/* PipeWire */ /* SPDX-FileCopyrightText: Copyright © 2022 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __FreeBSD__ #define ifr_ifindex ifr_index #endif /** \page page_module_rtp_source PipeWire Module: RTP source * * The `rtp-source` module creates a PipeWire source that receives audio * and midi RTP packets. * * ## Module Options * * Options specific to the behavior of this module * * - `local.ifname = `: interface name to use * - `node.always-process = `: true to receive even when not running * - `sess.latency.msec = `: target network latency in milliseconds, default 100 * - `rtp.media = `: the media type audio|midi, default audio * - `stream.props = {}`: properties to be passed to the stream * * ## General options * * Options with well-known behavior: * * - \ref PW_KEY_REMOTE_NAME * - \ref PW_KEY_AUDIO_FORMAT * - \ref PW_KEY_AUDIO_RATE * - \ref PW_KEY_AUDIO_CHANNELS * - \ref SPA_KEY_AUDIO_POSITION * - \ref PW_KEY_MEDIA_NAME * - \ref PW_KEY_MEDIA_CLASS * - \ref PW_KEY_NODE_NAME * - \ref PW_KEY_NODE_DESCRIPTION * - \ref PW_KEY_NODE_GROUP * - \ref PW_KEY_NODE_LATENCY * - \ref PW_KEY_NODE_VIRTUAL * * ## Example configuration *\code{.unparsed} * context.modules = [ * { name = libpipewire-module-rtp-source * args = { * #local.ifname = eth0 * sess.latency.msec = 100 * #node.always-process = false * #rtp.media = "audio" * #audio.format = "S16BE" * #audio.rate = 48000 * #audio.channels = 2 * #audio.position = [ FL FR ] * stream.props = { * #media.class = "Audio/Source" * node.name = "rtp-source" * } * } * } * ] *\endcode * * \since 0.3.60 */ #define NAME "rtp-source" PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME); #define PW_LOG_TOPIC_DEFAULT mod_topic #define DEFAULT_CLEANUP_SEC 60 #define ERROR_MSEC 2 #define DEFAULT_SESS_LATENCY 100 #define DEFAULT_SOURCE_IP "224.0.0.56" #define DEFAULT_FORMAT "S16BE" #define DEFAULT_RATE 48000 #define DEFAULT_CHANNELS 2 #define DEFAULT_POSITION "[ FL FR ]" #define BUFFER_SIZE (1u<<22) #define BUFFER_MASK (BUFFER_SIZE-1) #define BUFFER_SIZE2 (BUFFER_SIZE>>1) #define BUFFER_MASK2 (BUFFER_SIZE2-1) #define USAGE "local.ifname= " \ "source.ip= " \ "source.port= " \ "sess.latency.msec= " \ "rtp.media= " \ "audio.format= " \ "audio.rate= " \ "audio.channels= "\ "audio.position= " \ "stream.props= { key=value ... } " static const struct spa_dict_item module_info[] = { { PW_KEY_MODULE_AUTHOR, "Wim Taymans " }, { PW_KEY_MODULE_DESCRIPTION, "RTP Source" }, { PW_KEY_MODULE_USAGE, USAGE }, { PW_KEY_MODULE_VERSION, PACKAGE_VERSION }, }; struct impl { struct pw_impl_module *module; struct spa_hook module_listener; struct pw_properties *props; struct pw_context *module_context; struct pw_loop *loop; struct pw_loop *data_loop; struct pw_core *core; struct spa_hook core_listener; struct spa_hook core_proxy_listener; unsigned int do_disconnect:1; char *ifname; bool always_process; int sess_latency_msec; uint32_t cleanup_interval; struct spa_source *timer; struct spa_audio_info info; struct pw_properties *stream_props; struct pw_stream *stream; struct spa_hook stream_listener; uint16_t src_port; struct sockaddr_storage src_addr; socklen_t src_len; struct spa_source *source; uint32_t rate; uint32_t stride; uint32_t expected_ssrc; uint16_t expected_seq; unsigned have_ssrc:1; unsigned have_seq:1; unsigned have_sync:1; uint32_t ts_offset; struct spa_ringbuffer ring; uint8_t buffer[BUFFER_SIZE]; struct spa_io_rate_match *rate_match; struct spa_io_position *position; struct spa_dll dll; double corr; uint32_t target_buffer; float max_error; unsigned first:1; unsigned receiving:1; unsigned direct_timestamp:1; float last_timestamp; float last_time; }; struct format_info { uint32_t media_subtype; uint32_t format; uint32_t size; const char *mime; const char *media_type; }; static uint32_t audio_get_stride(const struct spa_audio_info *info) { uint32_t stride = 0; if (info->media_type != SPA_MEDIA_TYPE_audio || info->media_subtype != SPA_MEDIA_SUBTYPE_raw) return 0; switch (info->info.raw.format) { case SPA_AUDIO_FORMAT_U8: case SPA_AUDIO_FORMAT_ALAW: case SPA_AUDIO_FORMAT_ULAW: stride = 1; break; case SPA_AUDIO_FORMAT_S16_BE: stride = 2; break; case SPA_AUDIO_FORMAT_S24_BE: stride = 3; break; default: break; } return stride * info->info.raw.channels; } static void process_audio(struct impl *impl) { struct pw_buffer *buf; struct spa_data *d; uint32_t wanted, timestamp, target_buffer, stride, maxsize; int32_t avail; if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) { pw_log_debug("Out of stream buffers: %m"); return; } d = buf->buffer->datas; stride = impl->stride; maxsize = d[0].maxsize / stride; wanted = buf->requested ? SPA_MIN(buf->requested, maxsize) : maxsize; if (impl->position && impl->direct_timestamp) { /* in direct mode, read directly from the timestamp index, * because sender and receiver are in sync, this would keep * target_buffer of samples available. */ spa_ringbuffer_read_update(&impl->ring, impl->position->clock.position); } avail = spa_ringbuffer_get_read_index(&impl->ring, ×tamp); target_buffer = impl->target_buffer; if (avail < (int32_t)wanted) { enum spa_log_level level; memset(d[0].data, 0, wanted * stride); if (impl->have_sync) { impl->have_sync = false; level = SPA_LOG_LEVEL_WARN; } else { level = SPA_LOG_LEVEL_DEBUG; } pw_log(level, "underrun %d/%u < %u", avail, target_buffer, wanted); } else { float error, corr; if (impl->first) { if ((uint32_t)avail > target_buffer) { uint32_t skip = avail - target_buffer; pw_log_debug("first: avail:%d skip:%u target:%u", avail, skip, target_buffer); timestamp += skip; avail = target_buffer; } impl->first = false; } else if (avail > (int32_t)SPA_MIN(target_buffer * 8, BUFFER_SIZE / stride)) { pw_log_warn("overrun %u > %u", avail, target_buffer * 8); timestamp += avail - target_buffer; avail = target_buffer; } if (!impl->direct_timestamp) { /* when not using direct timestamp and clocks are not * in sync, try to adjust our playback rate to keep the * requested target_buffer bytes in the ringbuffer */ error = (float)target_buffer - (float)avail; error = SPA_CLAMP(error, -impl->max_error, impl->max_error); corr = spa_dll_update(&impl->dll, error); pw_log_debug("avail:%u target:%u error:%f corr:%f", avail, target_buffer, error, corr); if (impl->rate_match) { SPA_FLAG_SET(impl->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE); impl->rate_match->rate = 1.0f / corr; } } spa_ringbuffer_read_data(&impl->ring, impl->buffer, BUFFER_SIZE, (timestamp * stride) & BUFFER_MASK, d[0].data, wanted * stride); timestamp += wanted; spa_ringbuffer_read_update(&impl->ring, timestamp); } d[0].chunk->size = wanted * stride; d[0].chunk->stride = stride; d[0].chunk->offset = 0; buf->size = wanted; pw_stream_queue_buffer(impl->stream, buf); } static void receive_audio(struct impl *impl, uint8_t *packet, uint32_t timestamp, uint32_t payload_offset, uint32_t len) { uint32_t plen = len - payload_offset; uint8_t *payload = &packet[payload_offset]; uint32_t stride = impl->stride; uint32_t samples = plen / stride; uint32_t write, expected_write; int32_t filled; filled = spa_ringbuffer_get_write_index(&impl->ring, &expected_write); /* we always write to timestamp + delay */ write = timestamp + impl->target_buffer; if (!impl->have_sync) { pw_log_info("sync to timestamp %u direct:%d ts_offset:%u", write, impl->direct_timestamp, impl->ts_offset); /* we read from timestamp, keeping target_buffer of data * in the ringbuffer. */ impl->ring.readindex = timestamp; impl->ring.writeindex = write; filled = impl->target_buffer; spa_dll_init(&impl->dll); spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 128, impl->rate); memset(impl->buffer, 0, BUFFER_SIZE); impl->have_sync = true; } else if (expected_write != write) { pw_log_debug("unexpected write (%u != %u)", write, expected_write); } if (filled + samples > BUFFER_SIZE / stride) { pw_log_debug("capture overrun %u + %u > %u", filled, samples, BUFFER_SIZE / stride); impl->have_sync = false; } else { pw_log_debug("got samples:%u", samples); spa_ringbuffer_write_data(&impl->ring, impl->buffer, BUFFER_SIZE, (write * stride) & BUFFER_MASK, payload, (samples * stride)); write += samples; spa_ringbuffer_write_update(&impl->ring, write); } } static void process_midi(struct impl *impl) { struct pw_buffer *buf; struct spa_data *d; uint32_t timestamp, duration, maxsize, read; struct spa_pod_builder b; struct spa_pod_frame f[1]; void *ptr; struct spa_pod *pod; struct spa_pod_control *c; if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) { pw_log_debug("Out of stream buffers: %m"); return; } d = buf->buffer->datas; maxsize = d[0].maxsize; /* we always use the graph position to select events, the receiver side is * responsible for smoothing out the RTP timestamps to graph time */ duration = impl->position->clock.duration; if (impl->position) timestamp = impl->position->clock.position; else timestamp = 0; /* we copy events into the buffer based on the rtp timestamp + delay. */ spa_pod_builder_init(&b, d[0].data, maxsize); spa_pod_builder_push_sequence(&b, &f[0], 0); while (true) { int32_t avail = spa_ringbuffer_get_read_index(&impl->ring, &read); if (avail <= 0) break; ptr = SPA_PTROFF(impl->buffer, read & BUFFER_MASK2, void); if ((pod = spa_pod_from_data(ptr, avail, 0, avail)) == NULL) goto done; if (!spa_pod_is_sequence(pod)) goto done; /* the ringbuffer contains series of sequences, one for each * received packet */ SPA_POD_SEQUENCE_FOREACH((struct spa_pod_sequence*)pod, c) { /* try to render with given delay */ uint32_t target = c->offset + impl->target_buffer; if (timestamp != 0) { /* skip old packets */ if (target < timestamp) continue; /* event for next cycle */ if (target >= timestamp + duration) goto complete; } else { timestamp = target; } spa_pod_builder_control(&b, target - timestamp, SPA_CONTROL_Midi); spa_pod_builder_bytes(&b, SPA_POD_BODY(&c->value), SPA_POD_BODY_SIZE(&c->value)); } /* we completed a sequence (one RTP packet), advance ringbuffer * and go to the next packet */ read += SPA_PTRDIFF(c, ptr); spa_ringbuffer_read_update(&impl->ring, read); } complete: spa_pod_builder_pop(&b, &f[0]); if (b.state.offset > maxsize) { pw_log_warn("overflow buffer %u %u", b.state.offset, maxsize); b.state.offset = 0; } d[0].chunk->size = b.state.offset; d[0].chunk->stride = 1; d[0].chunk->offset = 0; done: pw_stream_queue_buffer(impl->stream, buf); } static int parse_varlen(uint8_t *p, uint32_t avail, uint32_t *result) { uint32_t value = 0, offs = 0; while (offs < avail) { uint8_t b = p[offs++]; value = (value << 7) | (b & 0x7f); if ((b & 0x80) == 0) break; } *result = value; return offs; } static int get_midi_size(uint8_t *p, uint32_t avail) { int size; uint32_t offs = 0, value; switch (p[offs++]) { case 0xc0 ... 0xdf: size = 2; break; case 0x80 ... 0xbf: case 0xe0 ... 0xef: size = 3; break; case 0xff: case 0xf0: case 0xf7: size = parse_varlen(&p[offs], avail - offs, &value); size += value + 1; break; default: return -EINVAL; } return size; } static double get_time(struct impl *impl) { struct timespec ts; double t; clock_gettime(CLOCK_MONOTONIC, &ts); t = impl->position->clock.position / (double) impl->position->clock.rate.denom; t += (SPA_TIMESPEC_TO_NSEC(&ts) - impl->position->clock.nsec) / (double)SPA_NSEC_PER_SEC; return t; } static void receive_midi(struct impl *impl, uint8_t *packet, uint32_t timestamp, uint32_t payload_offset, uint32_t plen) { uint32_t write; struct rtp_midi_header *hdr; int32_t filled; struct spa_pod_builder b; struct spa_pod_frame f[1]; void *ptr; uint32_t offs = payload_offset, len, end; bool first = true; if (impl->direct_timestamp) { /* in direct timestamp we attach the RTP timestamp directly on the * midi events and render them in the corresponding cycle */ if (!impl->have_sync) { pw_log_info("sync to timestamp %u/ direct:%d", timestamp, impl->direct_timestamp); impl->have_sync = true; } } else { /* in non-direct timestamp mode, we relate the graph clock against * the RTP timestamps */ double ts = timestamp / (float) impl->rate; double t = get_time(impl); double elapsed, estimated, diff; /* the elapsed time between RTP timestamps */ elapsed = ts - impl->last_timestamp; /* for that elapsed time, our clock should have advanced * by this amount since the last estimation */ estimated = impl->last_time + elapsed * impl->corr; /* calculate the diff between estimated and current clock time in * samples */ diff = (estimated - t) * impl->rate; /* no sync or we drifted too far, resync */ if (!impl->have_sync || fabs(diff) > impl->target_buffer) { impl->corr = 1.0; spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 256, impl->rate); pw_log_info("sync to timestamp %u/%f direct:%d", timestamp, t, impl->direct_timestamp); impl->have_sync = true; impl->ring.readindex = impl->ring.writeindex; } else { /* update our new rate correction */ impl->corr = spa_dll_update(&impl->dll, diff); /* our current time is now the estimated time */ t = estimated; } pw_log_debug("%f %f %f %f", t, estimated, diff, impl->corr); timestamp = t * impl->rate; impl->last_timestamp = ts; impl->last_time = t; } filled = spa_ringbuffer_get_write_index(&impl->ring, &write); if (filled > (int32_t)BUFFER_SIZE2) return; hdr = (struct rtp_midi_header *)&packet[offs++]; len = hdr->len; if (hdr->b) { len = (len << 8) | hdr->len_b; offs++; } end = len + offs; if (end > plen) return; ptr = SPA_PTROFF(impl->buffer, write & BUFFER_MASK2, void); /* each packet is written as a sequence of events. The offset is * the RTP timestamp */ spa_pod_builder_init(&b, ptr, BUFFER_SIZE2 - filled); spa_pod_builder_push_sequence(&b, &f[0], 0); while (offs < end) { uint32_t delta; int size; if (first && !hdr->z) delta = 0; else offs += parse_varlen(&packet[offs], end - offs, &delta); timestamp += delta * impl->corr; spa_pod_builder_control(&b, timestamp, SPA_CONTROL_Midi); size = get_midi_size(&packet[offs], end - offs); if (size <= 0 || offs + size > end) { pw_log_warn("invalid size (%08x) %d (%u %u)", packet[offs], size, offs, end); break; } spa_pod_builder_bytes(&b, &packet[offs], size); offs += size; first = false; } spa_pod_builder_pop(&b, &f[0]); write += b.state.offset; spa_ringbuffer_write_update(&impl->ring, write); } static void stream_io_changed(void *data, uint32_t id, void *area, uint32_t size) { struct impl *impl = data; switch (id) { case SPA_IO_RateMatch: impl->rate_match = area; break; case SPA_IO_Position: impl->position = area; break; } } static void stream_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->stream_listener); impl->stream = NULL; } static void stream_process(void *data) { struct impl *impl = data; switch (impl->info.media_type) { case SPA_MEDIA_TYPE_audio: process_audio(impl); break; case SPA_MEDIA_TYPE_application: process_midi(impl); break; } } static void on_rtp_io(void *data, int fd, uint32_t mask) { struct impl *impl = data; struct rtp_header *hdr; ssize_t len, hlen; uint8_t buffer[2048]; if (mask & SPA_IO_IN) { uint16_t seq; uint32_t timestamp; if ((len = recv(fd, buffer, sizeof(buffer), 0)) < 0) goto receive_error; if (len < 12) goto short_packet; hdr = (struct rtp_header*)buffer; if (hdr->v != 2) goto invalid_version; hlen = 12 + hdr->cc * 4; if (hlen > len) goto invalid_len; if (impl->have_ssrc && impl->expected_ssrc != hdr->ssrc) goto unexpected_ssrc; impl->expected_ssrc = hdr->ssrc; impl->have_ssrc = true; seq = ntohs(hdr->sequence_number); if (impl->have_seq && impl->expected_seq != seq) { pw_log_info("unexpected seq (%d != %d)", seq, impl->expected_seq); impl->have_sync = false; } impl->expected_seq = seq + 1; impl->have_seq = true; timestamp = ntohl(hdr->timestamp) - impl->ts_offset; switch (impl->info.media_type) { case SPA_MEDIA_TYPE_audio: receive_audio(impl, buffer, timestamp, hlen, len); break; case SPA_MEDIA_TYPE_application: receive_midi(impl, buffer, timestamp, hlen, len); } impl->receiving = true; } return; receive_error: pw_log_warn("recv error: %m"); return; short_packet: pw_log_warn("short packet received"); return; invalid_version: pw_log_warn("invalid RTP version"); spa_debug_mem(0, buffer, len); return; invalid_len: pw_log_warn("invalid RTP length"); return; unexpected_ssrc: pw_log_warn("unexpected SSRC (expected %u != %u)", impl->expected_ssrc, hdr->ssrc); return; } static int parse_address(const char *address, uint16_t port, struct sockaddr_storage *addr, socklen_t *len) { struct sockaddr_in *sa4 = (struct sockaddr_in*)addr; struct sockaddr_in6 *sa6 = (struct sockaddr_in6*)addr; if (inet_pton(AF_INET, address, &sa4->sin_addr) > 0) { sa4->sin_family = AF_INET; sa4->sin_port = htons(port); *len = sizeof(*sa4); } else if (inet_pton(AF_INET6, address, &sa6->sin6_addr) > 0) { sa6->sin6_family = AF_INET6; sa6->sin6_port = htons(port); *len = sizeof(*sa6); } else return -EINVAL; return 0; } static int make_socket(const struct sockaddr* sa, socklen_t salen, char *ifname) { int af, fd, val, res; struct ifreq req; af = sa->sa_family; if ((fd = socket(af, SOCK_DGRAM | SOCK_CLOEXEC | SOCK_NONBLOCK, 0)) < 0) { pw_log_error("socket failed: %m"); return -errno; } #ifdef SO_TIMESTAMP val = 1; if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMP, &val, sizeof(val)) < 0) { res = -errno; pw_log_error("setsockopt failed: %m"); goto error; } #endif val = 1; if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)) < 0) { res = -errno; pw_log_error("setsockopt failed: %m"); goto error; } spa_zero(req); if (ifname) { snprintf(req.ifr_name, sizeof(req.ifr_name), "%s", ifname); res = ioctl(fd, SIOCGIFINDEX, &req); if (res < 0) pw_log_warn("SIOCGIFINDEX %s failed: %m", ifname); } res = 0; if (af == AF_INET) { static const uint32_t ipv4_mcast_mask = 0xe0000000; struct sockaddr_in *sa4 = (struct sockaddr_in*)sa; if ((ntohl(sa4->sin_addr.s_addr) & ipv4_mcast_mask) == ipv4_mcast_mask) { struct ip_mreqn mr4; memset(&mr4, 0, sizeof(mr4)); mr4.imr_multiaddr = sa4->sin_addr; mr4.imr_ifindex = req.ifr_ifindex; res = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mr4, sizeof(mr4)); } else { sa4->sin_addr.s_addr = INADDR_ANY; } } else if (af == AF_INET6) { struct sockaddr_in6 *sa6 = (struct sockaddr_in6*)sa; if (sa6->sin6_addr.s6_addr[0] == 0xff) { struct ipv6_mreq mr6; memset(&mr6, 0, sizeof(mr6)); mr6.ipv6mr_multiaddr = sa6->sin6_addr; mr6.ipv6mr_interface = req.ifr_ifindex; res = setsockopt(fd, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mr6, sizeof(mr6)); } else { sa6->sin6_addr = in6addr_any; } } else { res = -EINVAL; goto error; } if (res < 0) { res = -errno; pw_log_error("join mcast failed: %m"); goto error; } if (bind(fd, sa, salen) < 0) { res = -errno; pw_log_error("bind() failed: %m"); goto error; } return fd; error: return res; } static uint32_t msec_to_samples(struct impl *impl, uint32_t msec) { return msec * impl->rate / 1000; } static int stream_start(struct impl *impl) { int fd; if (impl->source != NULL) return 0; pw_log_info("starting RTP listener"); if ((fd = make_socket((const struct sockaddr *)&impl->src_addr, impl->src_len, impl->ifname)) < 0) { pw_log_error("failed to create socket: %m"); return fd; } impl->source = pw_loop_add_io(impl->data_loop, fd, SPA_IO_IN, true, on_rtp_io, impl); if (impl->source == NULL) { pw_log_error("can't create io source: %m"); close(fd); return -errno; } return 0; } static void stream_stop(struct impl *impl) { if (!impl->source) return; pw_log_info("stopping RTP listener"); pw_loop_destroy_source(impl->data_loop, impl->source); impl->source = NULL; } static void on_stream_state_changed(void *d, enum pw_stream_state old, enum pw_stream_state state, const char *error) { struct impl *impl = d; switch (state) { case PW_STREAM_STATE_UNCONNECTED: pw_log_info("stream disconnected, unloading"); pw_impl_module_schedule_destroy(impl->module); break; case PW_STREAM_STATE_ERROR: pw_log_error("stream error: %s", error); break; case PW_STREAM_STATE_STREAMING: if ((errno = -stream_start(impl)) < 0) pw_log_error("failed to start RTP stream: %m"); break; case PW_STREAM_STATE_PAUSED: if (!impl->always_process) stream_stop(impl); break; default: break; } } static const struct pw_stream_events out_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = stream_destroy, .state_changed = on_stream_state_changed, .io_changed = stream_io_changed, .process = stream_process }; static int setup_stream(struct impl *impl) { const struct spa_pod *params[1]; struct spa_pod_builder b; uint32_t n_params; uint8_t buffer[1024]; struct pw_properties *props; int res; impl->first = true; props = pw_properties_copy(impl->stream_props); if (props == NULL) { res = -errno; goto error; } spa_dll_init(&impl->dll); spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 128, impl->rate); impl->corr = 1.0; impl->stream = pw_stream_new(impl->core, "rtp-source playback", props); if (impl->stream == NULL) { res = -errno; pw_log_error("can't create stream: %m"); goto error; } pw_stream_add_listener(impl->stream, &impl->stream_listener, &out_stream_events, impl); n_params = 0; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (impl->info.media_type) { case SPA_MEDIA_TYPE_audio: params[n_params++] = spa_format_audio_build(&b, SPA_PARAM_EnumFormat, &impl->info); break; case SPA_MEDIA_TYPE_application: params[n_params++] = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control)); break; default: return -EINVAL; } if ((res = pw_stream_connect(impl->stream, PW_DIRECTION_OUTPUT, PW_ID_ANY, PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_RT_PROCESS, params, n_params)) < 0) { pw_log_error("can't connect stream: %s", spa_strerror(res)); goto error; } if (impl->always_process && (res = stream_start(impl)) < 0) goto error; return 0; error: return res; } static void on_timer_event(void *data, uint64_t expirations) { struct impl *impl = data; if (!impl->receiving) { pw_log_info("timeout, closing inactive RTP source"); pw_impl_module_schedule_destroy(impl->module); } else { pw_log_debug("timeout, keeping active RTP source"); } impl->receiving = false; } static void core_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->core_listener); impl->core = NULL; pw_impl_module_schedule_destroy(impl->module); } static const struct pw_proxy_events core_proxy_events = { .destroy = core_destroy, }; static void impl_destroy(struct impl *impl) { if (impl->stream) pw_stream_destroy(impl->stream); if (impl->source) pw_loop_destroy_source(impl->data_loop, impl->source); if (impl->core && impl->do_disconnect) pw_core_disconnect(impl->core); if (impl->timer) pw_loop_destroy_source(impl->loop, impl->timer); pw_properties_free(impl->stream_props); pw_properties_free(impl->props); free(impl->ifname); free(impl); } static void module_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->module_listener); impl_destroy(impl); } static const struct pw_impl_module_events module_events = { PW_VERSION_IMPL_MODULE_EVENTS, .destroy = module_destroy, }; static void on_core_error(void *d, uint32_t id, int seq, int res, const char *message) { struct impl *impl = d; pw_log_error("error id:%u seq:%d res:%d (%s): %s", id, seq, res, spa_strerror(res), message); if (id == PW_ID_CORE && res == -EPIPE) pw_impl_module_schedule_destroy(impl->module); } static const struct pw_core_events core_events = { PW_VERSION_CORE_EVENTS, .error = on_core_error, }; static inline uint32_t format_from_name(const char *name, size_t len) { int i; for (i = 0; spa_type_audio_format[i].name; i++) { if (strncmp(name, spa_debug_type_short_name(spa_type_audio_format[i].name), len) == 0) return spa_type_audio_format[i].type; } return SPA_AUDIO_FORMAT_UNKNOWN; } static uint32_t channel_from_name(const char *name) { int i; for (i = 0; spa_type_audio_channel[i].name; i++) { if (spa_streq(name, spa_debug_type_short_name(spa_type_audio_channel[i].name))) return spa_type_audio_channel[i].type; } return SPA_AUDIO_CHANNEL_UNKNOWN; } static void parse_position(struct spa_audio_info_raw *info, const char *val, size_t len) { struct spa_json it[2]; char v[256]; spa_json_init(&it[0], val, len); if (spa_json_enter_array(&it[0], &it[1]) <= 0) spa_json_init(&it[1], val, len); info->channels = 0; while (spa_json_get_string(&it[1], v, sizeof(v)) > 0 && info->channels < SPA_AUDIO_MAX_CHANNELS) { info->position[info->channels++] = channel_from_name(v); } } static void parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info) { const char *str; spa_zero(*info); if ((str = pw_properties_get(props, PW_KEY_AUDIO_FORMAT)) == NULL) str = DEFAULT_FORMAT; info->format = format_from_name(str, strlen(str)); info->rate = pw_properties_get_uint32(props, PW_KEY_AUDIO_RATE, info->rate); if (info->rate == 0) info->rate = DEFAULT_RATE; info->channels = pw_properties_get_uint32(props, PW_KEY_AUDIO_CHANNELS, info->channels); info->channels = SPA_MIN(info->channels, SPA_AUDIO_MAX_CHANNELS); if ((str = pw_properties_get(props, SPA_KEY_AUDIO_POSITION)) != NULL) parse_position(info, str, strlen(str)); if (info->channels == 0) parse_position(info, DEFAULT_POSITION, strlen(DEFAULT_POSITION)); } static void copy_props(struct impl *impl, struct pw_properties *props, const char *key) { const char *str; if ((str = pw_properties_get(props, key)) != NULL) { if (pw_properties_get(impl->stream_props, key) == NULL) pw_properties_set(impl->stream_props, key, str); } } SPA_EXPORT int pipewire__module_init(struct pw_impl_module *module, const char *args) { struct pw_context *context = pw_impl_module_get_context(module); uint32_t id = pw_global_get_id(pw_impl_module_get_global(module)); uint32_t pid = getpid(); struct impl *impl; const char *str; struct timespec value, interval; struct pw_properties *props, *stream_props; int res = 0; PW_LOG_TOPIC_INIT(mod_topic); impl = calloc(1, sizeof(struct impl)); if (impl == NULL) return -errno; if (args == NULL) args = ""; props = impl->props = pw_properties_new_string(args); stream_props = impl->stream_props = pw_properties_new(NULL, NULL); if (props == NULL || stream_props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto out; } impl->module = module; impl->module_context = context; impl->loop = pw_context_get_main_loop(context); impl->data_loop = pw_data_loop_get_loop(pw_context_get_data_loop(context)); if (pw_properties_get(stream_props, PW_KEY_NODE_VIRTUAL) == NULL) pw_properties_set(stream_props, PW_KEY_NODE_VIRTUAL, "true"); if (pw_properties_get(stream_props, PW_KEY_NODE_NETWORK) == NULL) pw_properties_set(stream_props, PW_KEY_NODE_NETWORK, "true"); if (pw_properties_get(props, PW_KEY_NODE_NAME) == NULL) pw_properties_setf(props, PW_KEY_NODE_NAME, "rtp-source-%u-%u", pid, id); if (pw_properties_get(props, PW_KEY_NODE_DESCRIPTION) == NULL) pw_properties_set(props, PW_KEY_NODE_DESCRIPTION, pw_properties_get(props, PW_KEY_NODE_NAME)); if (pw_properties_get(props, PW_KEY_MEDIA_NAME) == NULL) pw_properties_set(props, PW_KEY_MEDIA_NAME, "RTP Receiver Stream"); if ((str = pw_properties_get(props, "stream.props")) != NULL) pw_properties_update_string(stream_props, str, strlen(str)); copy_props(impl, props, PW_KEY_AUDIO_FORMAT); copy_props(impl, props, PW_KEY_AUDIO_RATE); copy_props(impl, props, PW_KEY_AUDIO_CHANNELS); copy_props(impl, props, SPA_KEY_AUDIO_POSITION); copy_props(impl, props, PW_KEY_NODE_NAME); copy_props(impl, props, PW_KEY_NODE_DESCRIPTION); copy_props(impl, props, PW_KEY_NODE_GROUP); copy_props(impl, props, PW_KEY_NODE_LATENCY); copy_props(impl, props, PW_KEY_NODE_VIRTUAL); copy_props(impl, props, PW_KEY_NODE_CHANNELNAMES); copy_props(impl, props, PW_KEY_MEDIA_NAME); copy_props(impl, props, PW_KEY_MEDIA_CLASS); impl->info.media_type = SPA_MEDIA_TYPE_audio; impl->info.media_subtype = SPA_MEDIA_SUBTYPE_raw; if ((str = pw_properties_get(stream_props, "rtp.media")) != NULL) { if (spa_streq(str, "audio")) { impl->info.media_type = SPA_MEDIA_TYPE_audio; impl->info.media_subtype = SPA_MEDIA_SUBTYPE_raw; } else if (spa_streq(str, "midi")) { impl->info.media_type = SPA_MEDIA_TYPE_application; impl->info.media_subtype = SPA_MEDIA_SUBTYPE_control; } else { pw_log_error("unsupported media type:%s", str); res = -EINVAL; goto out; } } switch (impl->info.media_type) { case SPA_MEDIA_TYPE_audio: parse_audio_info(stream_props, &impl->info.info.raw); impl->stride = audio_get_stride(&impl->info); if (impl->stride == 0) { pw_log_error("unsupported audio format:%d channels:%d", impl->info.info.raw.format, impl->info.info.raw.channels); res = -EINVAL; goto out; } impl->rate = impl->info.info.raw.rate; break; case SPA_MEDIA_TYPE_application: pw_properties_set(stream_props, PW_KEY_FORMAT_DSP, "8 bit raw midi"); impl->stride = 1; impl->rate = 48000; break; default: spa_assert_not_reached(); break; } str = pw_properties_get(props, "local.ifname"); impl->ifname = str ? strdup(str) : NULL; impl->src_port = pw_properties_get_uint32(stream_props, "source.port", 0); if (impl->src_port == 0) { pw_log_error("invalid source.port"); goto out; } if ((str = pw_properties_get(stream_props, "source.ip")) == NULL || (res = parse_address(str, impl->src_port, &impl->src_addr, &impl->src_len)) < 0) { pw_log_error("invalid source.ip %s: %s", str, spa_strerror(res)); goto out; } impl->always_process = pw_properties_get_bool(stream_props, PW_KEY_NODE_ALWAYS_PROCESS, true); impl->cleanup_interval = pw_properties_get_uint32(props, "cleanup.sec", DEFAULT_CLEANUP_SEC); if ((str = pw_properties_get(props, "sess.name")) != NULL) { pw_properties_set(stream_props, "rtp.session", str); if (pw_properties_get(stream_props, PW_KEY_MEDIA_NAME) == NULL) pw_properties_setf(stream_props, PW_KEY_MEDIA_NAME, "RTP Stream (%s)", str); if (pw_properties_get(stream_props, PW_KEY_NODE_NAME) == NULL) pw_properties_setf(stream_props, PW_KEY_NODE_NAME, "%s", str); } else { if (pw_properties_get(stream_props, PW_KEY_MEDIA_NAME) == NULL) pw_properties_set(stream_props, PW_KEY_MEDIA_NAME, "RTP Stream"); } impl->ts_offset = pw_properties_get_int64(stream_props, "sess.ts-offset", 0); pw_properties_setf(stream_props, "rtp.ts-offset", "%u", impl->ts_offset); impl->direct_timestamp = pw_properties_get_bool(stream_props, "sess.ts-direct", false); impl->sess_latency_msec = pw_properties_get_uint32(stream_props, "sess.latency.msec", DEFAULT_SESS_LATENCY); impl->target_buffer = msec_to_samples(impl, impl->sess_latency_msec); impl->max_error = msec_to_samples(impl, ERROR_MSEC); pw_properties_setf(stream_props, PW_KEY_NODE_RATE, "1/%d", impl->rate); pw_properties_setf(stream_props, PW_KEY_NODE_LATENCY, "%d/%d", impl->target_buffer / 2, impl->rate); impl->core = pw_context_get_object(impl->module_context, PW_TYPE_INTERFACE_Core); if (impl->core == NULL) { str = pw_properties_get(props, PW_KEY_REMOTE_NAME); impl->core = pw_context_connect(impl->module_context, pw_properties_new( PW_KEY_REMOTE_NAME, str, NULL), 0); impl->do_disconnect = true; } if (impl->core == NULL) { res = -errno; pw_log_error("can't connect: %m"); goto out; } pw_proxy_add_listener((struct pw_proxy*)impl->core, &impl->core_proxy_listener, &core_proxy_events, impl); pw_core_add_listener(impl->core, &impl->core_listener, &core_events, impl); impl->timer = pw_loop_add_timer(impl->loop, on_timer_event, impl); if (impl->timer == NULL) { res = -errno; pw_log_error("can't create timer source: %m"); goto out; } value.tv_sec = impl->cleanup_interval; value.tv_nsec = 0; interval.tv_sec = impl->cleanup_interval; interval.tv_nsec = 0; pw_loop_update_timer(impl->loop, impl->timer, &value, &interval, false); if ((res = setup_stream(impl)) < 0) goto out; pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl); pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_info)); pw_log_info("Successfully loaded module-rtp-source"); return 0; out: impl_destroy(impl); return res; }