#include #include #include #include #include #include #include #include #include #include #include #define NAME "alsa-pcm" #include "alsa-pcm.h" #define CHECK(s,msg,...) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", ##__VA_ARGS__, snd_strerror(err)); return err; } int spa_alsa_open(struct state *state) { int err; struct props *props = &state->props; snd_pcm_info_t *pcminfo; if (state->opened) return 0; CHECK(snd_output_stdio_attach(&state->output, stderr, 0), "attach failed"); spa_log_info(state->log, NAME" %p: ALSA device open '%s' %s", state, props->device, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback"); CHECK(snd_pcm_open(&state->hndl, props->device, state->stream, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "'%s': %s open failed", props->device, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback"); if ((err = spa_system_timerfd_create(state->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_close; state->timerfd = err; snd_pcm_info_alloca(&pcminfo); snd_pcm_info(state->hndl, pcminfo); /* we would love to use the sync_id but it always returns 0, so use the * card id for now */ state->card = snd_pcm_info_get_card(pcminfo); if (state->clock) { snprintf(state->clock->name, sizeof(state->clock->name), "api.alsa.%d", state->card); } state->opened = true; state->sample_count = 0; state->sample_time = 0; return 0; error_exit_close: snd_pcm_close(state->hndl); return err; } int spa_alsa_close(struct state *state) { int err = 0; if (!state->opened) return 0; spa_log_info(state->log, NAME" %p: Device '%s' closing", state, state->props.device); if ((err = snd_pcm_close(state->hndl)) < 0) spa_log_warn(state->log, "%s: close failed: %s", state->props.device, snd_strerror(err)); if ((err = snd_output_close(state->output)) < 0) spa_log_warn(state->log, "output close failed: %s", snd_strerror(err)); spa_system_close(state->data_system, state->timerfd); state->opened = false; return err; } struct format_info { uint32_t spa_format; uint32_t spa_pformat; snd_pcm_format_t format; }; static const struct format_info format_info[] = { { SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN}, { SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE}, { SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE}, { SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE}, { SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE}, { SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE}, { SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE}, { SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE}, { SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE}, { SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE}, { SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE}, { SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8}, { SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8}, { SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE}, { SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE}, { SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE}, { SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE}, { SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE}, { SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE}, { SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE}, { SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE}, { SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE}, { SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE}, }; static snd_pcm_format_t spa_format_to_alsa(uint32_t format, bool *planar) { size_t i; for (i = 0; i < SPA_N_ELEMENTS(format_info); i++) { *planar = format_info[i].spa_pformat == format; if (format_info[i].spa_format == format || *planar) return format_info[i].format; } return SND_PCM_FORMAT_UNKNOWN; } struct chmap_info { enum snd_pcm_chmap_position pos; enum spa_audio_channel channel; }; static const struct chmap_info chmap_info[] = { [SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN }, [SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA }, [SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO }, [SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL }, [SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR }, [SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL }, [SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR }, [SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC }, [SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE }, [SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL }, [SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR }, [SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC }, [SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC }, [SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC }, [SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC }, [SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC }, [SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW }, [SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW }, [SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH }, [SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH }, [SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH }, [SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC }, [SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL }, [SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR }, [SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC }, [SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL }, [SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR }, [SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC }, [SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC }, [SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC }, [SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL }, [SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR }, [SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE }, [SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE }, [SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC }, [SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC }, [SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC }, }; #define _M(ch) (1LL << SND_CHMAP_ ##ch) struct def_mask { int channels; uint64_t mask; }; static const struct def_mask default_layouts[] = { { 0, 0 }, { 1, _M(MONO) }, { 2, _M(FL) | _M(FR) }, { 3, _M(FL) | _M(FR) | _M(LFE) }, { 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) }, { 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) }, { 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) }, { 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) }, { 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) }, }; #define _C(ch) (SPA_AUDIO_CHANNEL_ ##ch) static const struct channel_map default_map[] = { { 0, { 0, } } , { 1, { _C(MONO), } }, { 2, { _C(FL), _C(FR), } }, { 3, { _C(FL), _C(FR), _C(LFE) } }, { 4, { _C(FL), _C(FR), _C(RL), _C(RR), } }, { 5, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC) } }, { 6, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), } }, { 7, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(SL), _C(SR), } }, { 8, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), _C(SL), _C(SR), } }, }; static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos) { return chmap_info[pos].channel; } static void sanitize_map(snd_pcm_chmap_t* map) { uint64_t mask = 0, p, dup = 0; const struct def_mask *def; uint32_t i, j, pos; for (i = 0; i < map->channels; i++) { if (map->pos[i] > SND_CHMAP_LAST) map->pos[i] = SND_CHMAP_UNKNOWN; p = 1LL << map->pos[i]; if (mask & p) { /* duplicate channel */ for (j = 0; j <= i; j++) if (map->pos[j] == map->pos[i]) map->pos[j] = SND_CHMAP_UNKNOWN; dup |= p; p = 1LL << SND_CHMAP_UNKNOWN; } mask |= p; } if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0) return; def = &default_layouts[map->channels]; /* remove duplicates */ mask &= ~dup; /* keep unassigned channels */ mask = def->mask & ~mask; pos = 0; for (i = 0; i < map->channels; i++) { if (map->pos[i] == SND_CHMAP_UNKNOWN) { do { mask >>= 1; pos++; } while (mask != 0 && (mask & 1) == 0); map->pos[i] = mask ? pos : 0; } } } int spa_alsa_enum_format(struct state *state, int seq, uint32_t start, uint32_t num, const struct spa_pod *filter) { snd_pcm_t *hndl; snd_pcm_hw_params_t *params; snd_pcm_format_mask_t *fmask; snd_pcm_access_mask_t *amask; snd_pcm_chmap_query_t **maps; size_t i, j; int err, dir; unsigned int min, max; unsigned int rrate, rchannels; uint8_t buffer[4096]; struct spa_pod_builder b = { 0 }; struct spa_pod_choice *choice; struct spa_pod *fmt; int res; bool opened; struct spa_pod_frame f[2]; struct spa_result_node_params result; uint32_t count = 0, rate; opened = state->opened; if ((err = spa_alsa_open(state)) < 0) return err; result.id = SPA_PARAM_EnumFormat; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); if (state->default_channels != 0) { rchannels = state->default_channels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels"); if (state->default_channels != rchannels) { spa_log_warn(state->log, NAME" %s: Channels doesn't match (requested %u, got %u)", state->props.device, state->default_channels, rchannels); } } if (state->default_rate != 0) { rrate = state->default_rate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near"); if (state->default_rate != rrate) { spa_log_warn(state->log, NAME" %s: Rate doesn't match (requested %u, got %u)", state->props.device, state->default_rate, rrate); } } spa_pod_builder_push_object(&b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(&b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw), 0); snd_pcm_format_mask_alloca(&fmask); snd_pcm_hw_params_get_format_mask(params, fmask); snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_format, 0); spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(&b, &f[1]); for (i = 1, j = 0; i < SPA_N_ELEMENTS(format_info); i++) { const struct format_info *fi = &format_info[i]; if (snd_pcm_format_mask_test(fmask, fi->format)) { if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) || snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_NONINTERLEAVED)) && fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN && (state->default_format == 0 || state->default_format == fi->spa_pformat)) { if (j++ == 0) spa_pod_builder_id(&b, fi->spa_pformat); spa_pod_builder_id(&b, fi->spa_pformat); } if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED) || snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_INTERLEAVED)) && (state->default_format == 0 || state->default_format == fi->spa_format)) { if (j++ == 0) spa_pod_builder_id(&b, fi->spa_format); spa_pod_builder_id(&b, fi->spa_format); } } } if (j == 0) { char buf[1024]; int i, offs; for (i = 0, offs = 0; i <= SND_PCM_FORMAT_LAST; i++) { if (snd_pcm_format_mask_test(fmask, (snd_pcm_format_t)i)) offs += snprintf(&buf[offs], sizeof(buf) - offs, "%s ", snd_pcm_format_name((snd_pcm_format_t)i)); } spa_log_warn(state->log, "%s: unsupported card: formats:%s", state->props.device, buf); for (i = 0, offs = 0; i <= SND_PCM_ACCESS_LAST; i++) { if (snd_pcm_access_mask_test(amask, (snd_pcm_access_t)i)) offs += snprintf(&buf[offs], sizeof(buf) - offs, "%s ", snd_pcm_access_name((snd_pcm_access_t)i)); } spa_log_warn(state->log, "%s: unsupported card: access:%s", state->props.device, buf); return -ENOTSUP; } if (j > 1) choice->body.type = SPA_CHOICE_Enum; spa_pod_builder_pop(&b, &f[1]); CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min"); CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max"); if (state->default_rate != 0) { if (min < state->default_rate) min = state->default_rate; if (max > state->default_rate) max = state->default_rate; } spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_rate, 0); spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(&b, &f[1]); rate = state->position ? state->position->clock.rate.denom : DEFAULT_RATE; spa_pod_builder_int(&b, SPA_CLAMP(rate, min, max)); if (min != max) { spa_pod_builder_int(&b, min); spa_pod_builder_int(&b, max); choice->body.type = SPA_CHOICE_Range; } spa_pod_builder_pop(&b, &f[1]); CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min"); CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max"); spa_log_debug(state->log, "channels (%d %d)", min, max); if (state->default_channels != 0) { if (min < state->default_channels) min = state->default_channels; if (max > state->default_channels) max = state->default_channels; } min = SPA_MIN(min, SPA_AUDIO_MAX_CHANNELS); max = SPA_MIN(max, SPA_AUDIO_MAX_CHANNELS); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_channels, 0); if (state->props.use_chmap && (maps = snd_pcm_query_chmaps(hndl)) != NULL) { uint32_t channel; snd_pcm_chmap_t* map; skip_channels: if (maps[result.index] == NULL) { snd_pcm_free_chmaps(maps); goto enum_end; } map = &maps[result.index]->map; spa_log_debug(state->log, "map %d channels (%d %d)", map->channels, min, max); if (map->channels < min || map->channels > max) { result.index = result.next++; goto skip_channels; } sanitize_map(map); spa_pod_builder_int(&b, map->channels); spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(&b, &f[1]); for (j = 0; j < map->channels; j++) { spa_log_debug(state->log, NAME" %p: position %zd %d", state, j, map->pos[j]); channel = chmap_position_to_channel(map->pos[j]); spa_pod_builder_id(&b, channel); } spa_pod_builder_pop(&b, &f[1]); snd_pcm_free_chmaps(maps); } else { const struct channel_map *map = NULL; if (result.index > 0) goto enum_end; spa_pod_builder_push_choice(&b, &f[1], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(&b, &f[1]); spa_pod_builder_int(&b, max); if (min != max) { spa_pod_builder_int(&b, min); spa_pod_builder_int(&b, max); choice->body.type = SPA_CHOICE_Range; } spa_pod_builder_pop(&b, &f[1]); if (min == max) { if (state->default_pos.channels == min) map = &state->default_pos; else if (min == max && min <= 8) map = &default_map[min]; } if (map) { spa_pod_builder_prop(&b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(&b, &f[1]); for (j = 0; j < map->channels; j++) { spa_log_debug(state->log, NAME" %p: position %zd %d", state, j, map->pos[j]); spa_pod_builder_id(&b, map->pos[j]); } spa_pod_builder_pop(&b, &f[1]); } } fmt = spa_pod_builder_pop(&b, &f[0]); if ((res = spa_pod_filter(&b, &result.param, fmt, filter)) < 0) goto next; spa_node_emit_result(&state->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; enum_end: res = 0; if (!opened) spa_alsa_close(state); return res; } int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags) { unsigned int rrate, rchannels; snd_pcm_uframes_t period_size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t format; snd_pcm_access_mask_t *amask; struct spa_audio_info_raw *info = &fmt->info.raw; snd_pcm_t *hndl; unsigned int periods; bool match = true, planar, is_batch; if ((err = spa_alsa_open(state)) < 0) return err; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); /* choose all parameters */ CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available"); /* set hardware resampling, no resample */ CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); /* get format info */ format = spa_format_to_alsa(info->format, &planar); if (format == SND_PCM_FORMAT_UNKNOWN) { spa_log_warn(state->log, NAME" %s: unknown format %u", state->props.device, info->format); return -EINVAL; } /* set the interleaved/planar read/write format */ snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); state->use_mmap = !state->disable_mmap; if (state->use_mmap) { if ((err = snd_pcm_hw_params_set_access(hndl, params, planar ? SND_PCM_ACCESS_MMAP_NONINTERLEAVED : SND_PCM_ACCESS_MMAP_INTERLEAVED)) < 0) { spa_log_debug(state->log, NAME" %p: MMAP not possible: %s", state, snd_strerror(err)); state->use_mmap = false; } } if (!state->use_mmap) { if ((err = snd_pcm_hw_params_set_access(hndl, params, planar ? SND_PCM_ACCESS_RW_NONINTERLEAVED : SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) { spa_log_error(state->log, NAME" %s: RW not possible: %s", state->props.device, snd_strerror(err)); return err; } } /* set the sample format */ spa_log_debug(state->log, NAME" %p: Stream parameters are %iHz fmt:%s access:%s-%s channels:%i", state, info->rate, snd_pcm_format_name(format), state->use_mmap ? "mmap" : "rw", planar ? "planar" : "interleaved", info->channels); CHECK(snd_pcm_hw_params_set_format(hndl, params, format), "set_format"); /* set the count of channels */ rchannels = info->channels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels"); if (rchannels != info->channels) { spa_log_warn(state->log, NAME" %s: Channels doesn't match (requested %u, got %u)", state->props.device, info->channels, rchannels); if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST)) return -EINVAL; info->channels = rchannels; match = false; } /* set the stream rate */ rrate = info->rate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near"); if (rrate != info->rate) { spa_log_warn(state->log, NAME" %s: Rate doesn't match (requested %iHz, got %iHz)", state->props.device, info->rate, rrate); if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST)) return -EINVAL; info->rate = rrate; match = false; } state->format = format; state->channels = info->channels; state->rate = info->rate; state->frame_size = snd_pcm_format_physical_width(format) / 8; state->planar = planar; state->blocks = 1; if (planar) state->blocks *= info->channels; else state->frame_size *= info->channels; dir = 0; period_size = state->default_period_size ? state->default_period_size : 1024; is_batch = snd_pcm_hw_params_is_batch(params) && !state->disable_batch; if (is_batch) { /* batch devices get their hw pointers updated every period. Make * the period smaller and add one period of headroom */ period_size /= 2; spa_log_info(state->log, NAME" %s: batch mode, period_size:%ld", state->props.device, period_size); } else { /* disable ALSA wakeups, we use a timer */ if (snd_pcm_hw_params_can_disable_period_wakeup(params)) CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup"); } CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near"); CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max"); CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near"); state->headroom = state->default_headroom; if (is_batch) state->headroom += period_size; state->period_frames = period_size; periods = state->buffer_frames / state->period_frames; spa_log_info(state->log, NAME" %s (%s): format:%s access:%s-%s rate:%d channels:%d " "buffer frames %lu, period frames %lu, periods %u, frame_size %zd " "headroom %u", state->props.device, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback", snd_pcm_format_name(state->format), state->use_mmap ? "mmap" : "rw", planar ? "planar" : "interleaved", state->rate, state->channels, state->buffer_frames, state->period_frames, periods, state->frame_size, state->headroom); /* write the parameters to device */ CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params"); return match ? 0 : 1; } static int set_swparams(struct state *state) { snd_pcm_t *hndl = state->hndl; int err = 0; snd_pcm_sw_params_t *params; snd_pcm_sw_params_alloca(¶ms); /* get the current params */ CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current"); CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode"); #if 0 snd_pcm_uframes_t boundary; CHECK(snd_pcm_sw_params_get_boundary(params, &boundary), "get_boundary"); CHECK(snd_pcm_sw_params_set_stop_threshold(hndl, params, boundary), "set_stop_threshold"); #endif /* start the transfer */ CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold"); CHECK(snd_pcm_sw_params_set_period_event(hndl, params, 0), "set_period_event"); /* write the parameters to the playback device */ CHECK(snd_pcm_sw_params(hndl, params), "sw_params"); return 0; } static int set_timeout(struct state *state, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(state->data_system, state->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); return 0; } int spa_alsa_silence(struct state *state, snd_pcm_uframes_t silence) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t frames, offset; int i, res; if (state->use_mmap) { frames = state->buffer_frames; if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) { spa_log_error(state->log, NAME" %s: snd_pcm_mmap_begin error: %s", state->props.device, snd_strerror(res)); return res; } silence = SPA_MIN(silence, frames); spa_log_trace_fp(state->log, NAME" %p: frames:%ld offset:%ld silence %ld", state, frames, offset, silence); snd_pcm_areas_silence(my_areas, offset, state->channels, silence, state->format); if (SPA_UNLIKELY((res = snd_pcm_mmap_commit(hndl, offset, silence)) < 0)) { spa_log_error(state->log, NAME" %s: snd_pcm_mmap_commit error: %s", state->props.device, snd_strerror(res)); return res; } } else { uint8_t buffer[silence * state->frame_size]; memset(buffer, 0, silence * state->frame_size); if (state->planar) { void *bufs[state->channels]; for (i = 0; i < state->channels; i++) bufs[i] = buffer; snd_pcm_writen(hndl, bufs, silence); } else { snd_pcm_writei(hndl, buffer, silence); } } return 0; } static inline int do_start(struct state *state) { int res; if (SPA_UNLIKELY(!state->alsa_started)) { spa_log_trace(state->log, NAME" %p: snd_pcm_start", state); if ((res = snd_pcm_start(state->hndl)) < 0) { spa_log_error(state->log, NAME" %s: snd_pcm_start: %s", state->props.device, snd_strerror(res)); return res; } state->alsa_started = true; } return 0; } static int alsa_recover(struct state *state, int err) { int res, st; snd_pcm_status_t *status; snd_pcm_status_alloca(&status); if (SPA_UNLIKELY((res = snd_pcm_status(state->hndl, status)) < 0)) { spa_log_error(state->log, NAME" %s: snd_pcm_status error: %s", state->props.device, snd_strerror(res)); goto recover; } st = snd_pcm_status_get_state(status); switch (st) { case SND_PCM_STATE_XRUN: { struct timeval now, trigger, diff; uint64_t delay, missing; snd_pcm_status_get_tstamp (status, &now); snd_pcm_status_get_trigger_tstamp (status, &trigger); timersub(&now, &trigger, &diff); delay = SPA_TIMEVAL_TO_USEC(&diff); missing = delay * state->rate / SPA_USEC_PER_SEC; spa_log_trace(state->log, NAME" %p: xrun of %"PRIu64" usec %"PRIu64, state, delay, missing); spa_node_call_xrun(&state->callbacks, SPA_TIMEVAL_TO_USEC(&trigger), delay, NULL); state->sample_count += missing ? missing : state->threshold; break; } case SND_PCM_STATE_SUSPENDED: spa_log_info(state->log, NAME" %s: recover from state %s", state->props.device, snd_pcm_state_name(st)); err = -ESTRPIPE; break; default: spa_log_error(state->log, NAME" %s: recover from error state %s", state->props.device, snd_pcm_state_name(st)); break; } recover: if (SPA_UNLIKELY((res = snd_pcm_recover(state->hndl, err, true)) < 0)) { spa_log_error(state->log, NAME" %s: snd_pcm_recover error: %s", state->props.device, snd_strerror(res)); return res; } spa_dll_init(&state->dll); state->alsa_recovering = true; state->alsa_started = false; if (state->stream == SND_PCM_STREAM_PLAYBACK) spa_alsa_silence(state, state->last_threshold * 2 + state->headroom); return do_start(state); } static int get_status(struct state *state, snd_pcm_uframes_t *delay, snd_pcm_uframes_t *target) { snd_pcm_sframes_t avail; int res; if (SPA_UNLIKELY((avail = snd_pcm_avail(state->hndl)) < 0)) { if ((res = alsa_recover(state, avail)) < 0) return res; if ((avail = snd_pcm_avail(state->hndl)) < 0) { spa_log_warn(state->log, NAME" %s: snd_pcm_avail after recover: %s", state->props.device, snd_strerror(avail)); avail = state->threshold * 2; } } else { state->alsa_recovering = false; } *target = state->threshold + state->headroom; if (state->resample && state->rate_match) { state->delay = state->rate_match->delay; state->read_size = state->rate_match->size; } else { state->delay = 0; state->read_size = state->threshold; } if (state->stream == SND_PCM_STREAM_PLAYBACK) { *delay = state->buffer_frames - avail; } else { *delay = avail; *target = SPA_MAX(*target, state->read_size); } return 0; } static int update_time(struct state *state, uint64_t nsec, snd_pcm_sframes_t delay, snd_pcm_sframes_t target, bool follower) { double err, corr; int32_t diff; if (state->stream == SND_PCM_STREAM_PLAYBACK) err = delay - target; else err = target - delay; if (SPA_UNLIKELY(state->dll.bw == 0.0)) { spa_dll_set_bw(&state->dll, SPA_DLL_BW_MAX, state->threshold, state->rate); state->next_time = nsec; state->base_time = nsec; } diff = (int32_t) (state->last_threshold - state->threshold); if (SPA_UNLIKELY(diff != 0)) { err -= diff; spa_log_trace(state->log, NAME" %p: follower:%d quantum change %d -> %d (%d) %f", state, follower, state->last_threshold, state->threshold, diff, err); state->last_threshold = state->threshold; } err = SPA_CLAMP(err, -state->max_error, state->max_error); corr = spa_dll_update(&state->dll, err); if (diff < 0) state->next_time += diff / corr * 1e9 / state->rate; if (SPA_UNLIKELY((state->next_time - state->base_time) > BW_PERIOD)) { state->base_time = state->next_time; spa_log_debug(state->log, NAME" %p: follower:%d match:%d rate:%f " "bw:%f thr:%d del:%ld target:%ld err:%f (%f %f %f)", state, follower, state->matching, corr, state->dll.bw, state->threshold, delay, target, err, state->dll.z1, state->dll.z2, state->dll.z3); } if (state->rate_match) { if (state->stream == SND_PCM_STREAM_PLAYBACK) state->rate_match->rate = corr; else state->rate_match->rate = 1.0/corr; SPA_FLAG_UPDATE(state->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, state->matching); } state->next_time += state->threshold / corr * 1e9 / state->rate; if (SPA_LIKELY(!follower && state->clock)) { state->clock->nsec = nsec; state->clock->position += state->duration; state->clock->duration = state->duration; state->clock->delay = delay + state->delay; state->clock->rate_diff = corr; state->clock->next_nsec = state->next_time; } spa_log_trace_fp(state->log, NAME" %p: follower:%d %"PRIu64" %f %ld %f %f %d", state, follower, nsec, corr, delay, err, state->threshold * corr, state->threshold); return 0; } int spa_alsa_write(struct state *state) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t written, frames, offset, off, to_write, total_written; snd_pcm_sframes_t commitres; int res = 0; if (SPA_LIKELY(state->position && state->duration != state->position->clock.duration)) { state->duration = state->position->clock.duration; state->threshold = (state->duration * state->rate + state->rate_denom-1) / state->rate_denom; } if (state->following && state->alsa_started) { uint64_t nsec; snd_pcm_uframes_t delay, target; if (SPA_UNLIKELY((res = get_status(state, &delay, &target)) < 0)) return res; if (SPA_UNLIKELY(!state->alsa_recovering && delay > target + state->threshold)) { spa_log_warn(state->log, NAME" %s: follower delay:%ld target:%ld resync %f %f %f", state->props.device, delay, target + state->threshold, state->dll.z1, state->dll.z2, state->dll.z3); spa_dll_init(&state->dll); state->alsa_sync = true; } if (SPA_UNLIKELY(state->alsa_sync)) { if (delay > target) snd_pcm_rewind(state->hndl, delay - target); else snd_pcm_forward(state->hndl, target - delay); delay = target; state->alsa_sync = false; } nsec = state->position->clock.nsec; if (SPA_UNLIKELY((res = update_time(state, nsec, delay, target, true)) < 0)) return res; } total_written = 0; again: frames = state->buffer_frames; if (state->use_mmap) { if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) { spa_log_error(state->log, NAME" %s: snd_pcm_mmap_begin error: %s", state->props.device, snd_strerror(res)); return res; } spa_log_trace_fp(state->log, NAME" %p: begin %ld %ld %d", state, offset, frames, state->threshold); off = offset; } else { off = 0; } to_write = frames; written = 0; while (!spa_list_is_empty(&state->ready) && to_write > 0) { uint8_t *dst, *src; size_t n_bytes, n_frames; struct buffer *b; struct spa_data *d; uint32_t i, index, offs, avail, size, maxsize, l0, l1; b = spa_list_first(&state->ready, struct buffer, link); d = b->buf->datas; size = d[0].chunk->size; maxsize = d[0].maxsize; index = d[0].chunk->offset + state->ready_offset; avail = size - state->ready_offset; avail /= state->frame_size; n_frames = SPA_MIN(avail, to_write); n_bytes = n_frames * state->frame_size; offs = index % maxsize; l0 = SPA_MIN(n_bytes, maxsize - offs); l1 = n_bytes - l0; if (SPA_LIKELY(state->use_mmap)) { for (i = 0; i < b->buf->n_datas; i++) { dst = SPA_MEMBER(my_areas[i].addr, off * state->frame_size, uint8_t); src = d[i].data; spa_memcpy(dst, src + offs, l0); if (SPA_UNLIKELY(l1 > 0)) spa_memcpy(dst + l0, src, l1); } } else { if (state->planar) { void *bufs[b->buf->n_datas]; for (i = 0; i < b->buf->n_datas; i++) bufs[i] = SPA_MEMBER(d[i].data, offs, void); snd_pcm_writen(hndl, bufs, l0 / state->frame_size); if (SPA_UNLIKELY(l1 > 0)) { for (i = 0; i < b->buf->n_datas; i++) bufs[i] = d[i].data; snd_pcm_writen(hndl, bufs, l1 / state->frame_size); } } else { src = d[0].data; snd_pcm_writei(hndl, src + offs, l0 / state->frame_size); if (SPA_UNLIKELY(l1 > 0)) snd_pcm_writei(hndl, src, l1 / state->frame_size); } } state->ready_offset += n_bytes; if (state->ready_offset >= size) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); state->io->buffer_id = b->id; spa_log_trace_fp(state->log, NAME" %p: reuse buffer %u", state, b->id); spa_node_call_reuse_buffer(&state->callbacks, 0, b->id); state->ready_offset = 0; } written += n_frames; off += n_frames; to_write -= n_frames; } spa_log_trace_fp(state->log, NAME" %p: commit %ld %ld %"PRIi64, state, offset, written, state->sample_count); total_written += written; if (state->use_mmap) { if (SPA_UNLIKELY((commitres = snd_pcm_mmap_commit(hndl, offset, written)) < 0)) { spa_log_error(state->log, NAME" %s: snd_pcm_mmap_commit error: %s", state->props.device, snd_strerror(commitres)); if (commitres != -EPIPE && commitres != -ESTRPIPE) return res; } if (commitres > 0 && written != (snd_pcm_uframes_t) commitres) { spa_log_warn(state->log, NAME" %s: mmap_commit wrote %ld instead of %ld", state->props.device, commitres, written); } } if (!spa_list_is_empty(&state->ready) && written > 0) goto again; state->sample_count += total_written; if (SPA_UNLIKELY(!state->alsa_started && total_written > 0)) do_start(state); return 0; } void spa_alsa_recycle_buffer(struct state *this, uint32_t buffer_id) { struct buffer *b = &this->buffers[buffer_id]; if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) { spa_log_trace_fp(this->log, NAME " %p: recycle buffer %u", this, buffer_id); spa_list_append(&this->free, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); } } static snd_pcm_uframes_t push_frames(struct state *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { snd_pcm_uframes_t total_frames = 0; if (spa_list_is_empty(&state->free)) { spa_log_warn(state->log, NAME" %s: no more buffers", state->props.device); total_frames = frames; } else { uint8_t *src; size_t n_bytes, left; struct buffer *b; struct spa_data *d; uint32_t i, avail, l0, l1; b = spa_list_first(&state->free, struct buffer, link); spa_list_remove(&b->link); if (b->h) { b->h->seq = state->sample_count; b->h->pts = state->next_time; b->h->dts_offset = 0; } d = b->buf->datas; avail = d[0].maxsize / state->frame_size; total_frames = SPA_MIN(avail, frames); n_bytes = total_frames * state->frame_size; if (my_areas) { left = state->buffer_frames - offset; l0 = SPA_MIN(n_bytes, left * state->frame_size); l1 = n_bytes - l0; for (i = 0; i < b->buf->n_datas; i++) { src = SPA_MEMBER(my_areas[i].addr, offset * state->frame_size, uint8_t); spa_memcpy(d[i].data, src, l0); if (l1 > 0) spa_memcpy(SPA_MEMBER(d[i].data, l0, void), my_areas[i].addr, l1); d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = state->frame_size; } } else { void *bufs[b->buf->n_datas]; for (i = 0; i < b->buf->n_datas; i++) { bufs[i] = d[i].data; d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = state->frame_size; } if (state->planar) { snd_pcm_readn(state->hndl, bufs, total_frames); } else { snd_pcm_readi(state->hndl, bufs[0], total_frames); } } spa_log_trace_fp(state->log, NAME" %p: wrote %ld frames into buffer %d", state, total_frames, b->id); spa_list_append(&state->ready, &b->link); } return total_frames; } int spa_alsa_read(struct state *state, snd_pcm_uframes_t silence) { snd_pcm_t *hndl = state->hndl; snd_pcm_uframes_t total_read = 0, to_read; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t read, frames, offset; snd_pcm_sframes_t commitres; int res = 0; if (state->position) { if (state->duration != state->position->clock.duration) { state->duration = state->position->clock.duration; state->threshold = (state->duration * state->rate + state->rate_denom-1) / state->rate_denom; } if (!state->following) { uint64_t position; position = state->position->clock.position; if (state->last_position && state->last_position + state->last_duration != position) { state->alsa_sync = true; spa_log_info(state->log, NAME" %s: discont, resync %"PRIu64" %"PRIu64" %d", state->props.device, state->last_position, position, state->last_duration); } state->last_position = position; state->last_duration = state->duration; } } if (state->following && state->alsa_started) { uint64_t nsec; snd_pcm_uframes_t delay, target; uint32_t threshold = state->threshold; if ((res = get_status(state, &delay, &target)) < 0) return res; if (!state->alsa_recovering && (delay < target / 2 || delay > target * 2)) { spa_log_warn(state->log, NAME" %s: follower delay:%lu target:%lu resync %f %f %f", state->props.device, delay, target, state->dll.z1, state->dll.z2, state->dll.z3); spa_dll_init(&state->dll); state->alsa_sync = true; } if (state->alsa_sync) { spa_log_warn(state->log, NAME" %s: follower resync %ld %d %ld", state->props.device, delay, threshold, target); if (delay < target) snd_pcm_rewind(state->hndl, target - delay); else if (delay > target) snd_pcm_forward(state->hndl, delay - target); delay = target; state->alsa_sync = false; } nsec = state->position->clock.nsec; if ((res = update_time(state, nsec, delay, target, true)) < 0) return res; } frames = state->read_size; if (state->use_mmap) { to_read = state->buffer_frames; if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &to_read)) < 0) { spa_log_error(state->log, NAME" %s: snd_pcm_mmap_begin error: %s", state->props.device, snd_strerror(res)); return res; } spa_log_trace_fp(state->log, NAME" %p: begin offs:%ld frames:%ld to_read:%ld thres:%d", state, offset, frames, to_read, state->threshold); } else { my_areas = NULL; offset = 0; } read = push_frames(state, my_areas, offset, frames); total_read += read; if (state->use_mmap) { spa_log_trace_fp(state->log, NAME" %p: commit offs:%ld read:%ld count:%"PRIi64, state, offset, read, state->sample_count); if ((commitres = snd_pcm_mmap_commit(hndl, offset, read)) < 0) { spa_log_error(state->log, NAME" %s: snd_pcm_mmap_commit error: %s", state->props.device, snd_strerror(commitres)); if (commitres != -EPIPE && commitres != -ESTRPIPE) return res; } if (commitres > 0 && read != (snd_pcm_uframes_t) commitres) { spa_log_warn(state->log, NAME" %s: mmap_commit read %ld instead of %ld", state->props.device, commitres, read); } } state->sample_count += total_read; return 0; } static int handle_play(struct state *state, uint64_t nsec, snd_pcm_uframes_t delay, snd_pcm_uframes_t target) { int res; if (SPA_UNLIKELY(delay > target + state->max_error)) { spa_log_trace(state->log, NAME" %p: early wakeup %ld %ld", state, delay, target); state->next_time = nsec + (delay - target) * SPA_NSEC_PER_SEC / state->rate; return -EAGAIN; } if (SPA_UNLIKELY((res = update_time(state, nsec, delay, target, false)) < 0)) return res; if (spa_list_is_empty(&state->ready)) { struct spa_io_buffers *io = state->io; spa_log_trace_fp(state->log, NAME" %p: %d", state, io->status); io->status = SPA_STATUS_NEED_DATA; res = spa_node_call_ready(&state->callbacks, SPA_STATUS_NEED_DATA); } else { res = spa_alsa_write(state); } return res; } static int handle_capture(struct state *state, uint64_t nsec, snd_pcm_uframes_t delay, snd_pcm_uframes_t target) { int res; struct spa_io_buffers *io; if (SPA_UNLIKELY(delay < target)) { spa_log_trace(state->log, NAME" %p: early wakeup %ld %ld", state, delay, target); state->next_time = nsec + (target - delay) * SPA_NSEC_PER_SEC / state->rate; return -EAGAIN; } if (SPA_UNLIKELY(res = update_time(state, nsec, delay, target, false)) < 0) return res; if ((res = spa_alsa_read(state, target)) < 0) return res; if (spa_list_is_empty(&state->ready)) return 0; io = state->io; if (io != NULL && (io->status != SPA_STATUS_HAVE_DATA || state->rate_match != NULL)) { struct buffer *b; if (io->buffer_id < state->n_buffers) spa_alsa_recycle_buffer(state, io->buffer_id); b = spa_list_first(&state->ready, struct buffer, link); spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); io->buffer_id = b->id; io->status = SPA_STATUS_HAVE_DATA; spa_log_trace_fp(state->log, NAME" %p: output buffer:%d", state, b->id); } spa_node_call_ready(&state->callbacks, SPA_STATUS_HAVE_DATA); return 0; } static void alsa_on_timeout_event(struct spa_source *source) { struct state *state = source->data; snd_pcm_uframes_t delay, target; uint64_t expire; int res; if (SPA_UNLIKELY(state->started && spa_system_timerfd_read(state->data_system, state->timerfd, &expire) < 0)) spa_log_warn(state->log, NAME" %p: error reading timerfd: %m", state); if (SPA_UNLIKELY(state->position && state->duration != state->position->clock.duration)) { state->duration = state->position->clock.duration; state->threshold = (state->duration * state->rate + state->rate_denom-1) / state->rate_denom; } if (SPA_UNLIKELY((res = get_status(state, &delay, &target)) < 0)) return; state->current_time = state->next_time; #ifndef FASTPATH if (SPA_UNLIKELY(spa_log_level_enabled(state->log, SPA_LOG_LEVEL_TRACE))) { struct timespec now; uint64_t nsec; spa_system_clock_gettime(state->data_system, CLOCK_MONOTONIC, &now); nsec = SPA_TIMESPEC_TO_NSEC(&now); spa_log_trace_fp(state->log, NAME" %p: timeout %lu %lu %"PRIu64" %"PRIu64" %"PRIi64 " %d %"PRIi64, state, delay, target, nsec, state->current_time, nsec - state->current_time, state->threshold, state->sample_count); } #endif if (state->stream == SND_PCM_STREAM_PLAYBACK) handle_play(state, state->current_time, delay, target); else handle_capture(state, state->current_time, delay, target); set_timeout(state, state->next_time); } static void reset_buffers(struct state *this) { uint32_t i; spa_list_init(&this->free); spa_list_init(&this->ready); for (i = 0; i < this->n_buffers; i++) { struct buffer *b = &this->buffers[i]; if (this->stream == SND_PCM_STREAM_PLAYBACK) { SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); } else { spa_list_append(&this->free, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); } } } static int set_timers(struct state *state) { struct timespec now; spa_system_clock_gettime(state->data_system, CLOCK_MONOTONIC, &now); state->next_time = SPA_TIMESPEC_TO_NSEC(&now); if (state->following) { set_timeout(state, 0); } else { set_timeout(state, state->next_time); } return 0; } static inline bool is_following(struct state *state) { return state->position && state->clock && state->position->clock.id != state->clock->id; } static int setup_matching(struct state *state) { int card; state->matching = state->following; if (state->position == NULL) return -ENOTSUP; spa_log_debug(state->log, "clock:%s card:%d", state->position->clock.name, state->card); if (sscanf(state->position->clock.name, "api.alsa.%d", &card) == 1 && card == state->card) { state->matching = false; } state->resample = (state->rate != state->rate_denom) || state->matching; return 0; } int spa_alsa_start(struct state *state) { int err; if (state->started) return 0; if (state->position) { state->duration = state->position->clock.duration; state->rate_denom = state->position->clock.rate.denom; } else { spa_log_warn(state->log, NAME" %s: no position set, using defaults", state->props.device); state->duration = state->props.min_latency; state->rate_denom = state->rate; } state->following = is_following(state); setup_matching(state); state->threshold = (state->duration * state->rate + state->rate_denom-1) / state->rate_denom; state->last_threshold = state->threshold; spa_dll_init(&state->dll); state->max_error = (256.0 * state->rate) / state->rate_denom; spa_log_debug(state->log, NAME" %p: start %d duration:%d rate:%d follower:%d match:%d resample:%d", state, state->threshold, state->duration, state->rate_denom, state->following, state->matching, state->resample); CHECK(set_swparams(state), "swparams"); if (SPA_UNLIKELY(spa_log_level_enabled(state->log, SPA_LOG_LEVEL_DEBUG))) snd_pcm_dump(state->hndl, state->output); if ((err = snd_pcm_prepare(state->hndl)) < 0 && err != -EBUSY) { spa_log_error(state->log, NAME" %s: snd_pcm_prepare error: %s", state->props.device, snd_strerror(err)); return err; } state->source.func = alsa_on_timeout_event; state->source.data = state; state->source.fd = state->timerfd; state->source.mask = SPA_IO_IN; state->source.rmask = 0; spa_loop_add_source(state->data_loop, &state->source); reset_buffers(state); state->alsa_sync = true; state->alsa_recovering = false; state->alsa_started = false; if (state->stream == SND_PCM_STREAM_PLAYBACK) spa_alsa_silence(state, state->threshold * 2 + state->headroom); if ((err = do_start(state)) < 0) return err; set_timers(state); state->started = true; return 0; } static int do_reassign_follower(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct state *state = user_data; set_timers(state); spa_dll_init(&state->dll); return 0; } int spa_alsa_reassign_follower(struct state *state) { bool following; if (!state->started) return 0; following = is_following(state); if (following != state->following) { spa_log_debug(state->log, NAME" %p: reassign follower %d->%d", state, state->following, following); state->following = following; spa_loop_invoke(state->data_loop, do_reassign_follower, 0, NULL, 0, true, state); } setup_matching(state); return 0; } static int do_remove_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct state *state = user_data; struct itimerspec ts; spa_loop_remove_source(state->data_loop, &state->source); ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(state->data_system, state->timerfd, 0, &ts, NULL); return 0; } int spa_alsa_pause(struct state *state) { int err; if (!state->started) return 0; spa_log_debug(state->log, NAME" %p: pause", state); spa_loop_invoke(state->data_loop, do_remove_source, 0, NULL, 0, true, state); if ((err = snd_pcm_drop(state->hndl)) < 0) spa_log_error(state->log, NAME" %s: snd_pcm_drop %s", state->props.device, snd_strerror(err)); state->started = false; return 0; }