#include #include #include #include #include #include #include #include #include #include #include #include #include "alsa-utils.h" #define CHECK(s,msg) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", snd_strerror(err)); return err; } static int spa_alsa_open(struct state *state) { int err; struct props *props = &state->props; if (state->opened) return 0; CHECK(snd_output_stdio_attach(&state->output, stderr, 0), "attach failed"); spa_log_info(state->log, "ALSA device open '%s'", props->device); CHECK(snd_pcm_open(&state->hndl, props->device, state->stream, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "open failed"); state->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK); state->opened = true; state->sample_count = 0; state->sample_time = 0; return 0; } int spa_alsa_close(struct state *state) { int err = 0; if (!state->opened) return 0; spa_log_info(state->log, "Device '%s' closing", state->props.device); CHECK(snd_pcm_close(state->hndl), "close failed"); close(state->timerfd); state->opened = false; return err; } struct format_info { uint32_t spa_format; uint32_t spa_pformat; snd_pcm_format_t format; }; static const struct format_info format_info[] = { { SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN}, { SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8}, { SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8}, { SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE}, { SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE}, { SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE}, { SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE}, { SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE}, { SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE}, { SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE}, { SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE}, { SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE}, { SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE}, { SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE}, { SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE}, { SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE}, { SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE}, { SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE}, { SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE}, { SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE}, { SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE}, { SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE}, { SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE}, }; static snd_pcm_format_t spa_format_to_alsa(uint32_t format) { int i; for (i = 0; i < SPA_N_ELEMENTS(format_info); i++) { if (format_info[i].spa_format == format) return format_info[i].format; } return SND_PCM_FORMAT_UNKNOWN; } struct chmap_info { enum snd_pcm_chmap_position pos; enum spa_audio_channel channel; }; static const struct chmap_info chmap_info[] = { [SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN }, [SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA }, [SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO }, [SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL }, [SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR }, [SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL }, [SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR }, [SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC }, [SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE }, [SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL }, [SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR }, [SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC }, [SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC }, [SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC }, [SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC }, [SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC }, [SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW }, [SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW }, [SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH }, [SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH }, [SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH }, [SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC }, [SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL }, [SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR }, [SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC }, [SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL }, [SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR }, [SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC }, [SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC }, [SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC }, [SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL }, [SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR }, [SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE }, [SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE }, [SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC }, [SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC }, [SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC }, }; #define _M(ch) (1LL << SND_CHMAP_ ##ch) struct def_mask { int channels; uint64_t mask; }; static const struct def_mask default_layouts[] = { { 0, 0 }, { 1, _M(MONO) }, { 2, _M(FL) | _M(FR) }, { 3, _M(FL) | _M(FR) | _M(LFE) }, { 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) }, { 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) }, { 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) }, { 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) }, { 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) }, }; static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos) { return chmap_info[pos].channel; } static void sanitize_map(snd_pcm_chmap_t* map) { uint64_t mask = 0, p, dup = 0; const struct def_mask *def; int i, j, pos; for (i = 0; i < map->channels; i++) { if (map->pos[i] < 0 || map->pos[i] > SND_CHMAP_LAST) map->pos[i] = SND_CHMAP_UNKNOWN; p = 1LL << map->pos[i]; if (mask & p) { /* duplicate channel */ for (j = 0; j <= i; j++) if (map->pos[j] == map->pos[i]) map->pos[j] = SND_CHMAP_UNKNOWN; dup |= p; p = 1LL << SND_CHMAP_UNKNOWN; } mask |= p; } if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0) return; def = &default_layouts[map->channels]; /* remove duplicates */ mask &= ~dup; /* keep unassigned channels */ mask = def->mask & ~mask; pos = 0; for (i = 0; i < map->channels; i++) { if (map->pos[i] == SND_CHMAP_UNKNOWN) { do { mask >>= 1; pos++; } while (mask != 0 && (mask & 1) == 0); map->pos[i] = mask ? pos : 0; } } } int spa_alsa_enum_format(struct state *state, uint32_t *index, const struct spa_pod *filter, struct spa_pod **result, struct spa_pod_builder *builder) { snd_pcm_t *hndl; snd_pcm_hw_params_t *params; snd_pcm_format_mask_t *fmask; snd_pcm_access_mask_t *amask; snd_pcm_chmap_query_t **maps; int err, i, j, dir; unsigned int min, max; uint8_t buffer[4096]; struct spa_pod_builder b = { 0 }; struct spa_pod_choice *choice; struct spa_pod *fmt; int res; bool opened; opened = state->opened; if ((err = spa_alsa_open(state)) < 0) return err; next: spa_pod_builder_init(&b, buffer, sizeof(buffer)); hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); spa_pod_builder_push_object(&b, SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_props(&b, SPA_FORMAT_mediaType, &SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, &SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw), 0); snd_pcm_format_mask_alloca(&fmask); snd_pcm_hw_params_get_format_mask(params, fmask); snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_format, 0); choice = spa_pod_builder_deref(&b, spa_pod_builder_push_choice(&b, SPA_CHOICE_None, 0)); for (i = 1, j = 0; i < SPA_N_ELEMENTS(format_info); i++) { const struct format_info *fi = &format_info[i]; if (snd_pcm_format_mask_test(fmask, fi->format)) { if (snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED)) { if (j++ == 0) spa_pod_builder_id(&b, fi->spa_format); spa_pod_builder_id(&b, fi->spa_format); } if (snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) && fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN) { if (j++ == 0) spa_pod_builder_id(&b, fi->spa_pformat); spa_pod_builder_id(&b, fi->spa_pformat); } } } if (j > 1) choice->body.type = SPA_CHOICE_Enum; spa_pod_builder_pop(&b); CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min"); CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max"); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_rate, 0); choice = spa_pod_builder_deref(&b, spa_pod_builder_push_choice(&b, SPA_CHOICE_None, 0)); spa_pod_builder_int(&b, SPA_CLAMP(DEFAULT_RATE, min, max)); if (min != max) { spa_pod_builder_int(&b, min); spa_pod_builder_int(&b, max); choice->body.type = SPA_CHOICE_Range; } spa_pod_builder_pop(&b); CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min"); CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max"); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_channels, 0); if ((maps = snd_pcm_query_chmaps(hndl)) != NULL) { uint32_t channel; snd_pcm_chmap_t* map; if (maps[*index] == NULL) { res = 0; goto exit; } map = &maps[*index]->map; spa_log_debug(state->log, "map %d channels", map->channels); sanitize_map(map); spa_pod_builder_int(&b, map->channels); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(&b); for (j = 0; j < map->channels; j++) { spa_log_debug(state->log, "position %d %d", j, map->pos[j]); channel = chmap_position_to_channel(map->pos[j]); spa_pod_builder_id(&b, channel); } spa_pod_builder_pop(&b); snd_pcm_free_chmaps(maps); } else { if (*index > 0) { res = 0; goto exit; } choice = spa_pod_builder_deref(&b, spa_pod_builder_push_choice(&b, SPA_CHOICE_None, 0)); spa_pod_builder_int(&b, SPA_CLAMP(DEFAULT_CHANNELS, min, max)); if (min != max) { spa_pod_builder_int(&b, min); spa_pod_builder_int(&b, max); choice->body.type = SPA_CHOICE_Range; } spa_pod_builder_pop(&b); } fmt = spa_pod_builder_pop(&b); (*index)++; if ((res = spa_pod_filter(builder, result, fmt, filter)) < 0) goto next; res = 1; exit: if (!opened) spa_alsa_close(state); return res; } int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags) { unsigned int rrate, rchannels; snd_pcm_uframes_t period_size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t format; struct spa_audio_info_raw *info = &fmt->info.raw; snd_pcm_t *hndl; unsigned int periods; if ((err = spa_alsa_open(state)) < 0) return err; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); /* choose all parameters */ CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available"); /* set hardware resampling */ CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); /* set the interleaved read/write format */ CHECK(snd_pcm_hw_params_set_access(hndl, params, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set_access"); /* disable ALSA wakeups, we use a timer */ if (snd_pcm_hw_params_can_disable_period_wakeup(params)) CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup"); /* set the sample format */ format = spa_format_to_alsa(info->format); if (format == SND_PCM_FORMAT_UNKNOWN) return -EINVAL; spa_log_info(state->log, "Stream parameters are %iHz, %s, %i channels", info->rate, snd_pcm_format_name(format), info->channels); CHECK(snd_pcm_hw_params_set_format(hndl, params, format), "set_format"); /* set the count of channels */ rchannels = info->channels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels"); if (rchannels != info->channels) { spa_log_warn(state->log, "Channels doesn't match (requested %u, get %u", info->channels, rchannels); if (flags & SPA_NODE_PARAM_FLAG_NEAREST) info->channels = rchannels; else return -EINVAL; } /* set the stream rate */ rrate = info->rate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near"); if (rrate != info->rate) { spa_log_warn(state->log, "Rate doesn't match (requested %iHz, get %iHz)", info->rate, rrate); if (flags & SPA_NODE_PARAM_FLAG_NEAREST) info->rate = rrate; else return -EINVAL; } state->format = format; state->channels = info->channels; state->rate = info->rate; state->frame_size = info->channels * (snd_pcm_format_physical_width(format) / 8); CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max"); CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near"); dir = 0; period_size = state->buffer_frames; CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near"); state->period_frames = period_size; periods = state->buffer_frames / state->period_frames; spa_log_info(state->log, "buffer frames %zd, period frames %zd, periods %u, frame_size %zd", state->buffer_frames, state->period_frames, periods, state->frame_size); /* write the parameters to device */ CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params"); return 0; } static int set_swparams(struct state *state) { snd_pcm_t *hndl = state->hndl; int err = 0; snd_pcm_sw_params_t *params; snd_pcm_sw_params_alloca(¶ms); /* get the current params */ CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current"); CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode"); /* start the transfer */ CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold"); CHECK(snd_pcm_sw_params_set_period_event(hndl, params, 0), "set_period_event"); /* write the parameters to the playback device */ CHECK(snd_pcm_sw_params(hndl, params), "sw_params"); return 0; } static int set_timeout(struct state *state, uint64_t time) { struct itimerspec ts; if (!state->slaved) { ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; timerfd_settime(state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL); } return 0; } static int get_status(struct state *state, snd_pcm_sframes_t *delay) { snd_pcm_status_t *status; snd_pcm_sframes_t av; int res, st; snd_pcm_status_alloca(&status); again: if ((res = snd_pcm_status(state->hndl, status)) < 0) { spa_log_error(state->log, "snd_pcm_status error: %s", snd_strerror(res)); return res; } st = snd_pcm_status_get_state(status); if (st == SND_PCM_STATE_XRUN) { struct timeval now, trigger, diff; uint64_t xrun, missing; snd_pcm_status_get_tstamp (status, &now); snd_pcm_status_get_trigger_tstamp (status, &trigger); timersub(&now, &trigger, &diff); xrun = SPA_TIMEVAL_TO_USEC(&diff); missing = xrun * state->rate / SPA_USEC_PER_SEC; state->sample_time = state->sample_count; state->sample_count += missing; state->dll.t0 -= xrun * 1e-6; #if 0 state->safety = SPA_MIN(state->safety + 0.000333, 0.0013333); dll_bandwidth(&state->dll, DLL_BW_MAX); #endif spa_log_error(state->log, "xrun of %"PRIu64" usec %"PRIu64" %f", xrun, missing, state->safety); if ((res = snd_pcm_prepare(state->hndl)) < 0) { spa_log_error(state->log, "snd_pcm_prepare error: %s", snd_strerror(res)); } if (state->stream == SND_PCM_STREAM_CAPTURE) { if ((res = snd_pcm_start(state->hndl)) < 0) { spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(res)); return res; } state->alsa_started = true; } else { state->alsa_started = false; } spa_alsa_write(state, state->threshold * 2, true); goto again; } av = snd_pcm_status_get_avail(status); if (av > state->buffer_frames) av = state->buffer_frames; if (delay) { if (state->stream == SND_PCM_STREAM_PLAYBACK) *delay = state->buffer_frames - av; else *delay = av; } return 0; } static int update_time(struct state *state, uint64_t nsec, snd_pcm_sframes_t delay, uint64_t *period, bool slaved) { uint64_t sample_time, elapsed; double tw; if (!slaved) { sample_time = state->sample_count; elapsed = sample_time - state->sample_time; state->sample_time = sample_time; } else { elapsed = state->threshold; } /* if our buffers are too full, pause the dll */ if (delay >= state->threshold * 2 || elapsed == 0) { elapsed = state->threshold / 2; delay = state->threshold / 2; } /* we try to match the delay with the number of played samples */ tw = nsec * 1e-9 + (double)delay / state->rate - state->safety; tw = dll_update(&state->dll, tw, (double)elapsed / state->rate); state->next_time = (tw - state->safety) * 1e9; if (state->dll.bw > DLL_BW_MIN && tw > state->dll.base + DLL_BW_PERIOD) dll_bandwidth(&state->dll, DLL_BW_MIN); if (state->clock) { state->clock->nsec = state->last_time; state->clock->rate = SPA_FRACTION(1, state->rate); state->clock->position = state->sample_count; state->clock->delay = state->stream == SND_PCM_STREAM_CAPTURE ? delay : -delay; state->clock->rate_diff = state->dll.dt; } state->old_dt = SPA_CLAMP(state->dll.dt, 0.95, 1.05); #if 0 if (slaved && state->notify) { struct spa_pod_builder b = { 0 }; spa_pod_builder_init(&b, state->notify, 1024); spa_pod_builder_push_sequence(&b, 0); spa_pod_builder_control_header(&b, 0, SPA_CONTROL_Properties); spa_pod_builder_push_object(&b, SPA_TYPE_OBJECT_Props, SPA_PARAM_Props); spa_pod_builder_prop(&b, SPA_PROP_rate, 0); spa_pod_builder_double(&b, state->old_dt); spa_pod_builder_pop(&b); spa_pod_builder_pop(&b); } #endif spa_log_trace(state->log, "%"PRIu64" %f %"PRIi64" %"PRIi64" %"PRIi64" %d %"PRIu64, nsec, state->old_dt, delay, elapsed, (int64_t)(nsec - state->last_time), state->threshold, state->next_time); state->last_time = nsec; if (period) *period = elapsed; return 0; } int spa_alsa_write(struct state *state, snd_pcm_uframes_t silence, bool start) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t written, frames, offset, off, to_write, total_written; int res; if (state->position && state->threshold != state->position->size) state->threshold = state->position->size; if (state->slaved) { uint64_t nsec, master; snd_pcm_sframes_t delay; master = state->position->clock.position + state->position->clock.delay; nsec = master * SPA_NSEC_PER_SEC / state->rate; if ((res = get_status(state, &delay)) < 0) return res; if ((res = update_time(state, nsec, delay, NULL, true)) < 0) return res; spa_log_trace(state->log, "slave %f %"PRIi64" %"PRIu64" %d", state->dll.dt, nsec, delay, state->rate); } total_written = 0; again: frames = state->buffer_frames; if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0) { spa_log_error(state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res)); return res; } spa_log_trace(state->log, "begin %ld %ld %d", offset, frames, state->threshold); silence = SPA_MIN(silence, frames); to_write = frames; off = offset; written = 0; while (!spa_list_is_empty(&state->ready) && to_write > 0) { uint8_t *dst, *src; size_t n_bytes, n_frames; struct buffer *b; struct spa_data *d; uint32_t index, offs, avail, size, maxsize, l0, l1; b = spa_list_first(&state->ready, struct buffer, link); d = b->buf->datas; dst = SPA_MEMBER(my_areas[0].addr, off * state->frame_size, uint8_t); src = d[0].data; size = d[0].chunk->size; maxsize = d[0].maxsize; index = d[0].chunk->offset + state->ready_offset; avail = size - state->ready_offset; avail /= state->frame_size; n_frames = SPA_MIN(avail, to_write); n_bytes = n_frames * state->frame_size; offs = index % maxsize; l0 = SPA_MIN(n_bytes, maxsize - offs); l1 = n_bytes - l0; memcpy(dst, src + offs, l0); if (l1 > 0) memcpy(dst + l0, src, l1); state->ready_offset += n_bytes; if (state->ready_offset >= size) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); state->io->buffer_id = b->buf->id; spa_log_trace(state->log, "alsa-util %p: reuse buffer %u", state, b->buf->id); state->callbacks->reuse_buffer(state->callbacks_data, 0, b->buf->id); state->ready_offset = 0; } written += n_frames; off += n_frames; to_write -= n_frames; if (silence > n_frames) silence -= n_frames; else silence = 0; } if (silence > 0) { spa_log_trace(state->log, "silence %ld", silence); snd_pcm_areas_silence(my_areas, off, state->channels, silence, state->format); written += silence; } spa_log_trace(state->log, "commit %ld %ld %"PRIi64, offset, written, state->sample_count); total_written += written; if ((res = snd_pcm_mmap_commit(hndl, offset, written)) < 0) { spa_log_error(state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res)); if (res != -EPIPE && res != -ESTRPIPE) return res; } if (!spa_list_is_empty(&state->ready) && total_written < state->threshold) goto again; state->sample_count += total_written; if (!state->alsa_started && written > 0 && start) { spa_log_trace(state->log, "snd_pcm_start %lu", written); if ((res = snd_pcm_start(hndl)) < 0) { spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(res)); return res; } state->alsa_started = true; } return 0; } static snd_pcm_uframes_t push_frames(struct state *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { snd_pcm_uframes_t total_frames = 0; if (spa_list_is_empty(&state->free)) { spa_log_trace(state->log, "no more buffers"); } else { uint8_t *src; size_t n_bytes; struct buffer *b; struct spa_data *d; uint32_t index, offs, avail, l0, l1; b = spa_list_first(&state->free, struct buffer, link); spa_list_remove(&b->link); if (b->h) { b->h->seq = state->sample_count; b->h->pts = SPA_TIMESPEC_TO_NSEC(&state->now); b->h->dts_offset = 0; } d = b->buf->datas; src = SPA_MEMBER(my_areas[0].addr, offset * state->frame_size, uint8_t); avail = d[0].maxsize / state->frame_size; index = 0; total_frames = SPA_MIN(avail, frames); n_bytes = total_frames * state->frame_size; offs = index % d[0].maxsize; l0 = SPA_MIN(n_bytes, d[0].maxsize - offs); l1 = n_bytes - l0; memcpy(d[0].data + offs, src, l0); if (l1 > 0) memcpy(d[0].data, src + l0, l1); d[0].chunk->offset = index; d[0].chunk->size = n_bytes; d[0].chunk->stride = state->frame_size; SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); spa_list_append(&state->ready, &b->link); state->callbacks->process(state->callbacks_data, SPA_STATUS_HAVE_BUFFER); } return total_frames; } static void alsa_on_playback_timeout_event(struct spa_source *source) { int res; struct state *state = source->data; snd_pcm_sframes_t delay; uint64_t nsec, expire, elapsed; int64_t jitter; if (state->started && read(state->timerfd, &expire, sizeof(uint64_t)) != sizeof(uint64_t)) spa_log_warn(state->log, "error reading timerfd: %s", strerror(errno)); if (state->position && state->threshold != state->position->size) state->threshold = state->position->size; clock_gettime(CLOCK_MONOTONIC, &state->now); if ((res = get_status(state, &delay)) < 0) return; nsec = SPA_TIMESPEC_TO_NSEC(&state->now); jitter = nsec - state->next_time; spa_log_trace(state->log, "timeout %ld %"PRIu64" %"PRIu64" %"PRIi64" %d %ld", delay, nsec, state->next_time, jitter, state->threshold, state->sample_count); if ((res = update_time(state, nsec, delay, &elapsed, false)) < 0) return; if (delay >= state->threshold * 2) { spa_log_trace(state->log, "early wakeup %ld %d", delay, state->threshold); goto next; } if (spa_list_is_empty(&state->ready)) { struct spa_io_buffers *io = state->io; spa_log_trace(state->log, "alsa-util %p: %d", state, io->status); io->status = SPA_STATUS_NEED_BUFFER; if (state->range) { state->range->offset = state->sample_count * state->frame_size; state->range->min_size = state->threshold * state->frame_size; state->range->max_size = state->threshold * state->frame_size; } state->callbacks->process(state->callbacks_data, SPA_STATUS_NEED_BUFFER); } else { spa_alsa_write(state, 0, true); } next: set_timeout(state, state->next_time); } static void alsa_on_capture_timeout_event(struct spa_source *source) { uint64_t expire, nsec; int res; struct state *state = source->data; snd_pcm_t *hndl = state->hndl; snd_pcm_sframes_t delay; snd_pcm_uframes_t total_read = 0, to_read; const snd_pcm_channel_area_t *my_areas; if (state->started && read(state->timerfd, &expire, sizeof(uint64_t)) != sizeof(uint64_t)) spa_log_warn(state->log, "error reading timerfd: %s", strerror(errno)); if (state->position) state->threshold = state->position->size; clock_gettime(CLOCK_MONOTONIC, &state->now); if ((res = get_status(state, &delay)) < 0) return; spa_log_trace(state->log, "timeout %ld %d %ld", delay, state->threshold, state->sample_count); if (delay < state->threshold) goto next; to_read = SPA_MIN(delay, state->threshold); nsec = SPA_TIMESPEC_TO_NSEC(&state->now); if ((res = update_time(state, nsec, delay, NULL, false)) < 0) return; while (total_read < to_read) { snd_pcm_uframes_t read, frames, offset; frames = to_read - total_read; if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0) { spa_log_error(state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res)); return; } read = push_frames(state, my_areas, offset, frames); if (read < frames) to_read = 0; if ((res = snd_pcm_mmap_commit(hndl, offset, read)) < 0) { spa_log_error(state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res)); if (res != -EPIPE && res != -ESTRPIPE) return; } total_read += read; } state->sample_count += total_read; next: set_timeout(state, state->next_time); } int spa_alsa_start(struct state *state) { int err; struct itimerspec ts; if (state->started) return 0; if (state->position) state->threshold = state->position->size; state->slaved = false; if (state->position && state->clock) { if (state->position->clock.id != state->clock->id) state->slaved = true; } dll_init(&state->dll, DLL_BW_MAX); state->safety = 0.0; spa_log_debug(state->log, "alsa %p: start %d %d", state, state->threshold, state->slaved); CHECK(set_swparams(state), "swparams"); snd_pcm_dump(state->hndl, state->output); if ((err = snd_pcm_prepare(state->hndl)) < 0) { spa_log_error(state->log, "snd_pcm_prepare error: %s", snd_strerror(err)); return err; } if (!state->slaved) { if (state->stream == SND_PCM_STREAM_PLAYBACK) { state->source.func = alsa_on_playback_timeout_event; } else { state->source.func = alsa_on_capture_timeout_event; } state->source.data = state; state->source.fd = state->timerfd; state->source.mask = SPA_IO_IN; state->source.rmask = 0; spa_loop_add_source(state->data_loop, &state->source); } if (state->stream == SND_PCM_STREAM_PLAYBACK) { state->alsa_started = false; spa_alsa_write(state, state->threshold, false); } else { if ((err = snd_pcm_start(state->hndl)) < 0) { spa_log_error(state->log, "snd_pcm_start: %s", snd_strerror(err)); return err; } state->alsa_started = true; } if (!state->slaved) { clock_gettime(CLOCK_MONOTONIC, &state->now); ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 1; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; timerfd_settime(state->timerfd, 0, &ts, NULL); } state->io->status = SPA_STATUS_OK; state->io->buffer_id = SPA_ID_INVALID; state->started = true; return 0; } static int do_remove_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct state *state = user_data; struct itimerspec ts; if (!state->slaved) { spa_loop_remove_source(state->data_loop, &state->source); ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; timerfd_settime(state->timerfd, 0, &ts, NULL); } return 0; } int spa_alsa_pause(struct state *state) { int err; if (!state->started) return 0; spa_log_debug(state->log, "alsa %p: pause", state); spa_loop_invoke(state->data_loop, do_remove_source, 0, NULL, 0, true, state); if ((err = snd_pcm_drop(state->hndl)) < 0) spa_log_error(state->log, "snd_pcm_drop %s", snd_strerror(err)); state->started = false; return 0; }