/* Spa * Copyright (C) 2018 Wim Taymans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include static void channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **)dst; float **s = (float **)src; float *m = matrix; float v = m[0]; __m128 vol = _mm_set1_ps(v); if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_bytes); } else if (v == VOLUME_NORM) { for (i = 0; i < n_dst; i++) memcpy(d[i], s[i], n_bytes); } else { unrolled = n_samples / 4; remain = n_samples & 3; for (i = 0; i < n_dst; i++) { float *di = d[i], *si = s[i]; for(n = 0; unrolled--; n += 4) _mm_storeu_ps(&di[n], _mm_mul_ps(_mm_loadu_ps(&si[n]), vol)); for(; remain--; n++) _mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol)); } } } static void channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **)dst; float **s = (float **)src; float *m = matrix; float v = m[0]; __m128 vol = _mm_set1_ps(v); __m128 in; float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3]; float *sFL = s[0], *sFR = s[1]; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_bytes); } else if (v == VOLUME_NORM) { unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { in = _mm_loadu_ps(&sFL[n]); _mm_storeu_ps(&dFL[n], in); _mm_storeu_ps(&dRL[n], in); in = _mm_loadu_ps(&sFR[n]); _mm_storeu_ps(&dFR[n], in); _mm_storeu_ps(&dRR[n], in); } for(; remain--; n++) { in = _mm_load_ss(&sFL[n]); _mm_store_ss(&dFL[n], in); _mm_store_ss(&dRL[n], in); in = _mm_load_ss(&sFR[n]); _mm_store_ss(&dFR[n], in); _mm_store_ss(&dRR[n], in); } } else { unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { in = _mm_mul_ps(_mm_loadu_ps(&sFL[n]), vol); _mm_storeu_ps(&dFL[n], in); _mm_storeu_ps(&dRL[n], in); in = _mm_mul_ps(_mm_loadu_ps(&sFR[n]), vol); _mm_storeu_ps(&dFR[n], in); _mm_storeu_ps(&dRR[n], in); } for(; remain--; n++) { in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol); _mm_store_ss(&dFL[n], in); _mm_store_ss(&dRL[n], in); in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol); _mm_store_ss(&dFR[n], in); _mm_store_ss(&dRR[n], in); } } } /* FL+FR+FC+LFE+SL+SR -> FL+FR */ static void channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **) dst; float **s = (float **) src; float *m = matrix; float v = m[0]; __m128 clev = _mm_set1_ps(m[2]); __m128 llev = _mm_set1_ps(m[3]); __m128 slev = _mm_set1_ps(m[4]); __m128 vol = _mm_set1_ps(v); __m128 in, ctr; float *dFL = d[0], *dFR = d[1]; float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5]; if (v <= VOLUME_MIN) { memset(dFL, 0, n_bytes); memset(dFR, 0, n_bytes); } else if (v == VOLUME_NORM) { unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); in = _mm_mul_ps(_mm_loadu_ps(&sSL[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&sFL[n])); _mm_storeu_ps(&dFL[n], in); in = _mm_mul_ps(_mm_loadu_ps(&sSR[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&sFR[n])); _mm_storeu_ps(&dFR[n], in); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFL[n])); _mm_store_ss(&dFL[n], in); in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFR[n])); _mm_store_ss(&dFR[n], in); } } else { unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); in = _mm_mul_ps(_mm_loadu_ps(&sSL[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&sFL[n])); in = _mm_mul_ps(in, vol); _mm_storeu_ps(&dFL[n], in); in = _mm_mul_ps(_mm_loadu_ps(&sSR[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_loadu_ps(&sFR[n])); in = _mm_mul_ps(in, vol); _mm_storeu_ps(&dFR[n], in); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFL[n])); in = _mm_mul_ss(in, vol); _mm_store_ss(&dFL[n], in); in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFR[n])); in = _mm_mul_ss(in, vol); _mm_store_ss(&dFR[n], in); } } } /* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/ static void channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, int n_bytes) { int i, n, n_samples = n_bytes / sizeof(float), unrolled, remain; float **d = (float **) dst; float **s = (float **) src; float *m = matrix; float v = m[0]; __m128 clev = _mm_set1_ps(m[2]); __m128 llev = _mm_set1_ps(m[3]); __m128 vol = _mm_set1_ps(v); __m128 ctr; float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3]; float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5]; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_bytes); } else if (v == VOLUME_NORM) { unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); _mm_storeu_ps(&dFL[n], _mm_add_ps(_mm_loadu_ps(&sFL[n]), ctr)); _mm_storeu_ps(&dFR[n], _mm_add_ps(_mm_loadu_ps(&sFR[n]), ctr)); _mm_storeu_ps(&dRL[n], _mm_loadu_ps(&sSL[n])); _mm_storeu_ps(&dRR[n], _mm_loadu_ps(&sSR[n])); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); _mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr)); _mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr)); _mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n])); _mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n])); } } else { unrolled = n_samples / 4; remain = n_samples & 3; for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_loadu_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); _mm_storeu_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&sFL[n]), ctr), vol)); _mm_storeu_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_loadu_ps(&sFR[n]), ctr), vol)); _mm_storeu_ps(&dRL[n], _mm_mul_ps(_mm_loadu_ps(&sSL[n]), vol)); _mm_storeu_ps(&dRR[n], _mm_mul_ps(_mm_loadu_ps(&sSR[n]), vol)); } for(; remain--; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_loadu_ps(&sLFE[n]), llev)); _mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol)); _mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol)); _mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol)); _mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol)); } } }