/* Spa * * Copyright © 2018 Wim Taymans * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include static void conv_s16_to_f32d_1_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int16_t *s = src; float **d = (float **) dst; float *d0 = d[0]; uint32_t n, unrolled; __m128i in; __m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE); if (SPA_IS_ALIGNED(d0, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in = _mm_insert_epi16(in, s[0*n_channels], 1); in = _mm_insert_epi16(in, s[1*n_channels], 3); in = _mm_insert_epi16(in, s[2*n_channels], 5); in = _mm_insert_epi16(in, s[3*n_channels], 7); in = _mm_srai_epi32(in, 16); out = _mm_cvtepi32_ps(in); out = _mm_mul_ps(out, factor); _mm_store_ps(&d0[n], out); s += 4*n_channels; } for(; n < n_samples; n++) { out = _mm_cvtsi32_ss(out, s[0]); out = _mm_mul_ss(out, factor); _mm_store_ss(&d0[n], out); s += n_channels; } } static void conv_s16_to_f32d_2_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int16_t *s = src; float **d = (float **) dst; float *d0 = d[0], *d1 = d[1]; uint32_t n, unrolled; __m128i in, t[2]; __m128 out[2], factor = _mm_set1_ps(1.0f / S16_SCALE); if (n_channels == 2 && SPA_IS_ALIGNED(s, 16) && SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d1, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in = _mm_load_si128((__m128i*)s); t[0] = _mm_slli_epi32(in, 16); t[0] = _mm_srai_epi32(t[0], 16); t[1] = _mm_srai_epi32(in, 16); out[0] = _mm_cvtepi32_ps(t[0]); out[0] = _mm_mul_ps(out[0], factor); out[1] = _mm_cvtepi32_ps(t[1]); out[1] = _mm_mul_ps(out[1], factor); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); s += 4*n_channels; } for(; n < n_samples; n++) { out[0] = _mm_cvtsi32_ss(out[0], s[0]); out[0] = _mm_mul_ss(out[0], factor); out[1] = _mm_cvtsi32_ss(out[1], s[1]); out[1] = _mm_mul_ss(out[1], factor); _mm_store_ss(&d0[n], out[0]); _mm_store_ss(&d1[n], out[1]); s += n_channels; } } static void conv_s16_to_f32d_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const int16_t *s = src[0]; uint32_t i = 0; for(; i + 1 < n_channels; i += 2) conv_s16_to_f32d_2_sse2(data, &dst[i], &s[i], n_channels, n_samples); for(; i < n_channels; i++) conv_s16_to_f32d_1_sse2(data, &dst[i], &s[i], n_channels, n_samples); } static void conv_s24_to_f32d_1_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const uint8_t *s = src; float **d = (float **) dst; float *d0 = d[0]; uint32_t n, unrolled; __m128i in; __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16)) { unrolled = n_samples / 4; if ((n_samples & 3) == 0) unrolled--; } else unrolled = 0; for(n = 0; unrolled--; n += 4) { in = _mm_setr_epi32( *((uint32_t*)&s[0 * n_channels]), *((uint32_t*)&s[3 * n_channels]), *((uint32_t*)&s[6 * n_channels]), *((uint32_t*)&s[9 * n_channels])); in = _mm_slli_epi32(in, 8); in = _mm_srai_epi32(in, 8); out = _mm_cvtepi32_ps(in); out = _mm_mul_ps(out, factor); _mm_store_ps(&d0[n], out); s += 12 * n_channels; } for(; n < n_samples; n++) { out = _mm_cvtsi32_ss(out, read_s24(s)); out = _mm_mul_ss(out, factor); _mm_store_ss(&d0[n], out); s += 3 * n_channels; } } static void conv_s24_to_f32d_2_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const uint8_t *s = src; float **d = (float **) dst; float *d0 = d[0], *d1 = d[1]; uint32_t n, unrolled; __m128i in[2]; __m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16)) { unrolled = n_samples / 4; if ((n_samples & 3) == 0) unrolled--; } else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_setr_epi32( *((uint32_t*)&s[0 + 0*n_channels]), *((uint32_t*)&s[0 + 3*n_channels]), *((uint32_t*)&s[0 + 6*n_channels]), *((uint32_t*)&s[0 + 9*n_channels])); in[1] = _mm_setr_epi32( *((uint32_t*)&s[3 + 0*n_channels]), *((uint32_t*)&s[3 + 3*n_channels]), *((uint32_t*)&s[3 + 6*n_channels]), *((uint32_t*)&s[3 + 9*n_channels])); in[0] = _mm_slli_epi32(in[0], 8); in[1] = _mm_slli_epi32(in[1], 8); in[0] = _mm_srai_epi32(in[0], 8); in[1] = _mm_srai_epi32(in[1], 8); out[0] = _mm_cvtepi32_ps(in[0]); out[1] = _mm_cvtepi32_ps(in[1]); out[0] = _mm_mul_ps(out[0], factor); out[1] = _mm_mul_ps(out[1], factor); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); s += 12 * n_channels; } for(; n < n_samples; n++) { out[0] = _mm_cvtsi32_ss(out[0], read_s24(s)); out[1] = _mm_cvtsi32_ss(out[1], read_s24(s+3)); out[0] = _mm_mul_ss(out[0], factor); out[1] = _mm_mul_ss(out[1], factor); _mm_store_ss(&d0[n], out[0]); _mm_store_ss(&d1[n], out[1]); s += 3 * n_channels; } } static void conv_s24_to_f32d_4_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const uint8_t *s = src; float **d = (float **) dst; float *d0 = d[0], *d1 = d[1], *d2 = d[2], *d3 = d[3]; uint32_t n, unrolled; __m128i in[4]; __m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16)) { unrolled = n_samples / 4; if ((n_samples & 3) == 0) unrolled--; } else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_setr_epi32( *((uint32_t*)&s[0 + 0*n_channels]), *((uint32_t*)&s[0 + 3*n_channels]), *((uint32_t*)&s[0 + 6*n_channels]), *((uint32_t*)&s[0 + 9*n_channels])); in[1] = _mm_setr_epi32( *((uint32_t*)&s[3 + 0*n_channels]), *((uint32_t*)&s[3 + 3*n_channels]), *((uint32_t*)&s[3 + 6*n_channels]), *((uint32_t*)&s[3 + 9*n_channels])); in[2] = _mm_setr_epi32( *((uint32_t*)&s[6 + 0*n_channels]), *((uint32_t*)&s[6 + 3*n_channels]), *((uint32_t*)&s[6 + 6*n_channels]), *((uint32_t*)&s[6 + 9*n_channels])); in[3] = _mm_setr_epi32( *((uint32_t*)&s[9 + 0*n_channels]), *((uint32_t*)&s[9 + 3*n_channels]), *((uint32_t*)&s[9 + 6*n_channels]), *((uint32_t*)&s[9 + 9*n_channels])); in[0] = _mm_slli_epi32(in[0], 8); in[1] = _mm_slli_epi32(in[1], 8); in[2] = _mm_slli_epi32(in[2], 8); in[3] = _mm_slli_epi32(in[3], 8); in[0] = _mm_srai_epi32(in[0], 8); in[1] = _mm_srai_epi32(in[1], 8); in[2] = _mm_srai_epi32(in[2], 8); in[3] = _mm_srai_epi32(in[3], 8); out[0] = _mm_cvtepi32_ps(in[0]); out[1] = _mm_cvtepi32_ps(in[1]); out[2] = _mm_cvtepi32_ps(in[2]); out[3] = _mm_cvtepi32_ps(in[3]); out[0] = _mm_mul_ps(out[0], factor); out[1] = _mm_mul_ps(out[1], factor); out[2] = _mm_mul_ps(out[2], factor); out[3] = _mm_mul_ps(out[3], factor); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); _mm_store_ps(&d2[n], out[2]); _mm_store_ps(&d3[n], out[3]); s += 12 * n_channels; } for(; n < n_samples; n++) { out[0] = _mm_cvtsi32_ss(out[0], read_s24(s)); out[1] = _mm_cvtsi32_ss(out[1], read_s24(s+3)); out[2] = _mm_cvtsi32_ss(out[2], read_s24(s+6)); out[3] = _mm_cvtsi32_ss(out[3], read_s24(s+9)); out[0] = _mm_mul_ss(out[0], factor); out[1] = _mm_mul_ss(out[1], factor); out[2] = _mm_mul_ss(out[2], factor); out[3] = _mm_mul_ss(out[3], factor); _mm_store_ss(&d0[n], out[0]); _mm_store_ss(&d1[n], out[1]); _mm_store_ss(&d2[n], out[2]); _mm_store_ss(&d3[n], out[3]); s += 3 * n_channels; } } static void conv_s24_to_f32d_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const int8_t *s = src[0]; uint32_t i = 0; for(; i + 3 < n_channels; i += 4) conv_s24_to_f32d_4_sse2(data, &dst[i], &s[3*i], n_channels, n_samples); for(; i + 1 < n_channels; i += 2) conv_s24_to_f32d_2_sse2(data, &dst[i], &s[3*i], n_channels, n_samples); for(; i < n_channels; i++) conv_s24_to_f32d_1_sse2(data, &dst[i], &s[3*i], n_channels, n_samples); } static void conv_f32d_to_s32_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float **s = (const float **) src; const float *s0 = s[0]; int32_t *d = dst; uint32_t n, unrolled; __m128 in[1]; __m128i out[4]; __m128 scale = _mm_set1_ps(S32_SCALE); __m128 int_min = _mm_set1_ps(S32_MIN); if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); in[0] = _mm_min_ps(in[0], int_min); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); d[0*n_channels] = _mm_cvtsi128_si32(out[0]); d[1*n_channels] = _mm_cvtsi128_si32(out[1]); d[2*n_channels] = _mm_cvtsi128_si32(out[2]); d[3*n_channels] = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s0[n]); in[0] = _mm_mul_ss(in[0], scale); in[0] = _mm_min_ss(in[0], int_min); *d = _mm_cvtss_si32(in[0]); d += n_channels; } } static void conv_f32d_to_s32_2_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float **s = (const float **) src; const float *s0 = s[0], *s1 = s[1]; int32_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2], t[2]; __m128 scale = _mm_set1_ps(S32_SCALE); __m128 int_min = _mm_set1_ps(S32_MIN); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale); in[0] = _mm_min_ps(in[0], int_min); in[1] = _mm_min_ps(in[1], int_min); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); t[0] = _mm_unpacklo_epi32(out[0], out[1]); t[1] = _mm_unpackhi_epi32(out[0], out[1]); _mm_storel_pd((double*)(d + 0*n_channels), (__m128d)t[0]); _mm_storeh_pd((double*)(d + 1*n_channels), (__m128d)t[0]); _mm_storel_pd((double*)(d + 2*n_channels), (__m128d)t[1]); _mm_storeh_pd((double*)(d + 3*n_channels), (__m128d)t[1]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s0[n]); in[1] = _mm_load_ss(&s1[n]); in[0] = _mm_unpacklo_ps(in[0], in[1]); in[0] = _mm_mul_ps(in[0], scale); in[0] = _mm_min_ps(in[0], int_min); out[0] = _mm_cvtps_epi32(in[0]); _mm_storel_epi64((__m128i*)d, out[0]); d += n_channels; } } static void conv_f32d_to_s32_4_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float **s = (const float **) src; const float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3]; int32_t *d = dst; uint32_t n, unrolled; __m128 in[4]; __m128i out[4]; __m128 scale = _mm_set1_ps(S32_SCALE); __m128 int_min = _mm_set1_ps(S32_MIN); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16) && SPA_IS_ALIGNED(s2, 16) && SPA_IS_ALIGNED(s3, 16) && SPA_IS_ALIGNED(d, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale); in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale); in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale); in[0] = _mm_min_ps(in[0], int_min); in[1] = _mm_min_ps(in[1], int_min); in[2] = _mm_min_ps(in[2], int_min); in[3] = _mm_min_ps(in[3], int_min); _MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[2] = _mm_cvtps_epi32(in[2]); out[3] = _mm_cvtps_epi32(in[3]); _mm_store_si128((__m128i*)(d + 0*n_channels), out[0]); _mm_store_si128((__m128i*)(d + 1*n_channels), out[1]); _mm_store_si128((__m128i*)(d + 2*n_channels), out[2]); _mm_store_si128((__m128i*)(d + 3*n_channels), out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s0[n]); in[1] = _mm_load_ss(&s1[n]); in[2] = _mm_load_ss(&s2[n]); in[3] = _mm_load_ss(&s3[n]); in[0] = _mm_unpacklo_ps(in[0], in[2]); in[1] = _mm_unpacklo_ps(in[1], in[3]); in[0] = _mm_unpacklo_ps(in[0], in[1]); in[0] = _mm_mul_ps(in[0], scale); in[0] = _mm_min_ps(in[0], int_min); out[0] = _mm_cvtps_epi32(in[0]); _mm_storeu_si128((__m128i*)d, out[0]); d += n_channels; } } static void conv_f32d_to_s32_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { int32_t *d = dst[0]; uint32_t i = 0; for(; i + 3 < n_channels; i += 4) conv_f32d_to_s32_4_sse2(data, &d[i], &src[i], n_channels, n_samples); for(; i + 1 < n_channels; i += 2) conv_f32d_to_s32_2_sse2(data, &d[i], &src[i], n_channels, n_samples); for(; i < n_channels; i++) conv_f32d_to_s32_1_sse2(data, &d[i], &src[i], n_channels, n_samples); } static void conv_f32d_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float **s = (const float **) src; const float *s0 = s[0]; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2]; __m128 int_max = _mm_set1_ps(S16_MAX_F); __m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max); if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples / 8; else unrolled = 0; for(n = 0; unrolled--; n += 8) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max); in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_max); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[0] = _mm_packs_epi32(out[0], out[1]); d[0*n_channels] = _mm_extract_epi16(out[0], 0); d[1*n_channels] = _mm_extract_epi16(out[0], 1); d[2*n_channels] = _mm_extract_epi16(out[0], 2); d[3*n_channels] = _mm_extract_epi16(out[0], 3); d[4*n_channels] = _mm_extract_epi16(out[0], 4); d[5*n_channels] = _mm_extract_epi16(out[0], 5); d[6*n_channels] = _mm_extract_epi16(out[0], 6); d[7*n_channels] = _mm_extract_epi16(out[0], 7); d += 8*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max); in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min)); *d = _mm_cvtss_si32(in[0]); d += n_channels; } } static void conv_f32d_to_s16_2_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float **s = (const float **) src; const float *s0 = s[0], *s1 = s[1]; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[4], t[2]; __m128 int_max = _mm_set1_ps(S16_MAX_F); __m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max); t[0] = _mm_cvtps_epi32(in[0]); t[1] = _mm_cvtps_epi32(in[1]); t[0] = _mm_packs_epi32(t[0], t[0]); t[1] = _mm_packs_epi32(t[1], t[1]); out[0] = _mm_unpacklo_epi16(t[0], t[1]); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); *((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]); *((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]); *((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]); *((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max); in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max); in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min)); in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min)); d[0] = _mm_cvtss_si32(in[0]); d[1] = _mm_cvtss_si32(in[1]); d += n_channels; } } static void conv_f32d_to_s16_4_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float **s = (const float **) src; const float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3]; int16_t *d = dst; uint32_t n, unrolled; __m128 in[4]; __m128i out[4], t[4]; __m128 int_max = _mm_set1_ps(S16_MAX_F); __m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16) && SPA_IS_ALIGNED(s2, 16) && SPA_IS_ALIGNED(s3, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max); in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_max); in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_max); t[0] = _mm_cvtps_epi32(in[0]); t[1] = _mm_cvtps_epi32(in[1]); t[2] = _mm_cvtps_epi32(in[2]); t[3] = _mm_cvtps_epi32(in[3]); t[0] = _mm_packs_epi32(t[0], t[2]); t[1] = _mm_packs_epi32(t[1], t[3]); out[0] = _mm_unpacklo_epi16(t[0], t[1]); out[1] = _mm_unpackhi_epi16(t[0], t[1]); out[2] = _mm_unpacklo_epi32(out[0], out[1]); out[3] = _mm_unpackhi_epi32(out[0], out[1]); _mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]); _mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]); _mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]); _mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max); in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max); in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_max); in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_max); in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min)); in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min)); in[2] = _mm_min_ss(int_max, _mm_max_ss(in[2], int_min)); in[3] = _mm_min_ss(int_max, _mm_max_ss(in[3], int_min)); d[0] = _mm_cvtss_si32(in[0]); d[1] = _mm_cvtss_si32(in[1]); d[2] = _mm_cvtss_si32(in[2]); d[3] = _mm_cvtss_si32(in[3]); d += n_channels; } } static void conv_f32d_to_s16_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { int16_t *d = dst[0]; uint32_t i = 0; for(; i + 3 < n_channels; i += 4) conv_f32d_to_s16_4_sse2(data, &d[i], &src[i], n_channels, n_samples); for(; i + 1 < n_channels; i += 2) conv_f32d_to_s16_2_sse2(data, &d[i], &src[i], n_channels, n_samples); for(; i < n_channels; i++) conv_f32d_to_s16_1_sse2(data, &d[i], &src[i], n_channels, n_samples); }