/* PipeWire */ /* SPDX-FileCopyrightText: Copyright © 2021 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** \page page_module_jack_tunnel PipeWire Module: JACK Tunnel * * The jack-tunnel module provides a source or sink that tunnels all audio to * a JACK server. * * This module is usually used together with module-jack-dbus that will * automatically load the tunnel with the right parameters based on dbus * information. * * ## Module Options * * - `jack.server`: the name of the JACK server to tunnel to. * - `tunnel.mode`: the tunnel mode, sink|source|duplex * - `source.props`: Extra properties for the source stream. * - `sink.props`: Extra properties for the sink stream. * * ## General options * * Options with well-known behavior. * * - \ref PW_KEY_REMOTE_NAME * - \ref PW_KEY_AUDIO_FORMAT * - \ref PW_KEY_AUDIO_RATE * - \ref PW_KEY_AUDIO_CHANNELS * - \ref SPA_KEY_AUDIO_POSITION * - \ref PW_KEY_NODE_LATENCY * - \ref PW_KEY_NODE_NAME * - \ref PW_KEY_NODE_DESCRIPTION * - \ref PW_KEY_NODE_GROUP * - \ref PW_KEY_NODE_VIRTUAL * - \ref PW_KEY_MEDIA_CLASS * - \ref PW_KEY_TARGET_OBJECT to specify the remote node.name or serial.id to link to * * ## Example configuration of a duplex sink/source * *\code{.unparsed} * context.modules = [ * { name = libpipewire-module-jack-tunnel * args = { * #audio.channels=2 * #audio.position= [ FL FR ] * tunnel.mode = duplex * source.props = { * # extra sink properties * } * sink.props = { * # extra sink properties * } * } * } * ] *\endcode */ #define NAME "jack-tunnel" PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME); #define PW_LOG_TOPIC_DEFAULT mod_topic #define DEFAULT_CHANNELS 2 #define DEFAULT_POSITION "[ FL FR ]" #define MODULE_USAGE "( remote.name= ] " \ "( node.name= ] " \ "( node.description= ] " \ "( audio.channels= ] " \ "( audio.position= ] " \ "( jack.server= ) " \ "( source.props= ) " \ "( sink.props= ) " static const struct spa_dict_item module_props[] = { { PW_KEY_MODULE_AUTHOR, "Wim Taymans " }, { PW_KEY_MODULE_DESCRIPTION, "Create a JACK tunnel" }, { PW_KEY_MODULE_USAGE, MODULE_USAGE }, { PW_KEY_MODULE_VERSION, PACKAGE_VERSION }, }; struct impl { struct pw_context *context; struct pw_loop *main_loop; struct spa_system *system; sem_t sem; #define MODE_SINK (1<<0) #define MODE_SOURCE (1<<1) #define MODE_DUPLEX (MODE_SINK|MODE_SOURCE) uint32_t mode; struct pw_properties *props; struct pw_impl_module *module; struct spa_hook module_listener; struct pw_core *core; struct spa_hook core_proxy_listener; struct spa_hook core_listener; struct spa_io_position *position; struct pw_properties *source_props; struct pw_stream *source; struct spa_hook source_listener; struct spa_audio_info_raw source_info; struct spa_latency_info source_latency[2]; bool source_latency_changed[2]; jack_client_t *client; jack_port_t *source_ports[SPA_AUDIO_MAX_CHANNELS]; struct pw_properties *sink_props; struct pw_stream *sink; struct spa_hook sink_listener; struct spa_audio_info_raw sink_info; struct spa_latency_info sink_latency[2]; bool sink_latency_changed[2]; jack_port_t *sink_ports[SPA_AUDIO_MAX_CHANNELS]; uint32_t nframes; uint32_t samplerate; jack_nframes_t frames; unsigned int do_disconnect:1; unsigned int source_running:1; unsigned int sink_running:1; }; static void source_stream_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->source_listener); impl->source = NULL; } static void sink_stream_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->sink_listener); impl->sink = NULL; } static void sink_stream_state_changed(void *d, enum pw_stream_state old, enum pw_stream_state state, const char *error) { struct impl *impl = d; switch (state) { case PW_STREAM_STATE_ERROR: case PW_STREAM_STATE_UNCONNECTED: pw_impl_module_schedule_destroy(impl->module); break; case PW_STREAM_STATE_PAUSED: impl->sink_running = false; break; case PW_STREAM_STATE_STREAMING: impl->sink_running = true; break; default: break; } } static void sink_stream_process(void *d) { struct impl *impl = d; struct pw_buffer *buf; struct spa_data *bd; uint32_t i, offs, size; void *data; if ((buf = pw_stream_dequeue_buffer(impl->sink)) == NULL) { pw_log_warn("out of buffers: %m"); goto done; } for (i = 0; i < buf->buffer->n_datas; i++) { if (impl->sink_ports[i] == NULL) break; bd = &buf->buffer->datas[i]; offs = SPA_MIN(bd->chunk->offset, bd->maxsize); size = SPA_MIN(bd->chunk->size, bd->maxsize - offs); size = SPA_MIN(size, impl->nframes * sizeof(float)); data = jack_port_get_buffer (impl->sink_ports[i], impl->nframes); memcpy(data, SPA_PTROFF(bd->data, offs, void), size); } pw_stream_queue_buffer(impl->sink, buf); done: pw_log_trace_fp("done %u", impl->frames); sem_post(&impl->sem); } static void source_stream_process(void *d) { struct impl *impl = d; struct pw_buffer *buf; struct spa_data *bd; uint32_t i, size; void *data; if ((buf = pw_stream_dequeue_buffer(impl->source)) == NULL) { pw_log_warn("out of buffers: %m"); return; } for (i = 0; i < buf->buffer->n_datas; i++) { if (impl->source_ports[i] == NULL) break; bd = &buf->buffer->datas[i]; size = SPA_MIN(bd->maxsize, impl->nframes * sizeof(float)); data = jack_port_get_buffer (impl->source_ports[i], impl->nframes); memcpy(bd->data, data, size); bd->chunk->offset = 0; bd->chunk->size = size; bd->chunk->stride = sizeof(float); } pw_stream_queue_buffer(impl->source, buf); pw_log_trace_fp("done"); } static void source_stream_state_changed(void *d, enum pw_stream_state old, enum pw_stream_state state, const char *error) { struct impl *impl = d; switch (state) { case PW_STREAM_STATE_ERROR: case PW_STREAM_STATE_UNCONNECTED: pw_impl_module_schedule_destroy(impl->module); break; case PW_STREAM_STATE_PAUSED: impl->source_running = false; break; case PW_STREAM_STATE_STREAMING: impl->source_running = true; break; default: break; } } static void stream_io_changed(void *data, uint32_t id, void *area, uint32_t size) { struct impl *impl = data; switch (id) { case SPA_IO_Position: impl->position = area; break; default: break; } } static void param_latency_changed(struct impl *impl, const struct spa_pod *param, enum spa_direction direction) { struct spa_latency_info latency; bool update = false; if (spa_latency_parse(param, &latency) < 0) return; if (direction == SPA_DIRECTION_OUTPUT) { if (spa_latency_info_compare(&impl->sink_latency[direction], &latency)) { impl->sink_latency[direction] = latency; impl->sink_latency_changed[direction] = update = true; } } else { if (spa_latency_info_compare(&impl->source_latency[direction], &latency)) { impl->source_latency[direction] = latency; impl->source_latency_changed[direction] = update = true; } } if (update) jack_recompute_total_latencies(impl->client); } static void sink_param_changed(void *data, uint32_t id, const struct spa_pod *param) { struct impl *impl = data; switch (id) { case SPA_PARAM_Latency: param_latency_changed(impl, param, SPA_DIRECTION_OUTPUT); break; } } static void source_param_changed(void *data, uint32_t id, const struct spa_pod *param) { struct impl *impl = data; switch (id) { case SPA_PARAM_Latency: param_latency_changed(impl, param, SPA_DIRECTION_INPUT); break; } } static const struct pw_stream_events sink_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = sink_stream_destroy, .state_changed = sink_stream_state_changed, .param_changed = sink_param_changed, .io_changed = stream_io_changed, .process = sink_stream_process }; static const struct pw_stream_events source_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = source_stream_destroy, .state_changed = source_stream_state_changed, .param_changed = source_param_changed, .io_changed = stream_io_changed, .process = source_stream_process, }; static int create_streams(struct impl *impl) { int res; uint32_t n_params; const struct spa_pod *params[2]; uint8_t buffer[1024]; struct spa_pod_builder b; struct spa_latency_info latency; n_params = 0; spa_pod_builder_init(&b, buffer, sizeof(buffer)); spa_zero(latency); if (impl->mode & MODE_SINK) { impl->sink = pw_stream_new(impl->core, "JACK Sink", impl->sink_props); impl->sink_props = NULL; if (impl->sink == NULL) return -errno; pw_stream_add_listener(impl->sink, &impl->sink_listener, &sink_stream_events, impl); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &impl->sink_info); if ((res = pw_stream_connect(impl->sink, PW_DIRECTION_INPUT, PW_ID_ANY, PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_DRIVER | PW_STREAM_FLAG_RT_PROCESS, params, n_params)) < 0) return res; } if (impl->mode & MODE_SOURCE) { impl->source = pw_stream_new(impl->core, "JACK Source", impl->source_props); impl->source_props = NULL; if (impl->source == NULL) return -errno; pw_stream_add_listener(impl->source, &impl->source_listener, &source_stream_events, impl); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &impl->source_info); if ((res = pw_stream_connect(impl->source, PW_DIRECTION_OUTPUT, PW_ID_ANY, PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_DRIVER | PW_STREAM_FLAG_RT_PROCESS, params, n_params)) < 0) return res; } return 0; } static int jack_process(jack_nframes_t nframes, void *arg) { struct impl *impl = arg; bool source_running, sink_running; source_running = impl->source_running; sink_running = impl->sink_running; impl->frames = jack_frame_time(impl->client); pw_log_trace_fp("process %d %u %u %p %d", nframes, source_running, sink_running, impl->position, impl->frames); if (impl->position) { struct spa_io_clock *c = &impl->position->clock; jack_nframes_t current_frames; jack_time_t current_usecs; jack_time_t next_usecs; float period_usecs; jack_position_t pos; jack_get_cycle_times(impl->client, ¤t_frames, ¤t_usecs, &next_usecs, &period_usecs); c->nsec = current_usecs * SPA_NSEC_PER_USEC; c->rate = SPA_FRACTION(1, impl->samplerate); c->position = current_frames; c->duration = nframes; c->delay = 0; c->rate_diff = 1.0; c->next_nsec = next_usecs * SPA_NSEC_PER_USEC; c->target_rate = c->rate; c->target_duration = c->duration; jack_transport_query (impl->client, &pos); } impl->nframes = nframes; if (sink_running && source_running) { while (sem_trywait(&impl->sem) == 0); pw_stream_trigger_process(impl->sink); sem_wait(&impl->sem); } pw_log_trace_fp("done %u", impl->frames); return 0; } static int jack_xrun(void *arg) { struct impl *impl = arg; pw_log_warn("xrun"); sem_post(&impl->sem); return 0; } static int do_schedule_destroy(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *impl = user_data; pw_impl_module_schedule_destroy(impl->module); return 0; } void module_schedule_destroy(struct impl *impl) { pw_loop_invoke(impl->main_loop, do_schedule_destroy, 1, NULL, 0, false, impl); } static void jack_info_shutdown(jack_status_t code, const char* reason, void *arg) { struct impl *impl = arg; pw_log_warn("shutdown: %s (%08x)", reason, code); impl->client = NULL; module_schedule_destroy(impl); } static int do_update_latency(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *impl = user_data; const struct spa_pod *params[2]; uint32_t n_params = 0; uint8_t buffer[1024]; struct spa_pod_builder b; if ((impl->mode & MODE_SINK)) { spa_pod_builder_init(&b, buffer, sizeof(buffer)); if (impl->sink_latency_changed[SPA_DIRECTION_INPUT]) { params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &impl->sink_latency[SPA_DIRECTION_INPUT]); impl->sink_latency_changed[SPA_DIRECTION_INPUT] = false; } pw_stream_update_params(impl->sink, params, n_params); } if ((impl->mode & MODE_SOURCE)) { spa_pod_builder_init(&b, buffer, sizeof(buffer)); if (impl->source_latency_changed[SPA_DIRECTION_OUTPUT]) { params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &impl->source_latency[SPA_DIRECTION_OUTPUT]); impl->source_latency_changed[SPA_DIRECTION_OUTPUT] = false; } pw_stream_update_params(impl->source, params, n_params); } return 0; } static void jack_latency(jack_latency_callback_mode_t mode, void *arg) { struct impl *impl = arg; uint32_t i; jack_latency_range_t range, total; struct spa_latency_info latency; bool update = false; spa_zero(latency); if ((impl->mode & MODE_SINK)) { if (mode == JackPlaybackLatency) { total.min = total.max = 0; for (i = 0; i < impl->sink_info.channels; i++) { jack_port_get_latency_range(impl->sink_ports[i], mode, &range); if (total.min == 0 || range.min < total.min) total.min = range.min; if (total.max == 0 || range.max > total.max) total.max = range.max; } pw_log_debug("sink latency %d %d %d", mode, total.min, total.max); latency.direction = PW_DIRECTION_INPUT; latency.min_rate = total.min; latency.max_rate = total.max; if (spa_latency_info_compare(&latency, &impl->sink_latency[PW_DIRECTION_INPUT])) { impl->sink_latency[PW_DIRECTION_INPUT] = latency; impl->sink_latency_changed[PW_DIRECTION_INPUT] = update = true; } } else if (mode == JackCaptureLatency) { if (impl->sink_latency_changed[PW_DIRECTION_OUTPUT]) { range.min = impl->sink_latency[PW_DIRECTION_OUTPUT].min_rate; range.max = impl->sink_latency[PW_DIRECTION_OUTPUT].max_rate; for (i = 0; i < impl->sink_info.channels; i++) jack_port_set_latency_range(impl->sink_ports[i], mode, &range); impl->sink_latency_changed[PW_DIRECTION_OUTPUT] = false; } } } if ((impl->mode & MODE_SOURCE) && mode == JackCaptureLatency) { if (mode == JackCaptureLatency) { total.min = total.max = 0; for (i = 0; i < impl->source_info.channels; i++) { jack_port_get_latency_range(impl->source_ports[i], mode, &range); if (total.min == 0 || range.min < total.min) total.min = range.min; if (total.max == 0 || range.max > total.max) total.max = range.max; } pw_log_debug("source latency %d %d %d", mode, total.min, total.max); latency.direction = PW_DIRECTION_OUTPUT; latency.min_rate = total.min; latency.max_rate = total.max; if (spa_latency_info_compare(&latency, &impl->source_latency[PW_DIRECTION_OUTPUT])) { impl->source_latency[PW_DIRECTION_OUTPUT] = latency; impl->source_latency_changed[PW_DIRECTION_OUTPUT] = update = true; } } else if (mode == JackPlaybackLatency) { if (impl->source_latency_changed[PW_DIRECTION_INPUT]) { range.min = impl->source_latency[PW_DIRECTION_INPUT].min_rate; range.max = impl->source_latency[PW_DIRECTION_INPUT].max_rate; for (i = 0; i < impl->sink_info.channels; i++) jack_port_set_latency_range(impl->source_ports[i], mode, &range); impl->source_latency_changed[PW_DIRECTION_INPUT] = false; } } } if (update) pw_loop_invoke(impl->main_loop, do_update_latency, 0, NULL, 0, false, impl); } static int create_jack_client(struct impl *impl) { const char *server_name; jack_options_t options = JackNullOption; jack_status_t status; uint32_t i; char name[256]; server_name = pw_properties_get(impl->props, "jack.server"); if (server_name != NULL) options |= JackServerName; impl->client = jack_client_open("pipewire", options, &status, server_name); if (impl->client == NULL) { pw_log_error ("jack_client_open() failed 0x%2.0x\n", status); return -EIO; } jack_on_info_shutdown(impl->client, jack_info_shutdown, impl); jack_set_process_callback(impl->client, jack_process, impl); jack_set_xrun_callback(impl->client, jack_xrun, impl); jack_set_latency_callback(impl->client, jack_latency, impl); if (impl->mode & MODE_SINK) { for (i = 0; i < impl->sink_info.channels; i++) { snprintf(name, sizeof(name), "output%d", i); impl->sink_ports[i] = jack_port_register (impl->client, name, JACK_DEFAULT_AUDIO_TYPE, JackPortIsOutput, 0); } } if (impl->mode & MODE_SOURCE) { for (i = 0; i < impl->source_info.channels; i++) { snprintf(name, sizeof(name), "input%d", i); impl->source_ports[i] = jack_port_register (impl->client, name, JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); } } impl->samplerate = jack_get_sample_rate(impl->client); impl->source_info.rate = impl->samplerate; impl->sink_info.rate = impl->samplerate; return 0; } static int start_jack_clients(struct impl *impl) { const char **ports; uint32_t i; jack_activate(impl->client); ports = jack_get_ports(impl->client, NULL, NULL, JackPortIsPhysical|JackPortIsInput); if (ports != NULL) { for (i = 0; i < impl->sink_info.channels; i++) { if (ports[i] == NULL) break; if (jack_connect(impl->client, jack_port_name(impl->sink_ports[i]), ports[i])) { pw_log_error("cannot connect output ports"); break; } } jack_free(ports); } ports = jack_get_ports(impl->client, NULL, NULL, JackPortIsPhysical|JackPortIsOutput); if (ports != NULL) { for (i = 0; i < impl->source_info.channels; i++) { if (ports[i] == NULL) break; if (jack_connect(impl->client, ports[i], jack_port_name(impl->source_ports[i]))) { pw_log_error("cannot connect input ports"); break; } } jack_free(ports); } return 0; } static void core_error(void *data, uint32_t id, int seq, int res, const char *message) { struct impl *impl = data; pw_log_error("error id:%u seq:%d res:%d (%s): %s", id, seq, res, spa_strerror(res), message); if (id == PW_ID_CORE && res == -EPIPE) pw_impl_module_schedule_destroy(impl->module); } static const struct pw_core_events core_events = { PW_VERSION_CORE_EVENTS, .error = core_error, }; static void core_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->core_listener); impl->core = NULL; pw_impl_module_schedule_destroy(impl->module); } static const struct pw_proxy_events core_proxy_events = { .destroy = core_destroy, }; static void impl_destroy(struct impl *impl) { if (impl->client) { jack_deactivate(impl->client); jack_client_close(impl->client); } if (impl->source) pw_stream_destroy(impl->source); if (impl->sink) pw_stream_destroy(impl->sink); if (impl->core && impl->do_disconnect) pw_core_disconnect(impl->core); pw_properties_free(impl->sink_props); pw_properties_free(impl->source_props); pw_properties_free(impl->props); sem_destroy(&impl->sem); free(impl); } static void module_destroy(void *data) { struct impl *impl = data; spa_hook_remove(&impl->module_listener); impl_destroy(impl); } static const struct pw_impl_module_events module_events = { PW_VERSION_IMPL_MODULE_EVENTS, .destroy = module_destroy, }; static uint32_t channel_from_name(const char *name) { int i; for (i = 0; spa_type_audio_channel[i].name; i++) { if (spa_streq(name, spa_debug_type_short_name(spa_type_audio_channel[i].name))) return spa_type_audio_channel[i].type; } return SPA_AUDIO_CHANNEL_UNKNOWN; } static void parse_position(struct spa_audio_info_raw *info, const char *val, size_t len) { struct spa_json it[2]; char v[256]; spa_json_init(&it[0], val, len); if (spa_json_enter_array(&it[0], &it[1]) <= 0) spa_json_init(&it[1], val, len); info->channels = 0; while (spa_json_get_string(&it[1], v, sizeof(v)) > 0 && info->channels < SPA_AUDIO_MAX_CHANNELS) { info->position[info->channels++] = channel_from_name(v); } } static void parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info) { const char *str; spa_zero(*info); info->format = SPA_AUDIO_FORMAT_F32P; info->rate = 0; info->channels = pw_properties_get_uint32(props, PW_KEY_AUDIO_CHANNELS, info->channels); info->channels = SPA_MIN(info->channels, SPA_AUDIO_MAX_CHANNELS); if ((str = pw_properties_get(props, SPA_KEY_AUDIO_POSITION)) != NULL) parse_position(info, str, strlen(str)); if (info->channels == 0) parse_position(info, DEFAULT_POSITION, strlen(DEFAULT_POSITION)); } static void copy_props(struct impl *impl, struct pw_properties *props, const char *key) { const char *str; if ((str = pw_properties_get(props, key)) != NULL) { if (pw_properties_get(impl->sink_props, key) == NULL) pw_properties_set(impl->sink_props, key, str); if (pw_properties_get(impl->source_props, key) == NULL) pw_properties_set(impl->source_props, key, str); } } SPA_EXPORT int pipewire__module_init(struct pw_impl_module *module, const char *args) { struct pw_context *context = pw_impl_module_get_context(module); struct pw_properties *props = NULL; struct impl *impl; const char *str; int res; PW_LOG_TOPIC_INIT(mod_topic); impl = calloc(1, sizeof(struct impl)); if (impl == NULL) return -errno; pw_log_debug("module %p: new %s", impl, args); if (sem_init(&impl->sem, 0, 0) < 0) { res = -errno; pw_log_error( "can't create semaphore: %m"); goto error; } if (args == NULL) args = ""; props = pw_properties_new_string(args); if (props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->props = props; impl->sink_props = pw_properties_new(NULL, NULL); impl->source_props = pw_properties_new(NULL, NULL); if (impl->source_props == NULL || impl->sink_props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->module = module; impl->context = context; impl->main_loop = pw_context_get_main_loop(context); impl->system = impl->main_loop->system; impl->mode = MODE_DUPLEX; if ((str = pw_properties_get(props, "tunnel.mode")) != NULL) { if (spa_streq(str, "source")) { impl->mode = MODE_SOURCE; } else if (spa_streq(str, "sink")) { impl->mode = MODE_SINK; } else if (spa_streq(str, "duplex")) { impl->mode = MODE_DUPLEX; } else { pw_log_error("invalid tunnel.mode '%s'", str); res = -EINVAL; goto error; } } if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL) pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true"); if (pw_properties_get(props, PW_KEY_NODE_GROUP) == NULL) pw_properties_set(props, PW_KEY_NODE_GROUP, "jack-group"); if (pw_properties_get(props, PW_KEY_NODE_ALWAYS_PROCESS) == NULL) pw_properties_set(props, PW_KEY_NODE_ALWAYS_PROCESS, "true"); pw_properties_set(impl->sink_props, PW_KEY_MEDIA_CLASS, "Audio/Sink"); pw_properties_set(impl->sink_props, PW_KEY_PRIORITY_DRIVER, "30001"); pw_properties_set(impl->sink_props, PW_KEY_NODE_NAME, "jack_sink"); pw_properties_set(impl->sink_props, PW_KEY_NODE_DESCRIPTION, "JACK Sink"); pw_properties_set(impl->source_props, "resample.disable", "true"); pw_properties_set(impl->source_props, PW_KEY_MEDIA_CLASS, "Audio/Source"); pw_properties_set(impl->source_props, PW_KEY_PRIORITY_DRIVER, "30000"); pw_properties_set(impl->source_props, PW_KEY_NODE_NAME, "jack_source"); pw_properties_set(impl->source_props, PW_KEY_NODE_DESCRIPTION, "JACK Source"); pw_properties_set(impl->source_props, "resample.disable", "true"); if ((str = pw_properties_get(props, "sink.props")) != NULL) pw_properties_update_string(impl->sink_props, str, strlen(str)); if ((str = pw_properties_get(props, "source.props")) != NULL) pw_properties_update_string(impl->source_props, str, strlen(str)); copy_props(impl, props, PW_KEY_AUDIO_CHANNELS); copy_props(impl, props, SPA_KEY_AUDIO_POSITION); copy_props(impl, props, PW_KEY_NODE_ALWAYS_PROCESS); copy_props(impl, props, PW_KEY_NODE_GROUP); copy_props(impl, props, PW_KEY_NODE_LATENCY); copy_props(impl, props, PW_KEY_NODE_VIRTUAL); copy_props(impl, props, PW_KEY_NODE_NETWORK); parse_audio_info(impl->source_props, &impl->source_info); parse_audio_info(impl->sink_props, &impl->sink_info); impl->core = pw_context_get_object(impl->context, PW_TYPE_INTERFACE_Core); if (impl->core == NULL) { str = pw_properties_get(props, PW_KEY_REMOTE_NAME); impl->core = pw_context_connect(impl->context, pw_properties_new( PW_KEY_REMOTE_NAME, str, NULL), 0); impl->do_disconnect = true; } if (impl->core == NULL) { res = -errno; pw_log_error("can't connect: %m"); goto error; } pw_proxy_add_listener((struct pw_proxy*)impl->core, &impl->core_proxy_listener, &core_proxy_events, impl); pw_core_add_listener(impl->core, &impl->core_listener, &core_events, impl); if ((res = create_jack_client(impl)) < 0) goto error; if ((res = create_streams(impl)) < 0) goto error; if ((res = start_jack_clients(impl)) < 0) goto error; pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl); pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_props)); return 0; error: impl_destroy(impl); return res; }