ss(&d3[n], _mm_mul_ss(_mm_load_ss(&s3[n]), vol)); } } }