/* PipeWire */ /* SPDX-FileCopyrightText: Copyright © 2021 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** \page page_module_ffado_driver FFADO firewire audio driver * * The ffado-driver module provides a source or sink using the libffado library for * reading and writing to firewire audio devices. * * ## Module Name * * `libpipewire-module-ffado-driver` * * ## Module Options * * - `driver.mode`: the driver mode, sink|source|duplex, default duplex * - `ffado.devices`: array of devices to open, default "hw:0" * - `ffado.period-size`: period size,default 1024. A value of 0 will use the graph duration. * - `ffado.period-num`: period number,default 3 * - `ffado.sample-rate`: sample-rate, default 48000. A value of 0 will use the graph rate. * - `ffado.slave-mode`: slave mode * - `ffado.snoop-mode`: snoop mode * - `ffado.verbose`: ffado verbose level * - `ffado.rtprio`: ffado realtime priority, this is by default the PipeWire server * priority + 5 * - `ffado.realtime`: ffado realtime mode. this requires correctly configured rlimits * to acquire FIFO scheduling at the ffado.rtprio priority * - `latency.internal.input`: extra input latency in frames * - `latency.internal.output`: extra output latency in frames * - `source.props`: Extra properties for the source filter * - `sink.props`: Extra properties for the sink filter * * ## General options * * Options with well-known behavior. * * - \ref PW_KEY_REMOTE_NAME * - \ref SPA_KEY_AUDIO_POSITION * - \ref PW_KEY_NODE_NAME * - \ref PW_KEY_NODE_DESCRIPTION * - \ref PW_KEY_NODE_GROUP * - \ref PW_KEY_NODE_VIRTUAL * - \ref PW_KEY_MEDIA_CLASS * - \ref PW_KEY_TARGET_OBJECT to specify the remote node.name or serial.id to link to * * ## Example configuration of a duplex sink/source * *\code{.unparsed} * # ~/.config/pipewire/pipewire.conf.d/my-ffado-driver.conf * * context.modules = [ * { name = libpipewire-module-ffado-driver * args = { * #driver.mode = duplex * #ffado.devices = [ "hw:0" ] * #ffado.period-size = 1024 * #ffado.period-num = 3 * #ffado.sample-rate = 48000 * #ffado.slave-mode = false * #ffado.snoop-mode = false * #ffado.verbose = 0 * #ffado.rtprio = 65 * #ffado.realtime = true * #latency.internal.input = 0 * #latency.internal.output = 0 * #audio.position = [ FL FR ] * source.props = { * # extra sink properties * } * sink.props = { * # extra sink properties * } * } * } * ] *\endcode */ #define NAME "ffado-driver" PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME); #define PW_LOG_TOPIC_DEFAULT mod_topic #define MAX_CHANNELS SPA_AUDIO_MAX_CHANNELS #define MAX_PORTS 128 #define FFADO_RT_PRIORITY_PACKETIZER_RELATIVE 5 #define DEFAULT_DEVICES "[ \"hw:0\" ]" #define DEFAULT_PERIOD_SIZE 1024 #define DEFAULT_PERIOD_NUM 3 #define DEFAULT_SAMPLE_RATE 48000 #define DEFAULT_SLAVE_MODE false #define DEFAULT_SNOOP_MODE false #define DEFAULT_VERBOSE 0 #define DEFAULT_RTPRIO (RTPRIO_SERVER + FFADO_RT_PRIORITY_PACKETIZER_RELATIVE) #define DEFAULT_REALTIME true #define DEFAULT_POSITION "[ FL FR ]" #define DEFAULT_MIDI_PORTS 1 #define MODULE_USAGE "( remote.name= ) " \ "( driver.mode= ) " \ "( ffado.devices= ) " \ "( ffado.period-size= ) " \ "( ffado.period-num= ) " \ "( ffado.sample-rate= ) " \ "( ffado.slave-mode= ) " \ "( ffado.snoop-mode= ) " \ "( ffado.verbose= ) " \ "( ffado.rtprio= ) " \ "( ffado.realtime= ) " \ "( audio.position= ) " \ "( source.props= ) " \ "( sink.props= ) " static const struct spa_dict_item module_props[] = { { PW_KEY_MODULE_AUTHOR, "Wim Taymans " }, { PW_KEY_MODULE_DESCRIPTION, "Create an FFADO based driver" }, { PW_KEY_MODULE_USAGE, MODULE_USAGE }, { PW_KEY_MODULE_VERSION, PACKAGE_VERSION }, }; struct port_data { struct port *port; }; struct port { enum spa_direction direction; ffado_streaming_stream_type stream_type; char name[280]; struct spa_latency_info latency[2]; bool latency_changed[2]; unsigned int is_midi:1; unsigned int cleared:1; void *buffer; uint8_t event_byte; uint8_t event_type; uint32_t event_time; uint8_t event_buffer[512]; uint32_t event_pos; int event_pending; struct port_data *data; }; struct volume { bool mute; uint32_t n_volumes; float volumes[MAX_CHANNELS]; }; struct stream { struct impl *impl; enum spa_direction direction; struct pw_properties *props; struct pw_filter *filter; struct spa_hook listener; struct spa_audio_info_raw info; uint32_t n_ports; struct port *ports[MAX_PORTS]; struct volume volume; unsigned int ready:1; unsigned int running:1; struct { unsigned int transfered:1; } rt; }; struct impl { struct pw_context *context; struct pw_loop *main_loop; struct pw_loop *data_loop; struct spa_system *system; struct spa_source *ffado_timer; ffado_device_info_t device_info; ffado_options_t device_options; ffado_device_t *dev; #define MODE_SINK (1<<0) #define MODE_SOURCE (1<<1) #define MODE_DUPLEX (MODE_SINK|MODE_SOURCE) uint32_t mode; struct pw_properties *props; struct pw_impl_module *module; struct spa_hook module_listener; struct pw_core *core; struct spa_hook core_proxy_listener; struct spa_hook core_listener; uint32_t reset_work_id; struct spa_io_position *position; uint32_t latency[2]; struct stream source; struct stream sink; char *devices[FFADO_MAX_SPECSTRINGS]; uint32_t n_devices; int32_t sample_rate; int32_t period_size; int32_t n_periods; bool slave_mode; bool snoop_mode; uint32_t verbose; int32_t rtprio; bool realtime; uint32_t input_latency; uint32_t output_latency; uint32_t quantum_limit; uint32_t frame_time; unsigned int do_disconnect:1; unsigned int fix_midi:1; unsigned int started:1; unsigned int freewheel:1; pthread_t thread; struct { unsigned int done:1; unsigned int triggered:1; unsigned int new_xrun:1; uint32_t pw_xrun; uint32_t ffado_xrun; } rt; }; static int stop_ffado_device(struct impl *impl); static int start_ffado_device(struct impl *impl); static void schedule_reset_ffado_device(struct impl *impl); static void reset_volume(struct volume *vol, uint32_t n_volumes) { uint32_t i; vol->mute = false; vol->n_volumes = n_volumes; for (i = 0; i < n_volumes; i++) vol->volumes[i] = 1.0f; } static inline void do_volume(float *dst, const float *src, struct volume *vol, uint32_t ch, uint32_t n_samples) { float v = vol->mute ? 0.0f : vol->volumes[ch]; if (v == 0.0f || src == NULL) memset(dst, 0, n_samples * sizeof(float)); else if (v == 1.0f) memcpy(dst, src, n_samples * sizeof(float)); else { uint32_t i; for (i = 0; i < n_samples; i++) dst[i] = src[i] * v; } } static void clear_port_buffer(struct port *p, uint32_t n_samples) { if (!p->cleared) { if (p->buffer) memset(p->buffer, 0, n_samples * sizeof(uint32_t)); p->cleared = true; } } static inline void fix_midi_event(uint8_t *data, size_t size) { /* fixup NoteOn with vel 0 */ if (size > 2 && (data[0] & 0xF0) == 0x90 && data[2] == 0x00) { data[0] = 0x80 + (data[0] & 0x0F); data[2] = 0x40; } } static void midi_to_ffado(struct port *p, float *src, uint32_t n_samples) { struct spa_pod_parser parser; struct spa_pod_frame frame; struct spa_pod_sequence seq; struct spa_pod_control c; const void *seq_body, *c_body; uint32_t i, index = 0, unhandled = 0; uint32_t *dst = p->buffer; if (src == NULL) return; spa_pod_parser_init_from_data(&parser, src, n_samples * sizeof(float), 0, n_samples * sizeof(float)); if (spa_pod_parser_push_sequence_body(&parser, &frame, &seq, &seq_body) < 0) return; clear_port_buffer(p, n_samples); /* first leftovers from previous cycle, always start at offset 0 */ for (i = 0; i < p->event_pos; i++) { dst[index] = 0x01000000 | (uint32_t) p->event_buffer[i]; index += 8; } p->event_pos = 0; while (spa_pod_parser_get_control_body(&parser, &c, &c_body) >= 0) { uint8_t data[16]; int j, size; size_t c_size = c.value.size; uint64_t state = 0; if (c.type != SPA_CONTROL_UMP) continue; if (index < c.offset) index = SPA_ROUND_UP_N(c.offset, 8); while (c_size > 0) { size = spa_ump_to_midi((const uint32_t**)&c_body, &c_size, data, sizeof(data), &state); if (size <= 0) break; for (j = 0; j < size; j++) { if (index >= n_samples) { /* keep events that don't fit for the next cycle */ if (p->event_pos < sizeof(p->event_buffer)) p->event_buffer[p->event_pos++] = data[j]; else unhandled++; } else dst[index] = 0x01000000 | (uint32_t) data[j]; index += 8; } } } if (unhandled > 0) pw_log_warn("%u MIDI events dropped (index %d)", unhandled, index); else if (p->event_pos > 0) pw_log_debug("%u MIDI events saved (index %d)", p->event_pos, index); } static int take_bytes(struct port *p, uint32_t *frame, uint8_t **bytes, size_t *size) { if (p->event_pos == 0) return 0; *frame = p->event_time; *bytes = p->event_buffer; *size = p->event_pos; return 1; } static const int status_len[] = { 2, /* noteoff */ 2, /* noteon */ 2, /* keypress */ 2, /* controller */ 1, /* pgmchange */ 1, /* chanpress */ 2, /* pitchbend */ -1, /* invalid */ 1, /* sysex 0xf0 */ 1, /* qframe 0xf1 */ 2, /* songpos 0xf2 */ 1, /* songsel 0xf3 */ -1, /* none 0xf4 */ -1, /* none 0xf5 */ 0, /* tune request 0xf6 */ -1, /* none 0xf7 */ 0, /* clock 0xf8 */ -1, /* none 0xf9 */ 0, /* start 0xfa */ 0, /* continue 0xfb */ 0, /* stop 0xfc */ -1, /* none 0xfd */ 0, /* sensing 0xfe */ 0, /* reset 0xff */ }; static int process_byte(struct port *p, uint32_t time, uint8_t byte, uint32_t *frame, uint8_t **bytes, size_t *size) { int res = 0; if (byte >= 0xf8) { if (byte == 0xfd) { pw_log_warn("dropping invalid MIDI status bytes %08x", byte); return false; } p->event_byte = byte; *frame = time; *bytes = &p->event_byte; *size = 1; return 1; } if ((byte & 0x80) && (byte != 0xf7 || p->event_type != 8)) { if (p->event_pending > 0) pw_log_warn("incomplete MIDI message %02x dropped %u time:%u", p->event_type, p->event_pending, time); /* new command */ p->event_buffer[0] = byte; p->event_time = time; if ((byte & 0xf0) == 0xf0) /* system message */ p->event_type = (byte & 0x0f) + 8; else p->event_type = (byte >> 4) & 0x07; p->event_pos = 1; p->event_pending = status_len[p->event_type]; } else { if (p->event_pending > 0) { /* rest of command */ if (p->event_pos < sizeof(p->event_buffer)) p->event_buffer[p->event_pos++] = byte; if (p->event_type != 8) p->event_pending--; } else { /* running status */ p->event_buffer[1] = byte; p->event_time = time; p->event_pending = status_len[p->event_type] - 1; p->event_pos = 2; } } if (p->event_pending == 0) { res = take_bytes(p, frame, bytes, size); if (p->event_type >= 8) p->event_type = 7; } else if (p->event_type == 8) { if (byte == 0xf7 || p->event_pos >= sizeof(p->event_buffer)) { res = take_bytes(p, frame, bytes, size); p->event_pos = 0; if (byte == 0xf7) { p->event_pending = 0; p->event_type = 7; } } } return res; } static void ffado_to_midi(struct port *p, float *dst, uint32_t *src, uint32_t size) { struct spa_pod_builder b = { 0, }; uint32_t i, count; struct spa_pod_frame f; count = src ? size : 0; spa_pod_builder_init(&b, dst, size); spa_pod_builder_push_sequence(&b, &f, 0); for (i = 0; i < count; i++) { uint32_t data = src[i], frame; uint8_t *bytes; size_t size; if ((data & 0xff000000) == 0) continue; if (process_byte(p, i, data & 0xff, &frame, &bytes, &size)) { uint64_t state = 0; while (size > 0) { uint32_t ev[4]; int ev_size = spa_ump_from_midi(&bytes, &size, ev, sizeof(ev), 0, &state); if (ev_size <= 0) break; spa_pod_builder_control(&b, frame, SPA_CONTROL_UMP); spa_pod_builder_bytes(&b, ev, ev_size); } } } spa_pod_builder_pop(&b, &f); if (p->event_pending > 0) /* make sure the rest of the MIDI message is sent first in the next cycle */ p->event_time = 0; } static inline uint64_t get_time_ns(struct impl *impl) { uint64_t nsec; if (impl->sink.filter) nsec = pw_filter_get_nsec(impl->sink.filter); else if (impl->source.filter) nsec = pw_filter_get_nsec(impl->source.filter); else nsec = 0; return nsec; } static int set_timeout(struct impl *impl, uint64_t time) { struct timespec timeout, interval; timeout.tv_sec = time / SPA_NSEC_PER_SEC; timeout.tv_nsec = time % SPA_NSEC_PER_SEC; interval.tv_sec = 0; interval.tv_nsec = 0; pw_loop_update_timer(impl->data_loop, impl->ffado_timer, &timeout, &interval, true); return 0; } static void stream_destroy(void *d) { struct stream *s = d; uint32_t i; for (i = 0; i < s->n_ports; i++) { struct port *p = s->ports[i]; if (p != NULL) { s->ports[i] = NULL; free(p->buffer); free(p); } } s->n_ports = 0; spa_hook_remove(&s->listener); s->filter = NULL; s->ready = false; s->running = false; } static void check_start(struct impl *impl) { if ((!(impl->mode & MODE_SINK) || (impl->sink.ready && impl->sink.running)) && (!(impl->mode & MODE_SOURCE) || (impl->source.ready && impl->source.running))) start_ffado_device(impl); } static void stream_state_changed(void *d, enum pw_filter_state old, enum pw_filter_state state, const char *error) { struct stream *s = d; struct impl *impl = s->impl; switch (state) { case PW_FILTER_STATE_ERROR: pw_log_warn("filter state %d error: %s", state, error); break; case PW_FILTER_STATE_UNCONNECTED: pw_impl_module_schedule_destroy(impl->module); break; case PW_FILTER_STATE_PAUSED: s->running = false; if (!impl->sink.running && !impl->source.running) stop_ffado_device(impl); break; case PW_FILTER_STATE_STREAMING: s->running = true; check_start(impl); break; default: break; } } static void sink_process(void *d, struct spa_io_position *position) { struct stream *s = d; struct impl *impl = s->impl; uint32_t i, n_samples = position->clock.duration; pw_log_trace_fp("process %d", impl->rt.triggered); if (impl->mode == MODE_SINK && impl->rt.triggered) { impl->rt.triggered = false; return; } for (i = 0; i < s->n_ports; i++) { struct port *p = s->ports[i]; float *src; if (p == NULL || p->data == NULL) continue; src = pw_filter_get_dsp_buffer(p->data, n_samples); if (src == NULL) { clear_port_buffer(p, n_samples); continue; } if (SPA_UNLIKELY(p->is_midi)) midi_to_ffado(p, src, n_samples); else do_volume(p->buffer, src, &s->volume, i, n_samples); p->cleared = false; } ffado_streaming_transfer_playback_buffers(impl->dev); s->rt.transfered = true; if (impl->mode == MODE_SINK) { pw_log_trace_fp("done %u", impl->frame_time); impl->rt.done = true; set_timeout(impl, position->clock.nsec); } } static void silence_playback(struct impl *impl) { uint32_t i; struct stream *s = &impl->sink; for (i = 0; i < s->n_ports; i++) { struct port *p = s->ports[i]; if (p != NULL) clear_port_buffer(p, impl->device_options.period_size); } ffado_streaming_transfer_playback_buffers(impl->dev); s->rt.transfered = true; } static void source_process(void *d, struct spa_io_position *position) { struct stream *s = d; struct impl *impl = s->impl; uint32_t i, n_samples = position->clock.duration; pw_log_trace_fp("process %d", impl->rt.triggered); if (SPA_FLAG_IS_SET(impl->position->clock.flags, SPA_IO_CLOCK_FLAG_XRUN_RECOVER)) return; if (!impl->rt.triggered) { pw_log_trace_fp("done %u", impl->frame_time); impl->rt.done = true; if (!impl->sink.rt.transfered) silence_playback(impl); set_timeout(impl, position->clock.nsec); return; } impl->rt.triggered = false; ffado_streaming_transfer_capture_buffers(impl->dev); s->rt.transfered = true; for (i = 0; i < s->n_ports; i++) { struct port *p = s->ports[i]; float *dst; if (p == NULL || p->data == NULL || p->buffer == NULL) continue; dst = pw_filter_get_dsp_buffer(p->data, n_samples); if (dst == NULL) continue; if (SPA_UNLIKELY(p->is_midi)) ffado_to_midi(p, dst, p->buffer, n_samples); else do_volume(dst, p->buffer, &s->volume, i, n_samples); } } static void stream_io_changed(void *data, void *port_data, uint32_t id, void *area, uint32_t size) { struct stream *s = data; struct impl *impl = s->impl; bool freewheel; if (port_data == NULL) { switch (id) { case SPA_IO_Position: impl->position = area; freewheel = impl->position != NULL && SPA_FLAG_IS_SET(impl->position->clock.flags, SPA_IO_CLOCK_FLAG_FREEWHEEL); if (impl->freewheel != freewheel) { pw_log_info("freewheel: %d -> %d", impl->freewheel, freewheel); impl->freewheel = freewheel; if (impl->started) { if (freewheel) { set_timeout(impl, 0); ffado_streaming_stop(impl->dev); } else { ffado_streaming_start(impl->dev); impl->rt.done = true; set_timeout(impl, get_time_ns(impl)); } } } break; default: break; } } } static void param_latency_changed(struct stream *s, const struct spa_pod *param, struct port_data *data) { struct port *port = data->port; struct spa_latency_info latency; bool update = false; enum spa_direction direction = port->direction; if (param == NULL || spa_latency_parse(param, &latency) < 0) return; if (spa_latency_info_compare(&port->latency[direction], &latency)) { port->latency[direction] = latency; port->latency_changed[direction] = update = true; } } static int make_stream_ports(struct stream *s) { struct impl *impl = s->impl; struct pw_properties *props; uint8_t buffer[1024]; struct spa_pod_builder b; struct spa_latency_info latency; const struct spa_pod *params[2]; uint32_t i, n_params = 0, n_channels = 0; bool is_midi; for (i = 0; i < s->n_ports; i++) { struct port *port = s->ports[i]; if (port->data != NULL) { free(port->buffer); pw_filter_remove_port(port->data); port->data = NULL; } } for (i = 0; i < s->n_ports; i++) { struct port *port = s->ports[i]; char channel[32]; snprintf(channel, sizeof(channel), "AUX%u", n_channels); switch (port->stream_type) { case ffado_stream_type_audio: props = pw_properties_new( PW_KEY_FORMAT_DSP, "32 bit float mono audio", PW_KEY_PORT_PHYSICAL, "true", PW_KEY_PORT_TERMINAL, "true", PW_KEY_PORT_NAME, port->name, PW_KEY_AUDIO_CHANNEL, channel, NULL); is_midi = false; n_channels++; break; case ffado_stream_type_midi: props = pw_properties_new( PW_KEY_FORMAT_DSP, "8 bit raw midi", PW_KEY_PORT_NAME, port->name, PW_KEY_PORT_PHYSICAL, "true", PW_KEY_PORT_TERMINAL, "true", PW_KEY_PORT_CONTROL, "true", NULL); is_midi = true; break; default: pw_log_info("not registering unknown stream %d %s (type %d)", i, port->name, port->stream_type); continue; } latency = SPA_LATENCY_INFO(s->direction, .min_quantum = 1, .max_quantum = 1, .min_rate = impl->latency[s->direction], .max_rate = impl->latency[s->direction]); spa_pod_builder_init(&b, buffer, sizeof(buffer)); n_params = 0; params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &latency); port->data = pw_filter_add_port(s->filter, s->direction, PW_FILTER_PORT_FLAG_MAP_BUFFERS, sizeof(struct port_data), props, params, n_params); if (port->data == NULL) { pw_log_error("Can't create port: %m"); return -errno; } port->data->port = port; port->latency[s->direction] = latency; port->is_midi = is_midi; port->buffer = calloc(impl->quantum_limit, sizeof(float)); if (port->buffer == NULL) { pw_log_error("Can't create port buffer: %m"); return -errno; } } return 0; } static void setup_stream_ports(struct stream *s) { struct impl *impl = s->impl; uint32_t i; for (i = 0; i < s->n_ports; i++) { struct port *port = s->ports[i]; if (s->direction == PW_DIRECTION_INPUT) { if (ffado_streaming_set_playback_stream_buffer(impl->dev, i, port->buffer)) pw_log_error("cannot configure port buffer for %s", port->name); if (ffado_streaming_playback_stream_onoff(impl->dev, i, 1)) pw_log_error("cannot enable port %s", port->name); } else { if (ffado_streaming_set_capture_stream_buffer(impl->dev, i, port->buffer)) pw_log_error("cannot configure port buffer for %s", port->name); if (ffado_streaming_capture_stream_onoff(impl->dev, i, 1)) pw_log_error("cannot enable port %s", port->name); } } } static struct spa_pod *make_props_param(struct spa_pod_builder *b, struct volume *vol) { return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_Props, SPA_PARAM_Props, SPA_PROP_mute, SPA_POD_Bool(vol->mute), SPA_PROP_channelVolumes, SPA_POD_Array(sizeof(float), SPA_TYPE_Float, vol->n_volumes, vol->volumes)); } static void parse_props(struct stream *s, const struct spa_pod *param) { struct spa_pod_object *obj = (struct spa_pod_object *) param; struct spa_pod_prop *prop; uint8_t buffer[1024]; struct spa_pod_builder b; const struct spa_pod *params[1]; SPA_POD_OBJECT_FOREACH(obj, prop) { switch (prop->key) { case SPA_PROP_mute: { bool mute; if (spa_pod_get_bool(&prop->value, &mute) == 0) s->volume.mute = mute; break; } case SPA_PROP_channelVolumes: { uint32_t n; float vols[MAX_CHANNELS]; if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float, vols, SPA_N_ELEMENTS(vols))) > 0) { s->volume.n_volumes = n; for (n = 0; n < s->volume.n_volumes; n++) s->volume.volumes[n] = vols[n]; } break; } default: break; } } spa_pod_builder_init(&b, buffer, sizeof(buffer)); params[0] = make_props_param(&b, &s->volume); pw_filter_update_params(s->filter, NULL, params, 1); } static void stream_param_changed(void *data, void *port_data, uint32_t id, const struct spa_pod *param) { struct stream *s = data; if (port_data != NULL) { switch (id) { case SPA_PARAM_Latency: param_latency_changed(s, param, port_data); break; } } else { switch (id) { case SPA_PARAM_PortConfig: pw_log_debug("PortConfig"); if (make_stream_ports(s) >= 0) { s->ready = true; check_start(s->impl); } break; case SPA_PARAM_Props: pw_log_debug("Props"); parse_props(s, param); break; } } } static const struct pw_filter_events sink_events = { PW_VERSION_FILTER_EVENTS, .destroy = stream_destroy, .state_changed = stream_state_changed, .param_changed = stream_param_changed, .io_changed = stream_io_changed, .process = sink_process }; static const struct pw_filter_events source_events = { PW_VERSION_FILTER_EVENTS, .destroy = stream_destroy, .state_changed = stream_state_changed, .param_changed = stream_param_changed, .io_changed = stream_io_changed, .process = source_process, }; static int update_stream_format(struct stream *s, uint32_t samplerate) { uint8_t buffer[1024]; struct spa_pod_builder b; uint32_t n_params; const struct spa_pod *params[2]; if (s->info.rate == samplerate) return 0; s->info.rate = samplerate; if (s->filter == NULL) return 0; n_params = 0; spa_pod_builder_init(&b, buffer, sizeof(buffer)); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &s->info); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_Format, &s->info); return pw_filter_update_params(s->filter, NULL, params, n_params); } static int make_stream(struct stream *s, const char *name) { struct impl *impl = s->impl; uint32_t n_params; const struct spa_pod *params[4]; uint8_t buffer[1024]; struct spa_pod_builder b; s->filter = pw_filter_new(impl->core, name, pw_properties_copy(s->props)); if (s->filter == NULL) return -errno; spa_zero(s->listener); if (s->direction == PW_DIRECTION_INPUT) { pw_filter_add_listener(s->filter, &s->listener, &sink_events, s); } else { pw_filter_add_listener(s->filter, &s->listener, &source_events, s); } reset_volume(&s->volume, s->info.channels); spa_pod_builder_init(&b, buffer, sizeof(buffer)); n_params = 0; params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &s->info); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_Format, &s->info); params[n_params++] = make_props_param(&b, &s->volume); return pw_filter_connect(s->filter, PW_FILTER_FLAG_DRIVER | PW_FILTER_FLAG_RT_PROCESS | PW_FILTER_FLAG_CUSTOM_LATENCY, params, n_params); } static void destroy_stream(struct stream *s) { if (s->filter) pw_filter_destroy(s->filter); } static void on_ffado_timeout(void *data, uint64_t expirations) { struct impl *impl = data; bool source_running, sink_running; uint64_t nsec; ffado_wait_response response; pw_log_trace_fp("wakeup %d", impl->rt.done); if (impl->freewheel) return; if (!impl->rt.done) { impl->rt.pw_xrun++; impl->rt.new_xrun = true; ffado_streaming_reset(impl->dev); } again: pw_log_trace_fp("FFADO wait"); response = ffado_streaming_wait(impl->dev); nsec = get_time_ns(impl); switch (response) { case ffado_wait_ok: break; case ffado_wait_xrun: pw_log_debug("FFADO xrun"); impl->rt.ffado_xrun++; impl->rt.new_xrun = true; goto again; case ffado_wait_shutdown: pw_log_info("FFADO shutdown"); return; case ffado_wait_error: default: pw_log_error("FFADO error"); return; } source_running = impl->source.running && impl->sink.ready; sink_running = impl->sink.running && impl->source.ready; impl->source.rt.transfered = false; impl->sink.rt.transfered = false; if (!source_running) { ffado_streaming_transfer_capture_buffers(impl->dev); impl->source.rt.transfered = true; } if (!sink_running) silence_playback(impl); pw_log_trace_fp("process %d %u %u %p %d %"PRIu64, impl->device_options.period_size, source_running, sink_running, impl->position, impl->frame_time, nsec); if (impl->rt.new_xrun) { pw_log_warn("Xrun FFADO:%u PipeWire:%u source:%d sink:%d", impl->rt.ffado_xrun, impl->rt.pw_xrun, source_running, sink_running); impl->rt.new_xrun = false; } if (impl->position) { struct spa_io_clock *c = &impl->position->clock; #if 0 if (c->target_duration != (uint64_t) impl->device_options.period_size) { ffado_streaming_transfer_capture_buffers(impl->dev); silence_playback(impl); if (ffado_streaming_set_period_size(impl->dev, c->target_duration) != 0) { pw_log_warn("can't change period size"); } else { sleep(1); impl->device_options.period_size = c->target_duration; } goto again; } #endif c->nsec = nsec; c->rate = SPA_FRACTION(1, impl->device_options.sample_rate); c->position += impl->device_options.period_size; c->duration = impl->device_options.period_size; c->delay = 0; c->rate_diff = 1.0; c->next_nsec = nsec + (c->duration * SPA_NSEC_PER_SEC) / impl->device_options.sample_rate; c->target_rate = c->rate; c->target_duration = c->duration; } if (impl->mode & MODE_SOURCE && source_running) { impl->rt.done = false; impl->rt.triggered = true; set_timeout(impl, nsec + SPA_NSEC_PER_SEC); pw_filter_trigger_process(impl->source.filter); } else if (impl->mode == MODE_SINK && sink_running) { impl->rt.done = false; impl->rt.triggered = true; set_timeout(impl, nsec + SPA_NSEC_PER_SEC); pw_filter_trigger_process(impl->sink.filter); } else { impl->rt.done = true; set_timeout(impl, nsec); } } static void close_ffado_device(struct impl *impl) { if (impl->dev == NULL) return; stop_ffado_device(impl); ffado_streaming_finish(impl->dev); impl->dev = NULL; pw_log_info("closed FFADO device %s", impl->devices[0]); } static int open_ffado_device(struct impl *impl) { int32_t target_rate, target_period; if (impl->dev != NULL) return 0; target_rate = impl->sample_rate; target_period = impl->period_size; if (impl->position) { struct spa_io_clock *c = &impl->position->clock; if (target_rate == 0) target_rate = c->target_rate.denom; if (target_period == 0) target_period = c->target_duration; } if (target_rate == 0) target_rate = DEFAULT_SAMPLE_RATE; if (target_period == 0) target_period = DEFAULT_PERIOD_SIZE; spa_zero(impl->device_info); impl->device_info.device_spec_strings = impl->devices; impl->device_info.nb_device_spec_strings = impl->n_devices; spa_zero(impl->device_options); impl->device_options.sample_rate = target_rate; impl->device_options.period_size = target_period; impl->device_options.nb_buffers = impl->n_periods; impl->device_options.realtime = impl->realtime; impl->device_options.packetizer_priority = impl->rtprio; impl->device_options.verbose = impl->verbose; impl->device_options.slave_mode = impl->slave_mode; impl->device_options.snoop_mode = impl->snoop_mode; impl->dev = ffado_streaming_init(impl->device_info, impl->device_options); if (impl->dev == NULL) { pw_log_error("can't open FFADO device %s", impl->devices[0]); return -EIO; } if (impl->device_options.realtime) { pw_log_info("Streaming thread running with Realtime scheduling, priority %d", impl->device_options.packetizer_priority); } else { pw_log_info("Streaming thread running without Realtime scheduling"); } ffado_streaming_set_audio_datatype(impl->dev, ffado_audio_datatype_float); impl->source.n_ports = ffado_streaming_get_nb_capture_streams(impl->dev); impl->sink.n_ports = ffado_streaming_get_nb_playback_streams(impl->dev); if (impl->source.n_ports == 0 && impl->sink.n_ports == 0) { close_ffado_device(impl); return -EIO; } update_stream_format(&impl->source, impl->device_options.sample_rate); update_stream_format(&impl->sink, impl->device_options.sample_rate); pw_log_info("opened FFADO device %s source:%d sink:%d rate:%d period:%d %p", impl->devices[0], impl->source.n_ports, impl->sink.n_ports, impl->device_options.sample_rate, impl->device_options.period_size, impl->position); return 0; } static int probe_ffado_device(struct impl *impl) { int res; uint32_t i, n_channels; struct port *port; char name[256]; if ((res = open_ffado_device(impl)) < 0) return res; n_channels = 0; for (i = 0; i < impl->source.n_ports; i++) { port = calloc(1, sizeof(struct port)); if (port == NULL) return -errno; port->direction = impl->source.direction; port->stream_type = ffado_streaming_get_capture_stream_type(impl->dev, i); ffado_streaming_get_capture_stream_name(impl->dev, i, name, sizeof(name)); snprintf(port->name, sizeof(port->name), "%s_out", name); switch (port->stream_type) { case ffado_stream_type_audio: n_channels++; break; default: break; } impl->source.ports[i] = port; } if (impl->source.info.channels != n_channels) { uint32_t n_pos = SPA_MIN(n_channels, SPA_N_ELEMENTS(impl->source.info.position)); impl->source.info.channels = n_pos; for (i = 0; i < n_pos; i++) impl->source.info.position[i] = SPA_AUDIO_CHANNEL_AUX0 + i; } n_channels = 0; for (i = 0; i < impl->sink.n_ports; i++) { port = calloc(1, sizeof(struct port)); if (port == NULL) return -errno; port->direction = impl->sink.direction; port->stream_type = ffado_streaming_get_playback_stream_type(impl->dev, i); ffado_streaming_get_playback_stream_name(impl->dev, i, name, sizeof(name)); snprintf(port->name, sizeof(port->name), "%s_in", name); switch (port->stream_type) { case ffado_stream_type_audio: n_channels++; break; default: break; } impl->sink.ports[i] = port; } if (impl->sink.info.channels != n_channels) { uint32_t n_pos = SPA_MIN(n_channels, SPA_N_ELEMENTS(impl->sink.info.position)); impl->sink.info.channels = n_pos; for (i = 0; i < n_pos; i++) impl->sink.info.position[i] = SPA_AUDIO_CHANNEL_AUX0 + i; } if (impl->mode & MODE_SINK) { if ((res = make_stream(&impl->sink, "FFADO Sink")) < 0) goto exit; } if (impl->mode & MODE_SOURCE) { if ((res = make_stream(&impl->source, "FFADO Source")) < 0) goto exit; } exit: close_ffado_device(impl); return res; } static int start_ffado_device(struct impl *impl) { int res; if (impl->started) return 0; if ((res = open_ffado_device(impl)) < 0) return res; setup_stream_ports(&impl->source); setup_stream_ports(&impl->sink); if (ffado_streaming_prepare(impl->dev)) { pw_log_error("Could not prepare streaming"); schedule_reset_ffado_device(impl); return -EIO; } if (ffado_streaming_start(impl->dev)) { pw_log_warn("Could not start FFADO streaming, try reset"); schedule_reset_ffado_device(impl); return -EIO; } pw_log_info("FFADO started streaming"); impl->started = true; impl->rt.done = true; set_timeout(impl, get_time_ns(impl)); return 0; } static int stop_ffado_device(struct impl *impl) { if (!impl->started) return 0; impl->started = false; set_timeout(impl, 0); if (ffado_streaming_stop(impl->dev)) pw_log_error("Could not stop FFADO streaming"); else pw_log_info("FFADO stopped streaming"); close_ffado_device(impl); return 0; } static void do_reset_ffado(void *obj, void *data, int res, uint32_t id) { struct impl *impl = obj; impl->reset_work_id = SPA_ID_INVALID; close_ffado_device(impl); open_ffado_device(impl); } static void schedule_reset_ffado_device(struct impl *impl) { if (impl->reset_work_id != SPA_ID_INVALID) return; impl->reset_work_id = pw_work_queue_add(pw_context_get_work_queue(impl->context), impl, 0, do_reset_ffado, NULL); } static void core_error(void *data, uint32_t id, int seq, int res, const char *message) { struct impl *impl = data; pw_log_error("error id:%u seq:%d res:%d (%s): %s", id, seq, res, spa_strerror(res), message); if (id == PW_ID_CORE && res == -EPIPE) pw_impl_module_schedule_destroy(impl->module); } static const struct pw_core_events core_events = { PW_VERSION_CORE_EVENTS, .error = core_error, }; static void core_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->core_listener); impl->core = NULL; pw_impl_module_schedule_destroy(impl->module); } static const struct pw_proxy_events core_proxy_events = { .destroy = core_destroy, }; static void impl_destroy(struct impl *impl) { uint32_t i; if (impl->reset_work_id != SPA_ID_INVALID) pw_work_queue_cancel(pw_context_get_work_queue(impl->context), impl, SPA_ID_INVALID); close_ffado_device(impl); destroy_stream(&impl->source); destroy_stream(&impl->sink); if (impl->core && impl->do_disconnect) pw_core_disconnect(impl->core); if (impl->ffado_timer) pw_loop_destroy_source(impl->data_loop, impl->ffado_timer); if (impl->data_loop) pw_context_release_loop(impl->context, impl->data_loop); pw_properties_free(impl->sink.props); pw_properties_free(impl->source.props); pw_properties_free(impl->props); for (i = 0; i < impl->n_devices; i++) free(impl->devices[i]); free(impl); } static void module_destroy(void *data) { struct impl *impl = data; spa_hook_remove(&impl->module_listener); impl_destroy(impl); } static const struct pw_impl_module_events module_events = { PW_VERSION_IMPL_MODULE_EVENTS, .destroy = module_destroy, }; static void parse_devices(struct impl *impl, const char *val, size_t len) { struct spa_json it[1]; char v[FFADO_MAX_SPECSTRING_LENGTH]; if (spa_json_begin_array_relax(&it[0], val, len) <= 0) return; impl->n_devices = 0; while (spa_json_get_string(&it[0], v, sizeof(v)) > 0 && impl->n_devices < FFADO_MAX_SPECSTRINGS) { impl->devices[impl->n_devices++] = strdup(v); } } static int parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info) { return spa_audio_info_raw_init_dict_keys(info, &SPA_DICT_ITEMS( SPA_DICT_ITEM(SPA_KEY_AUDIO_FORMAT, "F32P"), SPA_DICT_ITEM(SPA_KEY_AUDIO_POSITION, DEFAULT_POSITION)), &props->dict, SPA_KEY_AUDIO_CHANNELS, SPA_KEY_AUDIO_POSITION, NULL); } static void copy_props(struct impl *impl, struct pw_properties *props, const char *key) { const char *str; if ((str = pw_properties_get(props, key)) != NULL) { if (pw_properties_get(impl->sink.props, key) == NULL) pw_properties_set(impl->sink.props, key, str); if (pw_properties_get(impl->source.props, key) == NULL) pw_properties_set(impl->source.props, key, str); } } SPA_EXPORT int pipewire__module_init(struct pw_impl_module *module, const char *args) { struct pw_context *context = pw_impl_module_get_context(module); struct pw_properties *props = NULL; struct impl *impl; const char *str; int res; PW_LOG_TOPIC_INIT(mod_topic); impl = calloc(1, sizeof(struct impl)); if (impl == NULL) return -errno; pw_log_debug("module %p: new %s", impl, args); if (args == NULL) args = ""; props = pw_properties_new_string(args); if (props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->props = props; str = pw_properties_get(props, "ffado.devices"); if (str == NULL) str = DEFAULT_DEVICES; parse_devices(impl, str, strlen(str)); impl->period_size = pw_properties_get_int32(props, "ffado.period-size", DEFAULT_PERIOD_SIZE); impl->n_periods = pw_properties_get_int32(props, "ffado.period-num", DEFAULT_PERIOD_NUM); impl->sample_rate = pw_properties_get_int32(props, "ffado.sample-rate", DEFAULT_SAMPLE_RATE); impl->slave_mode = pw_properties_get_bool(props, "ffado.slave-mode", DEFAULT_SLAVE_MODE); impl->snoop_mode = pw_properties_get_bool(props, "ffado.snoop-mode", DEFAULT_SNOOP_MODE); impl->verbose = pw_properties_get_uint32(props, "ffado.verbose", DEFAULT_VERBOSE); impl->rtprio = pw_properties_get_uint32(props, "ffado.rtprio", DEFAULT_RTPRIO); impl->realtime = pw_properties_get_bool(props, "ffado.realtime", DEFAULT_REALTIME); impl->input_latency = pw_properties_get_uint32(props, "latency.internal.input", 0); impl->output_latency = pw_properties_get_uint32(props, "latency.internal.output", 0); impl->quantum_limit = pw_properties_get_uint32( pw_context_get_properties(context), "default.clock.quantum-limit", 8192u); impl->sink.props = pw_properties_new(NULL, NULL); impl->source.props = pw_properties_new(NULL, NULL); if (impl->source.props == NULL || impl->sink.props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->module = module; impl->context = context; impl->main_loop = pw_context_get_main_loop(context); impl->data_loop = pw_context_acquire_loop(context, &props->dict); impl->system = impl->main_loop->system; impl->reset_work_id = SPA_ID_INVALID; impl->source.impl = impl; impl->source.direction = PW_DIRECTION_OUTPUT; impl->sink.impl = impl; impl->sink.direction = PW_DIRECTION_INPUT; impl->mode = MODE_DUPLEX; if ((str = pw_properties_get(props, "driver.mode")) != NULL) { if (spa_streq(str, "source")) { impl->mode = MODE_SOURCE; } else if (spa_streq(str, "sink")) { impl->mode = MODE_SINK; } else if (spa_streq(str, "duplex")) { impl->mode = MODE_DUPLEX; } else { pw_log_error("invalid driver.mode '%s'", str); res = -EINVAL; goto error; } } impl->ffado_timer = pw_loop_add_timer(impl->data_loop, on_ffado_timeout, impl); if (impl->ffado_timer == NULL) { pw_log_error("can't create ffado timer: %m"); res = -errno; goto error; } pw_properties_set(props, PW_KEY_NODE_LOOP_NAME, impl->data_loop->name); if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL) pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true"); if (pw_properties_get(props, PW_KEY_NODE_GROUP) == NULL) pw_properties_set(props, PW_KEY_NODE_GROUP, "ffado-group"); if (pw_properties_get(props, PW_KEY_NODE_LINK_GROUP) == NULL) pw_properties_set(props, PW_KEY_NODE_LINK_GROUP, "ffado-group"); if (pw_properties_get(props, PW_KEY_NODE_PAUSE_ON_IDLE) == NULL) pw_properties_set(props, PW_KEY_NODE_PAUSE_ON_IDLE, "false"); pw_properties_set(impl->sink.props, PW_KEY_MEDIA_CLASS, "Audio/Sink"); pw_properties_set(impl->sink.props, PW_KEY_PRIORITY_DRIVER, "35000"); pw_properties_set(impl->sink.props, PW_KEY_PRIORITY_SESSION, "2000"); pw_properties_set(impl->sink.props, PW_KEY_NODE_NAME, "ffado_sink"); pw_properties_set(impl->sink.props, PW_KEY_NODE_DESCRIPTION, "FFADO Sink"); pw_properties_set(impl->source.props, PW_KEY_MEDIA_CLASS, "Audio/Source"); pw_properties_set(impl->source.props, PW_KEY_PRIORITY_DRIVER, "35001"); pw_properties_set(impl->source.props, PW_KEY_PRIORITY_SESSION, "2001"); pw_properties_set(impl->source.props, PW_KEY_NODE_NAME, "ffado_source"); pw_properties_set(impl->source.props, PW_KEY_NODE_DESCRIPTION, "FFADO Source"); if ((str = pw_properties_get(props, "sink.props")) != NULL) pw_properties_update_string(impl->sink.props, str, strlen(str)); if ((str = pw_properties_get(props, "source.props")) != NULL) pw_properties_update_string(impl->source.props, str, strlen(str)); copy_props(impl, props, PW_KEY_NODE_LOOP_NAME); copy_props(impl, props, PW_KEY_NODE_LINK_GROUP); copy_props(impl, props, PW_KEY_NODE_GROUP); copy_props(impl, props, PW_KEY_NODE_VIRTUAL); copy_props(impl, props, PW_KEY_NODE_PAUSE_ON_IDLE); if ((res = parse_audio_info(impl->source.props, &impl->source.info)) < 0 || (res = parse_audio_info(impl->sink.props, &impl->sink.info)) < 0) { pw_log_error( "can't parse format: %s", spa_strerror(res)); goto error; } impl->core = pw_context_get_object(impl->context, PW_TYPE_INTERFACE_Core); if (impl->core == NULL) { str = pw_properties_get(props, PW_KEY_REMOTE_NAME); impl->core = pw_context_connect(impl->context, pw_properties_new( PW_KEY_REMOTE_NAME, str, NULL), 0); impl->do_disconnect = true; } if (impl->core == NULL) { res = -errno; pw_log_error("can't connect: %m"); goto error; } pw_proxy_add_listener((struct pw_proxy*)impl->core, &impl->core_proxy_listener, &core_proxy_events, impl); pw_core_add_listener(impl->core, &impl->core_listener, &core_events, impl); if ((res = probe_ffado_device(impl)) < 0) goto error; pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl); pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_props)); return 0; error: impl_destroy(impl); return res; }