#include #include #include #include #include #include #include #include #include #include #include #include "alsa-utils.h" #define CHECK(s,msg) if ((err = (s)) < 0) { spa_log_error (state->log, msg ": %s", snd_strerror(err)); return err; } static int spa_alsa_open (SpaALSAState *state) { int err; SpaALSAProps *props = &state->props; if (state->opened) return 0; CHECK (snd_output_stdio_attach (&state->output, stderr, 0), "attach failed"); spa_log_info (state->log, "ALSA device open '%s'", props->device); CHECK (snd_pcm_open (&state->hndl, props->device, state->stream, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "open failed"); state->timerfd = timerfd_create (CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK); state->opened = true; return 0; } int spa_alsa_close (SpaALSAState *state) { int err = 0; if (!state->opened) return 0; spa_log_info (state->log, "Device closing"); CHECK (snd_pcm_close (state->hndl), "close failed"); close (state->timerfd); state->opened = false; return err; } typedef struct { off_t format_offset; snd_pcm_format_t format; } FormatInfo; #if __BYTE_ORDER == __BIG_ENDIAN #define _FORMAT_LE(fmt) offsetof(Type, audio_format. fmt ## _OE) #define _FORMAT_BE(fmt) offsetof(Type, audio_format. fmt) #elif __BYTE_ORDER == __LITTLE_ENDIAN #define _FORMAT_LE(fmt) offsetof(Type, audio_format. fmt) #define _FORMAT_BE(fmt) offsetof(Type, audio_format. fmt ## _OE) #endif static const FormatInfo format_info[] = { { offsetof(Type, audio_format.UNKNOWN), SND_PCM_FORMAT_UNKNOWN }, { offsetof(Type, audio_format.S8), SND_PCM_FORMAT_S8 }, { offsetof(Type, audio_format.U8), SND_PCM_FORMAT_U8 }, { _FORMAT_LE (S16), SND_PCM_FORMAT_S16_LE }, { _FORMAT_BE (S16), SND_PCM_FORMAT_S16_BE }, { _FORMAT_LE (U16), SND_PCM_FORMAT_U16_LE }, { _FORMAT_BE (U16), SND_PCM_FORMAT_U16_BE }, { _FORMAT_LE (S24_32), SND_PCM_FORMAT_S24_LE }, { _FORMAT_BE (S24_32), SND_PCM_FORMAT_S24_BE }, { _FORMAT_LE (U24_32), SND_PCM_FORMAT_U24_LE }, { _FORMAT_BE (U24_32), SND_PCM_FORMAT_U24_BE }, { _FORMAT_LE (S24), SND_PCM_FORMAT_S24_3LE }, { _FORMAT_BE (S24), SND_PCM_FORMAT_S24_3BE }, { _FORMAT_LE (U24), SND_PCM_FORMAT_U24_3LE }, { _FORMAT_BE (U24), SND_PCM_FORMAT_U24_3BE }, { _FORMAT_LE (S32), SND_PCM_FORMAT_S32_LE }, { _FORMAT_BE (S32), SND_PCM_FORMAT_S32_BE }, { _FORMAT_LE (U32), SND_PCM_FORMAT_U32_LE }, { _FORMAT_BE (U32), SND_PCM_FORMAT_U32_BE }, }; static snd_pcm_format_t spa_alsa_format_to_alsa (Type *map, uint32_t format) { int i; for (i = 0; i < SPA_N_ELEMENTS (format_info); i++) { uint32_t f = *SPA_MEMBER (map, format_info[i].format_offset, uint32_t); if (f == format) return format_info[i].format; } return SND_PCM_FORMAT_UNKNOWN; } int spa_alsa_set_format (SpaALSAState *state, SpaAudioInfo *fmt, SpaPortFormatFlags flags) { unsigned int rrate, rchannels; snd_pcm_uframes_t period_size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t format; SpaAudioInfoRaw *info = &fmt->info.raw; snd_pcm_t *hndl; unsigned int periods; if ((err = spa_alsa_open (state)) < 0) return err; hndl = state->hndl; snd_pcm_hw_params_alloca (¶ms); /* choose all parameters */ CHECK (snd_pcm_hw_params_any (hndl, params), "Broken configuration for playback: no configurations available"); /* set hardware resampling */ CHECK (snd_pcm_hw_params_set_rate_resample (hndl, params, 0), "set_rate_resample"); /* set the interleaved read/write format */ CHECK (snd_pcm_hw_params_set_access(hndl, params, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set_access"); /* disable ALSA wakeups, we use a timer */ if (snd_pcm_hw_params_can_disable_period_wakeup (params)) CHECK (snd_pcm_hw_params_set_period_wakeup (hndl, params, 0), "set_period_wakeup"); /* set the sample format */ format = spa_alsa_format_to_alsa (&state->type, info->format); spa_log_info (state->log, "Stream parameters are %iHz, %s, %i channels", info->rate, snd_pcm_format_name(format), info->channels); CHECK (snd_pcm_hw_params_set_format (hndl, params, format), "set_format"); /* set the count of channels */ rchannels = info->channels; CHECK (snd_pcm_hw_params_set_channels_near (hndl, params, &rchannels), "set_channels"); if (rchannels != info->channels) { spa_log_info (state->log, "Channels doesn't match (requested %u, get %u", info->channels, rchannels); if (flags & SPA_PORT_FORMAT_FLAG_NEAREST) info->channels = rchannels; else return -EINVAL; } /* set the stream rate */ rrate = info->rate; CHECK (snd_pcm_hw_params_set_rate_near (hndl, params, &rrate, 0), "set_rate_near"); if (rrate != info->rate) { spa_log_info (state->log, "Rate doesn't match (requested %iHz, get %iHz)", info->rate, rrate); if (flags & SPA_PORT_FORMAT_FLAG_NEAREST) info->rate = rrate; else return -EINVAL; } state->format = format; state->channels = info->channels; state->rate = info->rate; state->frame_size = info->channels * (snd_pcm_format_physical_width (format) / 8); CHECK (snd_pcm_hw_params_get_buffer_size_max (params, &state->buffer_frames), "get_buffer_size_max"); CHECK (snd_pcm_hw_params_set_buffer_size_near (hndl, params, &state->buffer_frames), "set_buffer_size_near"); dir = 0; period_size = state->buffer_frames; CHECK (snd_pcm_hw_params_set_period_size_near (hndl, params, &period_size, &dir), "set_period_size_near"); state->period_frames = period_size; periods = state->buffer_frames / state->period_frames; spa_log_info (state->log, "buffer frames %zd, period frames %zd, periods %u, frame_size %zd", state->buffer_frames, state->period_frames, periods, state->frame_size); /* write the parameters to device */ CHECK (snd_pcm_hw_params (hndl, params), "set_hw_params"); return 0; } static int set_swparams (SpaALSAState *state) { snd_pcm_t *hndl = state->hndl; int err = 0; snd_pcm_sw_params_t *params; snd_pcm_uframes_t boundary; snd_pcm_sw_params_alloca (¶ms); /* get the current params */ CHECK (snd_pcm_sw_params_current (hndl, params), "sw_params_current"); CHECK (snd_pcm_sw_params_set_tstamp_mode (hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode"); /* start the transfer */ CHECK (snd_pcm_sw_params_set_start_threshold (hndl, params, LONG_MAX), "set_start_threshold"); CHECK (snd_pcm_sw_params_get_boundary (params, &boundary), "get_boundary"); CHECK (snd_pcm_sw_params_set_stop_threshold (hndl, params, boundary), "set_stop_threshold"); CHECK (snd_pcm_sw_params_set_period_event (hndl, params, 0), "set_period_event"); /* write the parameters to the playback device */ CHECK (snd_pcm_sw_params (hndl, params), "sw_params"); return 0; } static snd_pcm_uframes_t pull_frames_queue (SpaALSAState *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { snd_pcm_uframes_t total_frames = 0, to_write = frames; if (spa_list_is_empty (&state->ready)) { SpaEvent event = SPA_EVENT_INIT (state->type.event_node.NeedInput); SpaPortIO *io; if ((io = state->io)) { io->flags = SPA_PORT_IO_FLAG_RANGE; io->status = SPA_RESULT_OK; io->range.offset = state->sample_count * state->frame_size; io->range.min_size = state->threshold * state->frame_size; io->range.max_size = frames * state->frame_size; } state->event_cb (&state->node, &event, state->user_data); } while (!spa_list_is_empty (&state->ready) && to_write > 0) { uint8_t *src, *dst; size_t n_bytes, n_frames, size; off_t offs; SpaALSABuffer *b; b = spa_list_first (&state->ready, SpaALSABuffer, link); offs = SPA_MIN (b->outbuf->datas[0].chunk->offset, b->outbuf->datas[0].maxsize); src = SPA_MEMBER (b->outbuf->datas[0].data, offs, uint8_t); size = SPA_MIN (b->outbuf->datas[0].chunk->size, b->outbuf->datas[0].maxsize - offs); src = SPA_MEMBER (src, state->ready_offset, uint8_t); dst = SPA_MEMBER (my_areas[0].addr, offset * state->frame_size, uint8_t); n_bytes = SPA_MIN (size - state->ready_offset, to_write * state->frame_size); n_frames = SPA_MIN (to_write, n_bytes / state->frame_size); memcpy (dst, src, n_bytes); state->ready_offset += n_bytes; if (state->ready_offset >= size) { SpaEventNodeReuseBuffer rb = SPA_EVENT_NODE_REUSE_BUFFER_INIT (state->type.event_node.ReuseBuffer, 0, b->outbuf->id); spa_list_remove (&b->link); b->outstanding = true; state->event_cb (&state->node, (SpaEvent *)&rb, state->user_data); state->ready_offset = 0; } total_frames += n_frames; to_write -= n_frames; } if (total_frames == 0) { total_frames = state->threshold; spa_log_warn (state->log, "underrun, want %zd frames", total_frames); snd_pcm_areas_silence (my_areas, offset, state->channels, total_frames, state->format); } return total_frames; } static snd_pcm_uframes_t pull_frames_ringbuffer (SpaALSAState *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { SpaRingbufferArea areas[2]; size_t size, avail; SpaALSABuffer *b; uint8_t *src, *dst; b = state->ringbuffer; src = b->outbuf->datas[0].data; dst = SPA_MEMBER (my_areas[0].addr, offset * state->frame_size, uint8_t); avail = spa_ringbuffer_get_read_areas (&b->rb->ringbuffer, areas); size = SPA_MIN (avail, frames * state->frame_size); spa_log_trace (state->log, "%u %u %u %u %zd %zd", areas[0].offset, areas[0].len, areas[1].offset, areas[1].len, offset, size); if (size > 0) { spa_ringbuffer_read_data (&b->rb->ringbuffer, src, areas, dst, size); spa_ringbuffer_read_advance (&b->rb->ringbuffer, size); frames = size / state->frame_size; } else { spa_log_warn (state->log, "underrun"); snd_pcm_areas_silence (my_areas, offset, state->channels, frames, state->format); } b->outstanding = true; { SpaEventNodeReuseBuffer rb = SPA_EVENT_NODE_REUSE_BUFFER_INIT (state->type.event_node.ReuseBuffer, 0, b->outbuf->id); state->event_cb (&state->node, (SpaEvent*)&rb, state->user_data); } return frames; } static snd_pcm_uframes_t push_frames_queue (SpaALSAState *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { snd_pcm_uframes_t total_frames = 0; if (spa_list_is_empty (&state->free)) { spa_log_warn (state->log, "no more buffers"); } else { uint8_t *src; size_t n_bytes; SpaALSABuffer *b; SpaData *d; SpaPortIO *io; b = spa_list_first (&state->free, SpaALSABuffer, link); spa_list_remove (&b->link); if (b->h) { b->h->seq = state->sample_count; b->h->pts = state->last_monotonic; b->h->dts_offset = 0; } d = b->outbuf->datas; total_frames = SPA_MIN (frames, d[0].maxsize / state->frame_size); src = SPA_MEMBER (my_areas[0].addr, offset * state->frame_size, uint8_t); n_bytes = total_frames * state->frame_size; memcpy (d[0].data, src, n_bytes); d[0].chunk->offset = 0; d[0].chunk->size = n_bytes; d[0].chunk->stride = 0; if ((io = state->io)) { SpaEvent event = SPA_EVENT_INIT (state->type.event_node.HaveOutput); b->outstanding = true; io->buffer_id = b->outbuf->id; io->status = SPA_RESULT_OK; state->event_cb (&state->node, &event, state->user_data); } } return total_frames; } static snd_pcm_uframes_t push_frames_ringbuffer (SpaALSAState *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { return frames; } static int alsa_try_resume (SpaALSAState *state) { int res; while ((res = snd_pcm_resume (state->hndl)) == -EAGAIN) usleep (250000); if (res < 0) { spa_log_error (state->log, "suspended, failed to resume %s", snd_strerror(res)); res = snd_pcm_prepare (state->hndl); if (res < 0) spa_log_error (state->log, "suspended, failed to prepare %s", snd_strerror(res)); } return res; } static inline void calc_timeout (size_t target, size_t current, size_t rate, snd_htimestamp_t *now, struct timespec *ts) { ts->tv_sec = now->tv_sec; ts->tv_nsec = now->tv_nsec; if (target > current) ts->tv_nsec += (target - current) * SPA_NSEC_PER_SEC / rate; while (ts->tv_nsec > SPA_NSEC_PER_SEC) { ts->tv_sec++; ts->tv_nsec -= SPA_NSEC_PER_SEC; } } static void alsa_on_playback_timeout_event (SpaSource *source) { uint64_t exp; int res; SpaALSAState *state = source->data; snd_pcm_t *hndl = state->hndl; snd_pcm_sframes_t avail; struct itimerspec ts; snd_pcm_uframes_t total_written = 0, filled; const snd_pcm_channel_area_t *my_areas; snd_pcm_status_t *status; snd_htimestamp_t htstamp; read (state->timerfd, &exp, sizeof (uint64_t)); snd_pcm_status_alloca(&status); if ((res = snd_pcm_status (hndl, status)) < 0) { spa_log_error (state->log, "snd_pcm_status error: %s", snd_strerror (res)); return; } avail = snd_pcm_status_get_avail (status); snd_pcm_status_get_htstamp (status, &htstamp); if (avail > state->buffer_frames) avail = state->buffer_frames; filled = state->buffer_frames - avail; state->last_ticks = state->sample_count - filled; state->last_monotonic = (int64_t)htstamp.tv_sec * SPA_NSEC_PER_SEC + (int64_t)htstamp.tv_nsec; if (filled > state->threshold) { if (snd_pcm_state (hndl) == SND_PCM_STATE_SUSPENDED) { spa_log_error (state->log, "suspended: try resume"); if ((res = alsa_try_resume (state)) < 0) return; } } else { snd_pcm_uframes_t to_write = state->buffer_frames - filled; while (total_written < to_write) { snd_pcm_uframes_t written, frames, offset; frames = to_write - total_written; if ((res = snd_pcm_mmap_begin (hndl, &my_areas, &offset, &frames)) < 0) { spa_log_error (state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res)); return; } if (state->ringbuffer) written = pull_frames_ringbuffer (state, my_areas, offset, frames); else written = pull_frames_queue (state, my_areas, offset, frames); if (written < frames) to_write = 0; if ((res = snd_pcm_mmap_commit (hndl, offset, written)) < 0) { spa_log_error (state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res)); if (res != -EPIPE && res != -ESTRPIPE) return; } total_written += written; } state->sample_count += total_written; } if (!state->alsa_started && total_written > 0) { spa_log_debug (state->log, "snd_pcm_start"); if ((res = snd_pcm_start (state->hndl)) < 0) { spa_log_error (state->log, "snd_pcm_start: %s", snd_strerror (res)); return; } state->alsa_started = true; } calc_timeout (total_written + filled, state->threshold, state->rate, &htstamp, &ts.it_value); spa_log_trace (state->log, "timeout %ld %ld %ld %ld", total_written, filled, ts.it_value.tv_sec, ts.it_value.tv_nsec); ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; timerfd_settime (state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL); } static void alsa_on_capture_timeout_event (SpaSource *source) { uint64_t exp; int res; SpaALSAState *state = source->data; snd_pcm_t *hndl = state->hndl; snd_pcm_sframes_t avail; snd_pcm_uframes_t total_read = 0; struct itimerspec ts; const snd_pcm_channel_area_t *my_areas; snd_pcm_status_t *status; snd_htimestamp_t htstamp; read (state->timerfd, &exp, sizeof (uint64_t)); snd_pcm_status_alloca(&status); if ((res = snd_pcm_status (hndl, status)) < 0) { spa_log_error (state->log, "snd_pcm_status error: %s", snd_strerror (res)); return; } avail = snd_pcm_status_get_avail (status); snd_pcm_status_get_htstamp (status, &htstamp); state->last_ticks = state->sample_count + avail; state->last_monotonic = (int64_t)htstamp.tv_sec * SPA_NSEC_PER_SEC + (int64_t)htstamp.tv_nsec; if (avail < state->threshold) { if (snd_pcm_state (hndl) == SND_PCM_STATE_SUSPENDED) { spa_log_error (state->log, "suspended: try resume"); if ((res = alsa_try_resume (state)) < 0) return; } } else { snd_pcm_uframes_t to_read = avail; while (total_read < to_read) { snd_pcm_uframes_t read, frames, offset; frames = to_read - total_read; if ((res = snd_pcm_mmap_begin (hndl, &my_areas, &offset, &frames)) < 0) { spa_log_error (state->log, "snd_pcm_mmap_begin error: %s", snd_strerror(res)); return; } if (state->ringbuffer) read = push_frames_ringbuffer (state, my_areas, offset, frames); else read = push_frames_queue (state, my_areas, offset, frames); if (read < to_read) to_read = 0; if ((res = snd_pcm_mmap_commit (hndl, offset, read)) < 0) { spa_log_error (state->log, "snd_pcm_mmap_commit error: %s", snd_strerror(res)); if (res != -EPIPE && res != -ESTRPIPE) return; } total_read += read; } state->sample_count += total_read; } calc_timeout (state->threshold, avail - total_read, state->rate, &htstamp, &ts.it_value); spa_log_trace (state->log, "timeout %ld %ld %ld %ld", total_read, avail, ts.it_value.tv_sec, ts.it_value.tv_nsec); ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; timerfd_settime (state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL); } SpaResult spa_alsa_start (SpaALSAState *state, bool xrun_recover) { int err; if (state->started) return SPA_RESULT_OK; spa_log_trace (state->log, "alsa %p: start", state); CHECK (set_swparams (state), "swparams"); if (!xrun_recover) snd_pcm_dump (state->hndl, state->output); if ((err = snd_pcm_prepare (state->hndl)) < 0) { spa_log_error (state->log, "snd_pcm_prepare error: %s", snd_strerror (err)); return SPA_RESULT_ERROR; } if (state->stream == SND_PCM_STREAM_PLAYBACK) { state->source.func = alsa_on_playback_timeout_event; } else { state->source.func = alsa_on_capture_timeout_event; } state->source.data = state; state->source.fd = state->timerfd; state->source.mask = SPA_IO_IN; state->source.rmask = 0; spa_loop_add_source (state->data_loop, &state->source); state->threshold = state->props.min_latency; if (state->stream == SND_PCM_STREAM_PLAYBACK) { state->alsa_started = false; } else { if ((err = snd_pcm_start (state->hndl)) < 0) { spa_log_error (state->log, "snd_pcm_start: %s", snd_strerror (err)); return SPA_RESULT_ERROR; } state->alsa_started = true; } state->source.func (&state->source); state->started = true; return SPA_RESULT_OK; } SpaResult spa_alsa_pause (SpaALSAState *state, bool xrun_recover) { int err; if (!state->started) return SPA_RESULT_OK; spa_log_trace (state->log, "alsa %p: pause", state); spa_loop_remove_source (state->data_loop, &state->source); if ((err = snd_pcm_drop (state->hndl)) < 0) spa_log_error (state->log, "snd_pcm_drop %s", snd_strerror (err)); state->started = false; return SPA_RESULT_OK; }