/* PipeWire */ /* SPDX-FileCopyrightText: Copyright © 2021 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-protocol-pulse/format.h" /** \page page_module_pulse_tunnel PipeWire Module: Pulse Tunnel * * The pulse-tunnel module provides a source or sink that tunnels all audio to * a remote PulseAudio connection. * * It is usually used with the PulseAudio or module-protocol-pulse on the remote * end to accept the connection. * * This module is usually used together with module-zeroconf-discover that will * automatically load the tunnel with the right parameters based on zeroconf * information. * * ## Module Options * * - `tunnel.mode`: the desired tunnel to create, must be `source` or `sink`. * (Default `sink`) * - `pulse.server.address`: the address of the PulseAudio server to tunnel to. * - `pulse.latency`: the latency to end-to-end latency in milliseconds to * maintain (Default 200). * - `stream.props`: Extra properties for the local stream. * * ## General options * * Options with well-known behavior. * * - \ref PW_KEY_REMOTE_NAME * - \ref PW_KEY_AUDIO_FORMAT * - \ref PW_KEY_AUDIO_RATE * - \ref PW_KEY_AUDIO_CHANNELS * - \ref SPA_KEY_AUDIO_POSITION * - \ref PW_KEY_NODE_LATENCY * - \ref PW_KEY_NODE_NAME * - \ref PW_KEY_NODE_DESCRIPTION * - \ref PW_KEY_NODE_GROUP * - \ref PW_KEY_NODE_VIRTUAL * - \ref PW_KEY_MEDIA_CLASS * - \ref PW_KEY_TARGET_OBJECT to specify the remote node.name or serial.id to link to * * ## Example configuration of a virtual sink * *\code{.unparsed} * context.modules = [ * { name = libpipewire-module-pulse-tunnel * args = { * tunnel.mode = sink * # Set the remote address to tunnel to * pulse.server.address = "tcp:192.168.1.126" * #pulse.latency = 200 * #audio.rate= * #audio.channels= * #audio.position= * #target.object= * stream.props = { * # extra sink properties * } * } * } * ] *\endcode */ #define NAME "pulse-tunnel" PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME); #define PW_LOG_TOPIC_DEFAULT mod_topic #define DEFAULT_FORMAT "S16" #define DEFAULT_RATE 48000 #define DEFAULT_CHANNELS 2 #define DEFAULT_POSITION "[ FL FR ]" #define MODULE_USAGE "[ remote.name= ] " \ "[ node.latency= ] " \ "[ node.name= ] " \ "[ node.description= ] " \ "[ node.target= ] " \ "[ audio.format= ] " \ "[ audio.rate= ] " \ "[ audio.channels= ] " \ "[ audio.position= ] " \ "pulse.server.address=
" \ "pulse.latency= " \ "[ tunnel.mode=source|sink " \ "[ stream.props= ] " static const struct spa_dict_item module_props[] = { { PW_KEY_MODULE_AUTHOR, "Wim Taymans " }, { PW_KEY_MODULE_DESCRIPTION, "Create a PulseAudio tunnel" }, { PW_KEY_MODULE_USAGE, MODULE_USAGE }, { PW_KEY_MODULE_VERSION, PACKAGE_VERSION }, }; #define RINGBUFFER_SIZE (1u << 22) #define RINGBUFFER_MASK (RINGBUFFER_SIZE-1) #define DEFAULT_LATENCY_MSEC (200) struct impl { struct pw_context *context; #define MODE_SINK 0 #define MODE_SOURCE 1 uint32_t mode; struct pw_properties *props; struct pw_impl_module *module; struct spa_hook module_listener; struct pw_core *core; struct spa_hook core_proxy_listener; struct spa_hook core_listener; uint32_t latency_msec; struct pw_properties *stream_props; struct pw_stream *stream; struct spa_hook stream_listener; struct spa_audio_info_raw info; uint32_t frame_size; struct spa_ringbuffer ring; void *buffer; uint8_t empty[8192]; pa_threaded_mainloop *pa_mainloop; pa_context *pa_context; pa_stream *pa_stream; struct ratelimit rate_limit; uint32_t target_latency; uint32_t current_latency; uint32_t target_buffer; struct spa_io_rate_match *rate_match; struct spa_dll dll; float max_error; unsigned resync:1; unsigned int do_disconnect:1; }; static void cork_stream(struct impl *impl, bool cork) { pa_operation *operation; pa_threaded_mainloop_lock(impl->pa_mainloop); pw_log_debug("corking: %d", cork); if (cork && impl->mode == MODE_SINK) { /* When the sink becomes suspended (which is the only case where we * cork the stream), we don't want to keep any old data around, because * the old data is most likely unrelated to the audio that will be * played at the time when the sink starts running again. */ if ((operation = pa_stream_flush(impl->pa_stream, NULL, NULL))) pa_operation_unref(operation); spa_ringbuffer_init(&impl->ring); memset(impl->buffer, 0, RINGBUFFER_SIZE); } if (!cork) impl->resync = true; if ((operation = pa_stream_cork(impl->pa_stream, cork, NULL, NULL))) pa_operation_unref(operation); pa_threaded_mainloop_unlock(impl->pa_mainloop); } static void stream_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->stream_listener); impl->stream = NULL; } static void stream_state_changed(void *d, enum pw_stream_state old, enum pw_stream_state state, const char *error) { struct impl *impl = d; switch (state) { case PW_STREAM_STATE_ERROR: case PW_STREAM_STATE_UNCONNECTED: pw_impl_module_schedule_destroy(impl->module); break; case PW_STREAM_STATE_PAUSED: cork_stream(impl, true); break; case PW_STREAM_STATE_STREAMING: cork_stream(impl, false); break; default: break; } } static void update_rate(struct impl *impl, bool playback) { float error, corr; if (impl->rate_match == NULL) return; if (playback) error = (float)impl->target_latency - (float)impl->current_latency; else error = (float)impl->current_latency - (float)impl->target_latency; error = SPA_CLAMP(error, -impl->max_error, impl->max_error); corr = spa_dll_update(&impl->dll, error); pw_log_debug("error:%f corr:%f current:%u target:%u", error, corr, impl->current_latency, impl->target_latency); SPA_FLAG_SET(impl->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE); impl->rate_match->rate = 1.0f / corr; } static void playback_stream_process(void *d) { struct impl *impl = d; struct pw_buffer *buf; struct spa_data *bd; int32_t filled; uint32_t write_index, offs, size; if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) { pw_log_debug("out of buffers: %m"); return; } bd = &buf->buffer->datas[0]; offs = SPA_MIN(bd->chunk->offset, bd->maxsize); size = SPA_MIN(bd->chunk->size, bd->maxsize - offs); size = SPA_MIN(size, RINGBUFFER_SIZE); filled = spa_ringbuffer_get_write_index(&impl->ring, &write_index); if (filled < 0) { pw_log_warn("%p: underrun write:%u filled:%d", impl, write_index, filled); } else if ((uint32_t)filled + size > RINGBUFFER_SIZE) { pw_log_warn("%p: overrun write:%u filled:%d + size:%u > max:%u", impl, write_index, filled, size, RINGBUFFER_SIZE); impl->resync = true; } else { update_rate(impl, true); } spa_ringbuffer_write_data(&impl->ring, impl->buffer, RINGBUFFER_SIZE, write_index & RINGBUFFER_MASK, SPA_PTROFF(bd->data, offs, void), size); write_index += size; spa_ringbuffer_write_update(&impl->ring, write_index); pw_stream_queue_buffer(impl->stream, buf); } static void capture_stream_process(void *d) { struct impl *impl = d; struct pw_buffer *buf; struct spa_data *bd; int32_t avail; uint32_t size, req, index; if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) { pw_log_debug("out of buffers: %m"); return; } bd = &buf->buffer->datas[0]; if ((req = buf->requested * impl->frame_size) == 0) req = 4096 * impl->frame_size; size = SPA_MIN(bd->maxsize, req); avail = spa_ringbuffer_get_read_index(&impl->ring, &index); if (avail < (int32_t)size) { memset(bd->data, 0, size); } else { if (avail > (int32_t)RINGBUFFER_SIZE) { avail = impl->target_buffer; index += avail - impl->target_buffer; } else { update_rate(impl, false); } spa_ringbuffer_read_data(&impl->ring, impl->buffer, RINGBUFFER_SIZE, index & RINGBUFFER_MASK, bd->data, size); index += size; spa_ringbuffer_read_update(&impl->ring, index); } bd->chunk->offset = 0; bd->chunk->size = size; bd->chunk->stride = impl->frame_size; pw_stream_queue_buffer(impl->stream, buf); } static void stream_io_changed(void *data, uint32_t id, void *area, uint32_t size) { struct impl *impl = data; switch (id) { case SPA_IO_RateMatch: impl->rate_match = area; break; } } static const struct pw_stream_events playback_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = stream_destroy, .state_changed = stream_state_changed, .io_changed = stream_io_changed, .process = playback_stream_process }; static const struct pw_stream_events capture_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = stream_destroy, .state_changed = stream_state_changed, .io_changed = stream_io_changed, .process = capture_stream_process }; static int create_stream(struct impl *impl) { int res; uint32_t n_params; const struct spa_pod *params[2]; uint8_t buffer[1024]; struct spa_pod_builder b; struct spa_latency_info latency; impl->stream = pw_stream_new(impl->core, "pulse", impl->stream_props); impl->stream_props = NULL; if (impl->stream == NULL) return -errno; if (impl->mode == MODE_SOURCE) { pw_stream_add_listener(impl->stream, &impl->stream_listener, &capture_stream_events, impl); } else { pw_stream_add_listener(impl->stream, &impl->stream_listener, &playback_stream_events, impl); } n_params = 0; spa_pod_builder_init(&b, buffer, sizeof(buffer)); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &impl->info); spa_zero(latency); latency.direction = impl->mode == MODE_SOURCE ? PW_DIRECTION_OUTPUT : PW_DIRECTION_INPUT; latency.min_ns = latency.max_ns = impl->latency_msec * SPA_NSEC_PER_MSEC; params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &latency); if ((res = pw_stream_connect(impl->stream, impl->mode == MODE_SOURCE ? PW_DIRECTION_OUTPUT : PW_DIRECTION_INPUT, PW_ID_ANY, PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_RT_PROCESS, params, n_params)) < 0) return res; return 0; } static void context_state_cb(pa_context *c, void *userdata) { struct impl *impl = userdata; bool do_destroy = false; switch (pa_context_get_state(c)) { case PA_CONTEXT_TERMINATED: case PA_CONTEXT_FAILED: do_destroy = true; SPA_FALLTHROUGH; case PA_CONTEXT_READY: pa_threaded_mainloop_signal(impl->pa_mainloop, 0); break; case PA_CONTEXT_UNCONNECTED: do_destroy = true; break; case PA_CONTEXT_CONNECTING: case PA_CONTEXT_AUTHORIZING: case PA_CONTEXT_SETTING_NAME: break; } if (do_destroy) pw_impl_module_schedule_destroy(impl->module); } static void stream_state_cb(pa_stream *s, void * userdata) { struct impl *impl = userdata; bool do_destroy = false; switch (pa_stream_get_state(s)) { case PA_STREAM_FAILED: case PA_STREAM_TERMINATED: do_destroy = true; SPA_FALLTHROUGH; case PA_STREAM_READY: pa_threaded_mainloop_signal(impl->pa_mainloop, 0); break; case PA_STREAM_UNCONNECTED: do_destroy = true; break; case PA_STREAM_CREATING: break; } if (do_destroy) pw_impl_module_schedule_destroy(impl->module); } static void stream_read_request_cb(pa_stream *s, size_t length, void *userdata) { struct impl *impl = userdata; int32_t filled; uint32_t index; pa_usec_t latency; int negative; filled = spa_ringbuffer_get_write_index(&impl->ring, &index); if (filled < 0) { pw_log_warn("%p: underrun write:%u filled:%d", impl, index, filled); } else if (filled + length > RINGBUFFER_SIZE) { pw_log_warn("%p: overrun write:%u filled:%d", impl, index, filled); } while (length > 0) { const void *p; size_t nbytes = 0; if (SPA_UNLIKELY(pa_stream_peek(impl->pa_stream, &p, &nbytes) != 0)) { pw_log_error("pa_stream_peek() failed: %s", pa_strerror(pa_context_errno(impl->pa_context))); return; } pw_log_debug("read %zd nbytes:%zd", length, nbytes); if (length < nbytes) break; while (nbytes > 0) { uint32_t to_write = SPA_MIN(nbytes, sizeof(impl->empty)); spa_ringbuffer_write_data(&impl->ring, impl->buffer, RINGBUFFER_SIZE, index & RINGBUFFER_MASK, p ? p : impl->empty, to_write); index += to_write; p = p ? SPA_PTROFF(p, to_write, void) : NULL; nbytes -= to_write; length -= to_write; filled += to_write; } pa_stream_drop(impl->pa_stream); } pa_stream_get_latency(impl->pa_stream, &latency, &negative); impl->current_latency = latency * impl->info.rate / SPA_USEC_PER_SEC; impl->current_latency += filled / impl->frame_size; spa_ringbuffer_write_update(&impl->ring, index); } static void stream_write_request_cb(pa_stream *s, size_t length, void *userdata) { struct impl *impl = userdata; int32_t avail; uint32_t index; size_t size; pa_usec_t latency; int negative, res; if (impl->resync) { impl->resync = false; avail = length + impl->target_buffer; spa_ringbuffer_get_write_index(&impl->ring, &index); index -= avail; } else { avail = spa_ringbuffer_get_read_index(&impl->ring, &index); } pa_stream_get_latency(impl->pa_stream, &latency, &negative); impl->current_latency = latency * impl->info.rate / SPA_USEC_PER_SEC; impl->current_latency += avail / impl->frame_size; while (avail < (int32_t)length) { uint32_t maxsize = SPA_ROUND_DOWN(sizeof(impl->empty), impl->frame_size); /* send silence for the data we don't have */ size = SPA_MIN(length - avail, maxsize); if ((res = pa_stream_write(impl->pa_stream, impl->empty, size, NULL, 0, PA_SEEK_RELATIVE)) != 0) pw_log_warn("error writing stream: %s", pa_strerror(res)); length -= size; } while (length > 0 && avail >= (int32_t)length) { void *data; size = length; pa_stream_begin_write(impl->pa_stream, &data, &size); spa_ringbuffer_read_data(&impl->ring, impl->buffer, RINGBUFFER_SIZE, index & RINGBUFFER_MASK, data, size); if ((res = pa_stream_write(impl->pa_stream, data, size, NULL, 0, PA_SEEK_RELATIVE)) != 0) pw_log_warn("error writing stream: %zd %s", size, pa_strerror(res)); index += size; length -= size; avail -= size; spa_ringbuffer_read_update(&impl->ring, index); } } static void stream_underflow_cb(pa_stream *s, void *userdata) { struct impl *impl = userdata; struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); if (ratelimit_test(&impl->rate_limit, SPA_TIMESPEC_TO_NSEC(&ts), SPA_LOG_LEVEL_WARN)) pw_log_warn("underflow"); impl->resync = true; } static void stream_overflow_cb(pa_stream *s, void *userdata) { struct impl *impl = userdata; struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); if (ratelimit_test(&impl->rate_limit, SPA_TIMESPEC_TO_NSEC(&ts), SPA_LOG_LEVEL_WARN)) pw_log_warn("overflow"); impl->resync = true; } static void stream_latency_update_cb(pa_stream *s, void *userdata) { struct impl *impl = userdata; pa_usec_t usec; int negative; pa_stream_get_latency(s, &usec, &negative); pw_log_debug("latency %ld negative %d", usec, negative); pa_threaded_mainloop_signal(impl->pa_mainloop, 0); } static pa_proplist* tunnel_new_proplist(struct impl *impl) { pa_proplist *proplist = pa_proplist_new(); pa_proplist_sets(proplist, PA_PROP_APPLICATION_NAME, "PipeWire"); pa_proplist_sets(proplist, PA_PROP_APPLICATION_ID, "org.pipewire.PipeWire"); pa_proplist_sets(proplist, PA_PROP_APPLICATION_VERSION, PACKAGE_VERSION); return proplist; } static int create_pulse_stream(struct impl *impl) { pa_sample_spec ss; pa_channel_map map; const char *server_address, *remote_node_target; pa_proplist *props = NULL; pa_mainloop_api *api; char stream_name[1024]; pa_buffer_attr bufferattr; int res = -EIO; uint32_t latency_bytes, i, aux = 0; if ((impl->pa_mainloop = pa_threaded_mainloop_new()) == NULL) goto error; api = pa_threaded_mainloop_get_api(impl->pa_mainloop); props = tunnel_new_proplist(impl); impl->pa_context = pa_context_new_with_proplist(api, "PipeWire", props); pa_proplist_free(props); if (impl->pa_context == NULL) goto error; pa_context_set_state_callback(impl->pa_context, context_state_cb, impl); server_address = pw_properties_get(impl->props, "pulse.server.address"); if (pa_context_connect(impl->pa_context, server_address, 0, NULL) < 0) { res = pa_context_errno(impl->pa_context); goto error; } pa_threaded_mainloop_lock(impl->pa_mainloop); if (pa_threaded_mainloop_start(impl->pa_mainloop) < 0) goto error_unlock; for (;;) { pa_context_state_t state; state = pa_context_get_state(impl->pa_context); if (state == PA_CONTEXT_READY) break; if (!PA_CONTEXT_IS_GOOD(state)) { res = pa_context_errno(impl->pa_context); goto error_unlock; } /* Wait until the context is ready */ pa_threaded_mainloop_wait(impl->pa_mainloop); } ss.format = (pa_sample_format_t) format_id2pa(impl->info.format); ss.channels = impl->info.channels; ss.rate = impl->info.rate; map.channels = impl->info.channels; for (i = 0; i < map.channels; i++) map.map[i] = (pa_channel_position_t)channel_id2pa(impl->info.position[i], &aux); snprintf(stream_name, sizeof(stream_name), _("Tunnel for %s@%s"), pw_get_user_name(), pw_get_host_name()); if (!(impl->pa_stream = pa_stream_new(impl->pa_context, stream_name, &ss, &map))) { res = pa_context_errno(impl->pa_context); goto error_unlock; } pa_stream_set_state_callback(impl->pa_stream, stream_state_cb, impl); pa_stream_set_read_callback(impl->pa_stream, stream_read_request_cb, impl); pa_stream_set_write_callback(impl->pa_stream, stream_write_request_cb, impl); pa_stream_set_underflow_callback(impl->pa_stream, stream_underflow_cb, impl); pa_stream_set_overflow_callback(impl->pa_stream, stream_overflow_cb, impl); pa_stream_set_latency_update_callback(impl->pa_stream, stream_latency_update_cb, impl); remote_node_target = pw_properties_get(impl->props, PW_KEY_TARGET_OBJECT); bufferattr.fragsize = (uint32_t) -1; bufferattr.minreq = (uint32_t) -1; bufferattr.maxlength = (uint32_t) -1; bufferattr.prebuf = (uint32_t) -1; latency_bytes = pa_usec_to_bytes(impl->latency_msec * SPA_USEC_PER_MSEC, &ss); impl->target_latency = latency_bytes / impl->frame_size; /* half in our buffer, half in the network + remote */ impl->target_buffer = latency_bytes / 2; if (impl->mode == MODE_SOURCE) { bufferattr.fragsize = latency_bytes / 2; res = pa_stream_connect_record(impl->pa_stream, remote_node_target, &bufferattr, PA_STREAM_DONT_MOVE | PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE); } else { bufferattr.tlength = latency_bytes / 2; bufferattr.minreq = bufferattr.tlength / 4; bufferattr.prebuf = bufferattr.tlength; res = pa_stream_connect_playback(impl->pa_stream, remote_node_target, &bufferattr, PA_STREAM_DONT_MOVE | PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE, NULL, NULL); } if (res < 0) { res = pa_context_errno(impl->pa_context); goto error_unlock; } for (;;) { pa_stream_state_t state; state = pa_stream_get_state(impl->pa_stream); if (state == PA_STREAM_READY) break; if (!PA_STREAM_IS_GOOD(state)) { res = pa_context_errno(impl->pa_context); goto error_unlock; } /* Wait until the stream is ready */ pa_threaded_mainloop_wait(impl->pa_mainloop); } pa_threaded_mainloop_unlock(impl->pa_mainloop); return 0; error_unlock: pa_threaded_mainloop_unlock(impl->pa_mainloop); error: pw_log_error("failed to connect: %s", pa_strerror(res)); return -res; } static void core_error(void *data, uint32_t id, int seq, int res, const char *message) { struct impl *impl = data; pw_log_error("error id:%u seq:%d res:%d (%s): %s", id, seq, res, spa_strerror(res), message); if (id == PW_ID_CORE && res == -EPIPE) pw_impl_module_schedule_destroy(impl->module); } static const struct pw_core_events core_events = { PW_VERSION_CORE_EVENTS, .error = core_error, }; static void core_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->core_listener); impl->core = NULL; pw_impl_module_schedule_destroy(impl->module); } static const struct pw_proxy_events core_proxy_events = { .destroy = core_destroy, }; static void impl_destroy(struct impl *impl) { if (impl->pa_mainloop) pa_threaded_mainloop_stop(impl->pa_mainloop); if (impl->pa_stream) pa_stream_unref(impl->pa_stream); if (impl->pa_context) { pa_context_disconnect(impl->pa_context); pa_context_unref(impl->pa_context); } if (impl->pa_mainloop) pa_threaded_mainloop_free(impl->pa_mainloop); if (impl->stream) pw_stream_destroy(impl->stream); if (impl->core && impl->do_disconnect) pw_core_disconnect(impl->core); pw_properties_free(impl->stream_props); pw_properties_free(impl->props); free(impl->buffer); free(impl); } static void module_destroy(void *data) { struct impl *impl = data; spa_hook_remove(&impl->module_listener); impl_destroy(impl); } static const struct pw_impl_module_events module_events = { PW_VERSION_IMPL_MODULE_EVENTS, .destroy = module_destroy, }; static uint32_t channel_from_name(const char *name) { int i; for (i = 0; spa_type_audio_channel[i].name; i++) { if (spa_streq(name, spa_debug_type_short_name(spa_type_audio_channel[i].name))) return spa_type_audio_channel[i].type; } return SPA_AUDIO_CHANNEL_UNKNOWN; } static void parse_position(struct spa_audio_info_raw *info, const char *val, size_t len) { struct spa_json it[2]; char v[256]; spa_json_init(&it[0], val, len); if (spa_json_enter_array(&it[0], &it[1]) <= 0) spa_json_init(&it[1], val, len); info->channels = 0; while (spa_json_get_string(&it[1], v, sizeof(v)) > 0 && info->channels < SPA_AUDIO_MAX_CHANNELS) { info->position[info->channels++] = channel_from_name(v); } } static inline uint32_t format_from_name(const char *name, size_t len) { int i; for (i = 0; spa_type_audio_format[i].name; i++) { if (strncmp(name, spa_debug_type_short_name(spa_type_audio_format[i].name), len) == 0) return spa_type_audio_format[i].type; } return SPA_AUDIO_FORMAT_UNKNOWN; } static void parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info) { const char *str; spa_zero(*info); if ((str = pw_properties_get(props, PW_KEY_AUDIO_FORMAT)) == NULL) str = DEFAULT_FORMAT; info->format = format_from_name(str, strlen(str)); info->rate = pw_properties_get_uint32(props, PW_KEY_AUDIO_RATE, info->rate); if (info->rate == 0) info->rate = DEFAULT_RATE; info->channels = pw_properties_get_uint32(props, PW_KEY_AUDIO_CHANNELS, info->channels); info->channels = SPA_MIN(info->channels, SPA_AUDIO_MAX_CHANNELS); if ((str = pw_properties_get(props, SPA_KEY_AUDIO_POSITION)) != NULL) parse_position(info, str, strlen(str)); if (info->channels == 0) parse_position(info, DEFAULT_POSITION, strlen(DEFAULT_POSITION)); } static int calc_frame_size(struct spa_audio_info_raw *info) { int res = info->channels; switch (info->format) { case SPA_AUDIO_FORMAT_U8: case SPA_AUDIO_FORMAT_S8: case SPA_AUDIO_FORMAT_ALAW: case SPA_AUDIO_FORMAT_ULAW: return res; case SPA_AUDIO_FORMAT_S16: case SPA_AUDIO_FORMAT_S16_OE: case SPA_AUDIO_FORMAT_U16: return res * 2; case SPA_AUDIO_FORMAT_S24: case SPA_AUDIO_FORMAT_S24_OE: case SPA_AUDIO_FORMAT_U24: return res * 3; case SPA_AUDIO_FORMAT_S24_32: case SPA_AUDIO_FORMAT_S24_32_OE: case SPA_AUDIO_FORMAT_S32: case SPA_AUDIO_FORMAT_S32_OE: case SPA_AUDIO_FORMAT_U32: case SPA_AUDIO_FORMAT_U32_OE: case SPA_AUDIO_FORMAT_F32: case SPA_AUDIO_FORMAT_F32_OE: return res * 4; case SPA_AUDIO_FORMAT_F64: case SPA_AUDIO_FORMAT_F64_OE: return res * 8; default: return 0; } } static void copy_props(struct impl *impl, struct pw_properties *props, const char *key) { const char *str; if ((str = pw_properties_get(props, key)) != NULL) { if (pw_properties_get(impl->stream_props, key) == NULL) pw_properties_set(impl->stream_props, key, str); } } SPA_EXPORT int pipewire__module_init(struct pw_impl_module *module, const char *args) { struct pw_context *context = pw_impl_module_get_context(module); struct pw_properties *props = NULL; struct impl *impl; const char *str; int res; PW_LOG_TOPIC_INIT(mod_topic); impl = calloc(1, sizeof(struct impl)); if (impl == NULL) return -errno; pw_log_debug("module %p: new %s", impl, args); if (args == NULL) args = ""; props = pw_properties_new_string(args); if (props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->props = props; impl->stream_props = pw_properties_new(NULL, NULL); if (impl->stream_props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->module = module; impl->context = context; spa_ringbuffer_init(&impl->ring); impl->buffer = calloc(1, RINGBUFFER_SIZE); spa_dll_init(&impl->dll); impl->rate_limit.interval = 2 * SPA_NSEC_PER_SEC; impl->rate_limit.burst = 1; if ((str = pw_properties_get(props, "tunnel.mode")) != NULL) { if (spa_streq(str, "source")) { impl->mode = MODE_SOURCE; } else if (spa_streq(str, "sink")) { impl->mode = MODE_SINK; } else { pw_log_error("invalid tunnel.mode '%s'", str); res = -EINVAL; goto error; } } impl->latency_msec = pw_properties_get_uint32(props, "pulse.latency", DEFAULT_LATENCY_MSEC); if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL) pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true"); if (pw_properties_get(props, PW_KEY_NODE_NETWORK) == NULL) pw_properties_set(props, PW_KEY_NODE_NETWORK, "true"); if (pw_properties_get(props, PW_KEY_MEDIA_CLASS) == NULL) pw_properties_set(props, PW_KEY_MEDIA_CLASS, impl->mode == MODE_SINK ? "Audio/Sink" : "Audio/Source"); if ((str = pw_properties_get(props, "stream.props")) != NULL) pw_properties_update_string(impl->stream_props, str, strlen(str)); copy_props(impl, props, PW_KEY_AUDIO_FORMAT); copy_props(impl, props, PW_KEY_AUDIO_RATE); copy_props(impl, props, PW_KEY_AUDIO_CHANNELS); copy_props(impl, props, SPA_KEY_AUDIO_POSITION); copy_props(impl, props, PW_KEY_NODE_NAME); copy_props(impl, props, PW_KEY_NODE_DESCRIPTION); copy_props(impl, props, PW_KEY_NODE_GROUP); copy_props(impl, props, PW_KEY_NODE_LATENCY); copy_props(impl, props, PW_KEY_NODE_VIRTUAL); copy_props(impl, props, PW_KEY_NODE_NETWORK); copy_props(impl, props, PW_KEY_MEDIA_CLASS); parse_audio_info(impl->stream_props, &impl->info); impl->frame_size = calc_frame_size(&impl->info); if (impl->frame_size == 0) { pw_log_error("unsupported audio format:%d channels:%d", impl->info.format, impl->info.channels); res = -EINVAL; goto error; } spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 128, impl->info.rate); impl->max_error = 256.0f; impl->core = pw_context_get_object(impl->context, PW_TYPE_INTERFACE_Core); if (impl->core == NULL) { str = pw_properties_get(props, PW_KEY_REMOTE_NAME); impl->core = pw_context_connect(impl->context, pw_properties_new( PW_KEY_REMOTE_NAME, str, NULL), 0); impl->do_disconnect = true; } if (impl->core == NULL) { res = -errno; pw_log_error("can't connect: %m"); goto error; } pw_proxy_add_listener((struct pw_proxy*)impl->core, &impl->core_proxy_listener, &core_proxy_events, impl); pw_core_add_listener(impl->core, &impl->core_listener, &core_events, impl); if ((res = create_pulse_stream(impl)) < 0) goto error; if ((res = create_stream(impl)) < 0) goto error; pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl); pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_props)); return 0; error: impl_destroy(impl); return res; }