#include #include #include #include #include #include #include #include static int verbose = 0; /* verbose flag */ #if 0 static void generate_sine(const snd_pcm_channel_area_t *areas, snd_pcm_uframes_t offset, int count, double *_phase) { static double max_phase = 2. * M_PI; double phase = *_phase; double step = max_phase*freq/(double)rate; unsigned char *samples[channels]; int steps[channels]; unsigned int chn; int format_bits = snd_pcm_format_width(format); unsigned int maxval = (1 << (format_bits - 1)) - 1; int bps = format_bits / 8; /* bytes per sample */ int phys_bps = snd_pcm_format_physical_width(format) / 8; int big_endian = snd_pcm_format_big_endian(format) == 1; int to_unsigned = snd_pcm_format_unsigned(format) == 1; int is_float = (format == SND_PCM_FORMAT_FLOAT_LE || format == SND_PCM_FORMAT_FLOAT_BE); /* verify and prepare the contents of areas */ for (chn = 0; chn < channels; chn++) { if ((areas[chn].first % 8) != 0) { printf("areas[%i].first == %i, aborting...\n", chn, areas[chn].first); exit(EXIT_FAILURE); } samples[chn] = /*(signed short *)*/(((unsigned char *)areas[chn].addr) + (areas[chn].first / 8)); if ((areas[chn].step % 16) != 0) { printf("areas[%i].step == %i, aborting...\n", chn, areas[chn].step); exit(EXIT_FAILURE); } steps[chn] = areas[chn].step / 8; samples[chn] += offset * steps[chn]; } /* fill the channel areas */ while (count-- > 0) { union { float f; int i; } fval; int res, i; if (is_float) { fval.f = sin(phase) * maxval; res = fval.i; } else res = sin(phase) * maxval; if (to_unsigned) res ^= 1U << (format_bits - 1); for (chn = 0; chn < channels; chn++) { /* Generate data in native endian format */ if (big_endian) { for (i = 0; i < bps; i++) *(samples[chn] + phys_bps - 1 - i) = (res >> i * 8) & 0xff; } else { for (i = 0; i < bps; i++) *(samples[chn] + i) = (res >> i * 8) & 0xff; } samples[chn] += steps[chn]; } phase += step; if (phase >= max_phase) phase -= max_phase; } *_phase = phase; } #endif #define CHECK(s,msg) if ((err = (s)) < 0) { printf (msg ": %s\n", snd_strerror(err)); return err; } static snd_pcm_format_t spi_alsa_format_to_alsa (const char *format) { if (strcmp (format, "S8") == 0) return SND_PCM_FORMAT_S8; if (strcmp (format, "U8") == 0) return SND_PCM_FORMAT_U8; /* 16 bit */ if (strcmp (format, "S16LE") == 0) return SND_PCM_FORMAT_S16_LE; if (strcmp (format, "S16BE") == 0) return SND_PCM_FORMAT_S16_BE; if (strcmp (format, "U16LE") == 0) return SND_PCM_FORMAT_U16_LE; if (strcmp (format, "U16BE") == 0) return SND_PCM_FORMAT_U16_BE; /* 24 bit in low 3 bytes of 32 bits */ if (strcmp (format, "S24_32LE") == 0) return SND_PCM_FORMAT_S24_LE; if (strcmp (format, "S24_32BE") == 0) return SND_PCM_FORMAT_S24_BE; if (strcmp (format, "U24_32LE") == 0) return SND_PCM_FORMAT_U24_LE; if (strcmp (format, "U24_32BE") == 0) return SND_PCM_FORMAT_U24_BE; /* 24 bit in 3 bytes */ if (strcmp (format, "S24LE") == 0) return SND_PCM_FORMAT_S24_3LE; if (strcmp (format, "S24BE") == 0) return SND_PCM_FORMAT_S24_3BE; if (strcmp (format, "U24LE") == 0) return SND_PCM_FORMAT_U24_3LE; if (strcmp (format, "U24BE") == 0) return SND_PCM_FORMAT_U24_3BE; /* 32 bit */ if (strcmp (format, "S32LE") == 0) return SND_PCM_FORMAT_S32_LE; if (strcmp (format, "S32BE") == 0) return SND_PCM_FORMAT_S32_BE; if (strcmp (format, "U32LE") == 0) return SND_PCM_FORMAT_U32_LE; if (strcmp (format, "U32BE") == 0) return SND_PCM_FORMAT_U32_BE; return SND_PCM_FORMAT_UNKNOWN; } static int set_hwparams (SpiALSASink *this) { unsigned int rrate; snd_pcm_uframes_t size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t format; SpiALSAState *state = &this->state; SpiALSASinkFormat *fmt = &this->current_format; snd_pcm_t *handle = state->handle; unsigned int buffer_time; unsigned int period_time; snd_pcm_hw_params_alloca (¶ms); /* choose all parameters */ CHECK (snd_pcm_hw_params_any (handle, params), "Broken configuration for playback: no configurations available"); /* set hardware resampling */ CHECK (snd_pcm_hw_params_set_rate_resample (handle, params, 0), "set_rate_resample"); /* set the interleaved read/write format */ CHECK (snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set_access"); /* set the sample format */ format = spi_alsa_format_to_alsa (fmt->format); printf ("Stream parameters are %iHz, %s, %i channels\n", fmt->samplerate, snd_pcm_format_name(format), fmt->channels); CHECK (snd_pcm_hw_params_set_format (handle, params, format), "set_format"); /* set the count of channels */ CHECK (snd_pcm_hw_params_set_channels (handle, params, fmt->channels), "set_channels"); /* set the stream rate */ rrate = fmt->samplerate; CHECK (snd_pcm_hw_params_set_rate_near (handle, params, &rrate, 0), "set_rate_near"); if (rrate != fmt->samplerate) { printf("Rate doesn't match (requested %iHz, get %iHz)\n", fmt->samplerate, rrate); return -EINVAL; } /* set the buffer time */ buffer_time = this->params.buffer_time; CHECK (snd_pcm_hw_params_set_buffer_time_near (handle, params, &buffer_time, &dir), "set_buffer_time_near"); CHECK (snd_pcm_hw_params_get_buffer_size (params, &size), "get_buffer_size"); state->buffer_size = size; /* set the period time */ period_time = this->params.period_time; CHECK (snd_pcm_hw_params_set_period_time_near (handle, params, &period_time, &dir), "set_period_time_near"); CHECK (snd_pcm_hw_params_get_period_size (params, &size, &dir), "get_period_size"); state->period_size = size; /* write the parameters to device */ CHECK (snd_pcm_hw_params (handle, params), "set_hw_params"); return 0; } static int set_swparams (SpiALSASink *this) { SpiALSAState *state = &this->state; snd_pcm_t *handle = state->handle; int err = 0; snd_pcm_sw_params_t *params; snd_pcm_sw_params_alloca (¶ms); /* get the current params */ CHECK (snd_pcm_sw_params_current (handle, params), "sw_params_current"); /* start the transfer when the buffer is almost full: */ /* (buffer_size / avail_min) * avail_min */ CHECK (snd_pcm_sw_params_set_start_threshold (handle, params, (state->buffer_size / state->period_size) * state->period_size), "set_start_threshold"); /* allow the transfer when at least period_size samples can be processed */ /* or disable this mechanism when period event is enabled (aka interrupt like style processing) */ CHECK (snd_pcm_sw_params_set_avail_min (handle, params, this->params.period_event ? state->buffer_size : state->period_size), "set_avail_min"); /* enable period events when requested */ if (this->params.period_event) { CHECK (snd_pcm_sw_params_set_period_event (handle, params, 1), "set_period_event"); } /* write the parameters to the playback device */ CHECK (snd_pcm_sw_params (handle, params), "sw_params"); return 0; } /* * Underrun and suspend recovery */ static int xrun_recovery (snd_pcm_t *handle, int err) { if (verbose) printf("stream recovery\n"); if (err == -EPIPE) { /* under-run */ err = snd_pcm_prepare(handle); if (err < 0) printf("Can't recovery from underrun, prepare failed: %s\n", snd_strerror(err)); return 0; } else if (err == -ESTRPIPE) { while ((err = snd_pcm_resume(handle)) == -EAGAIN) sleep(1); /* wait until the suspend flag is released */ if (err < 0) { err = snd_pcm_prepare(handle); if (err < 0) printf("Can't recovery from suspend, prepare failed: %s\n", snd_strerror(err)); } return 0; } return err; } #if 0 /* * Transfer method - write and wait for room in buffer using poll */ static int wait_for_poll (snd_pcm_t *handle, struct pollfd *ufds, unsigned int count) { unsigned short revents; while (1) { poll(ufds, count, -1); snd_pcm_poll_descriptors_revents(handle, ufds, count, &revents); if (revents & POLLERR) return -EIO; if (revents & POLLOUT) return 0; } } #endif /* * Transfer method - direct write only */ static void * direct_loop (void *user_data) { SpiALSASink *this = user_data; SpiALSAState *state = &this->state; snd_pcm_t *handle = state->handle; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t offset, frames, size; snd_pcm_sframes_t avail, commitres; snd_pcm_state_t st; int err, first = 1; while (state->running) { st = snd_pcm_state(handle); if (st == SND_PCM_STATE_XRUN) { err = xrun_recovery(handle, -EPIPE); if (err < 0) { printf("XRUN recovery failed: %s\n", snd_strerror(err)); return NULL; } first = 1; } else if (st == SND_PCM_STATE_SUSPENDED) { err = xrun_recovery(handle, -ESTRPIPE); if (err < 0) { printf("SUSPEND recovery failed: %s\n", snd_strerror(err)); return NULL; } } avail = snd_pcm_avail_update(handle); if (avail < 0) { err = xrun_recovery(handle, avail); if (err < 0) { printf("avail update failed: %s\n", snd_strerror(err)); return NULL; } first = 1; continue; } if (avail < state->period_size) { if (first) { first = 0; err = snd_pcm_start(handle); if (err < 0) { printf("Start error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } else { err = snd_pcm_wait(handle, -1); if (err < 0) { if ((err = xrun_recovery(handle, err)) < 0) { printf("snd_pcm_wait error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } } continue; } size = state->period_size; while (size > 0) { frames = size; err = snd_pcm_mmap_begin(handle, &my_areas, &offset, &frames); if (err < 0) { if ((err = xrun_recovery(handle, err)) < 0) { printf("MMAP begin avail error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } { SpiEvent event; ALSABuffer *buffer = &this->buffer; event.refcount = 1; event.notify = NULL; event.type = SPI_EVENT_TYPE_REQUEST_DATA; event.port_id = 0; event.data = buffer; buffer->buffer.refcount = 1; buffer->buffer.notify = NULL; buffer->buffer.size = sizeof (ALSABuffer); buffer->buffer.n_metas = 1; buffer->buffer.metas = buffer->meta; buffer->buffer.n_datas = 1; buffer->buffer.datas = buffer->data; buffer->header.flags = 0; buffer->header.seq = 0; buffer->header.pts = 0; buffer->header.dts_offset = 0; buffer->meta[0].type = SPI_META_TYPE_HEADER; buffer->meta[0].data = &buffer->header; buffer->meta[0].size = sizeof (buffer->header); buffer->data[0].type = SPI_DATA_TYPE_MEMPTR; buffer->data[0].data = (uint8_t *)my_areas[0].addr + (offset * sizeof (uint16_t) * 2); buffer->data[0].size = frames * sizeof (uint16_t) * 2; printf ("fill data\n"); this->event_cb (&this->node, &event,this->user_data); spi_buffer_unref ((SpiBuffer *)event.data); } if (this->input_buffer) { if (this->input_buffer != &this->buffer.buffer) { printf ("copy input !\n"); } spi_buffer_unref (this->input_buffer); this->input_buffer = NULL; } commitres = snd_pcm_mmap_commit(handle, offset, frames); if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) { if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) { printf("MMAP commit error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } size -= frames; } } return NULL; } static int spi_alsa_open (SpiALSASink *this) { SpiALSAState *state = &this->state; int err; CHECK (snd_output_stdio_attach (&state->output, stdout, 0), "attach failed"); printf ("Playback device is '%s'\n", this->params.device); CHECK (snd_pcm_open (&state->handle, this->params.device, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "open failed"); return 0; } static int spi_alsa_start (SpiALSASink *this) { SpiALSAState *state = &this->state; int err; CHECK (set_hwparams (this), "hwparams"); CHECK (set_swparams (this), "swparams"); state->running = true; if ((err = pthread_create (&state->thread, NULL, direct_loop, this)) != 0) { printf ("can't create thread: %d", err); state->running = false; } return err; } static int spi_alsa_stop (SpiALSASink *this) { SpiALSAState *state = &this->state; if (state->running) { state->running = false; pthread_join (state->thread, NULL); } return 0; } static int spi_alsa_close (SpiALSASink *this) { SpiALSAState *state = &this->state; int err = 0; CHECK (snd_pcm_close (state->handle), "close failed"); return err; }