/* PipeWire */ /* SPDX-FileCopyrightText: Copyright © 2022 Wim Taymans */ /* SPDX-License-Identifier: MIT */ static void process_midi_playback(void *data) { struct impl *impl = data; struct pw_buffer *buf; struct spa_data *d; uint32_t timestamp, duration, maxsize, read, rate; struct spa_pod_builder b; struct spa_pod_frame f[1]; void *ptr; struct spa_pod *pod; struct spa_pod_control *c; if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) { pw_log_debug("Out of stream buffers: %m"); return; } d = buf->buffer->datas; maxsize = d[0].maxsize; /* we always use the graph position to select events, the receiver side is * responsible for smoothing out the RTP timestamps to graph time */ duration = impl->io_position->clock.duration; if (impl->io_position) { timestamp = impl->io_position->clock.position; rate = impl->io_position->clock.rate.denom; } else { timestamp = 0; rate = impl->rate; } /* we copy events into the buffer based on the rtp timestamp + delay. */ spa_pod_builder_init(&b, d[0].data, maxsize); spa_pod_builder_push_sequence(&b, &f[0], 0); while (true) { int32_t avail = spa_ringbuffer_get_read_index(&impl->ring, &read); if (avail <= 0) break; ptr = SPA_PTROFF(impl->buffer, read & BUFFER_MASK2, void); if ((pod = spa_pod_from_data(ptr, avail, 0, avail)) == NULL) goto done; if (!spa_pod_is_sequence(pod)) goto done; /* the ringbuffer contains series of sequences, one for each * received packet */ SPA_POD_SEQUENCE_FOREACH((struct spa_pod_sequence*)pod, c) { /* try to render with given delay */ uint32_t target = c->offset + impl->target_buffer; target = (uint64_t)target * rate / impl->rate; if (timestamp != 0) { /* skip old packets */ if (target < timestamp) continue; /* event for next cycle */ if (target >= timestamp + duration) goto complete; } else { timestamp = target; } spa_pod_builder_control(&b, target - timestamp, SPA_CONTROL_Midi); spa_pod_builder_bytes(&b, SPA_POD_BODY(&c->value), SPA_POD_BODY_SIZE(&c->value)); } /* we completed a sequence (one RTP packet), advance ringbuffer * and go to the next packet */ read += SPA_PTRDIFF(c, ptr); spa_ringbuffer_read_update(&impl->ring, read); } complete: spa_pod_builder_pop(&b, &f[0]); if (b.state.offset > maxsize) { pw_log_warn("overflow buffer %u %u", b.state.offset, maxsize); b.state.offset = 0; } d[0].chunk->size = b.state.offset; d[0].chunk->stride = 1; d[0].chunk->offset = 0; done: pw_stream_queue_buffer(impl->stream, buf); } static int parse_varlen(uint8_t *p, uint32_t avail, uint32_t *result) { uint32_t value = 0, offs = 0; while (offs < avail) { uint8_t b = p[offs++]; value = (value << 7) | (b & 0x7f); if ((b & 0x80) == 0) break; } *result = value; return offs; } static int get_midi_size(uint8_t *p, uint32_t avail) { int size; uint32_t offs = 0, value; switch (p[offs++]) { case 0xc0 ... 0xdf: size = 2; break; case 0x80 ... 0xbf: case 0xe0 ... 0xef: size = 3; break; case 0xff: case 0xf0: case 0xf7: size = parse_varlen(&p[offs], avail - offs, &value); size += value + 1; break; default: return -EINVAL; } return size; } static int parse_journal(struct impl *impl, uint8_t *packet, uint16_t seq, uint32_t len) { struct rtp_midi_journal *j = (struct rtp_midi_journal*)packet; uint16_t seqnum = ntohs(j->checkpoint_seqnum); rtp_stream_emit_send_feedback(impl, seqnum); return 0; } static double get_time(struct impl *impl) { struct timespec ts; struct spa_io_position *pos; double t; clock_gettime(CLOCK_MONOTONIC, &ts); if ((pos = impl->io_position) != NULL) { t = pos->clock.position / (double) pos->clock.rate.denom; t += (SPA_TIMESPEC_TO_NSEC(&ts) - pos->clock.nsec) / (double)SPA_NSEC_PER_SEC; } else { t = SPA_TIMESPEC_TO_NSEC(&ts); } return t; } static int receive_midi(struct impl *impl, uint8_t *packet, uint32_t timestamp, uint16_t seq, uint32_t payload_offset, uint32_t plen) { uint32_t write; struct rtp_midi_header *hdr; int32_t filled; struct spa_pod_builder b; struct spa_pod_frame f[1]; void *ptr; uint32_t offs = payload_offset, len, end; bool first = true; if (impl->direct_timestamp) { /* in direct timestamp we attach the RTP timestamp directly on the * midi events and render them in the corresponding cycle */ if (!impl->have_sync) { pw_log_info("sync to timestamp:%u seq:%u ts_offset:%u SSRC:%u direct:%d", timestamp, seq, impl->ts_offset, impl->ssrc, impl->direct_timestamp); impl->have_sync = true; } } else { /* in non-direct timestamp mode, we relate the graph clock against * the RTP timestamps */ double ts = timestamp / (float) impl->rate; double t = get_time(impl); double elapsed, estimated, diff; /* the elapsed time between RTP timestamps */ elapsed = ts - impl->last_timestamp; /* for that elapsed time, our clock should have advanced * by this amount since the last estimation */ estimated = impl->last_time + elapsed * impl->corr; /* calculate the diff between estimated and current clock time in * samples */ diff = (estimated - t) * impl->rate; /* no sync or we drifted too far, resync */ if (!impl->have_sync || fabs(diff) > impl->target_buffer) { impl->corr = 1.0; spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 256, impl->rate); pw_log_info("sync to timestamp:%u seq:%u ts_offset:%u SSRC:%u direct:%d", timestamp, seq, impl->ts_offset, impl->ssrc, impl->direct_timestamp); impl->have_sync = true; impl->ring.readindex = impl->ring.writeindex; } else { /* update our new rate correction */ impl->corr = spa_dll_update(&impl->dll, diff); /* our current time is now the estimated time */ t = estimated; } pw_log_debug("%f %f %f %f", t, estimated, diff, impl->corr); timestamp = t * impl->rate; impl->last_timestamp = ts; impl->last_time = t; } filled = spa_ringbuffer_get_write_index(&impl->ring, &write); if (filled > (int32_t)BUFFER_SIZE2) { pw_log_warn("overflow"); return -ENOSPC; } hdr = (struct rtp_midi_header *)&packet[offs++]; len = hdr->len; if (hdr->b) { len = (len << 8) | hdr->len_b; offs++; } end = len + offs; if (end > plen) { pw_log_warn("invalid packet %d > %d", end, plen); return -EINVAL; } if (hdr->j) parse_journal(impl, &packet[end], seq, plen - end); ptr = SPA_PTROFF(impl->buffer, write & BUFFER_MASK2, void); /* each packet is written as a sequence of events. The offset is * the RTP timestamp */ spa_pod_builder_init(&b, ptr, BUFFER_SIZE2 - filled); spa_pod_builder_push_sequence(&b, &f[0], 0); while (offs < end) { uint32_t delta; int size; if (first && !hdr->z) delta = 0; else offs += parse_varlen(&packet[offs], end - offs, &delta); timestamp += delta * impl->corr; spa_pod_builder_control(&b, timestamp, SPA_CONTROL_Midi); size = get_midi_size(&packet[offs], end - offs); if (size <= 0 || offs + size > end) { pw_log_warn("invalid size (%08x) %d (%u %u)", packet[offs], size, offs, end); break; } spa_pod_builder_bytes(&b, &packet[offs], size); offs += size; first = false; } spa_pod_builder_pop(&b, &f[0]); write += b.state.offset; spa_ringbuffer_write_update(&impl->ring, write); return 0; } static int receive_rtp_midi(struct impl *impl, uint8_t *buffer, ssize_t len) { struct rtp_header *hdr; ssize_t hlen; uint16_t seq; uint32_t timestamp; if (len < 12) goto short_packet; hdr = (struct rtp_header*)buffer; if (hdr->v != 2) goto invalid_version; hlen = 12 + hdr->cc * 4; if (hlen > len) goto invalid_len; if (impl->have_ssrc && impl->ssrc != hdr->ssrc) goto unexpected_ssrc; impl->ssrc = hdr->ssrc; impl->have_ssrc = true; seq = ntohs(hdr->sequence_number); if (impl->have_seq && impl->seq != seq) { pw_log_info("unexpected seq (%d != %d) SSRC:%u", seq, impl->seq, hdr->ssrc); impl->have_sync = false; } impl->seq = seq + 1; impl->have_seq = true; timestamp = ntohl(hdr->timestamp) - impl->ts_offset; impl->receiving = true; return receive_midi(impl, buffer, timestamp, seq, hlen, len); short_packet: pw_log_warn("short packet received"); return -EINVAL; invalid_version: pw_log_warn("invalid RTP version"); spa_debug_mem(0, buffer, len); return -EPROTO; invalid_len: pw_log_warn("invalid RTP length"); return -EINVAL; unexpected_ssrc: pw_log_warn("unexpected SSRC (expected %u != %u)", impl->ssrc, hdr->ssrc); return -EINVAL; } static int write_event(uint8_t *p, uint32_t value, void *ev, uint32_t size) { uint64_t buffer; uint8_t b; int count = 0; buffer = value & 0x7f; while ((value >>= 7)) { buffer <<= 8; buffer |= ((value & 0x7f) | 0x80); } do { b = buffer & 0xff; p[count++] = b; buffer >>= 8; } while (b & 0x80); memcpy(&p[count], ev, size); return count + size; } static void flush_midi_packets(struct impl *impl, struct spa_pod_sequence *sequence, uint32_t timestamp, uint32_t rate) { struct spa_pod_control *c; struct rtp_header header; struct rtp_midi_header midi_header; struct iovec iov[3]; uint32_t len, prev_offset, base; spa_zero(header); header.v = 2; header.pt = impl->payload; header.ssrc = htonl(impl->ssrc); spa_zero(midi_header); iov[0].iov_base = &header; iov[0].iov_len = sizeof(header); iov[1].iov_base = &midi_header; iov[1].iov_len = sizeof(midi_header); iov[2].iov_base = impl->buffer; iov[2].iov_len = 0; prev_offset = len = base = 0; SPA_POD_SEQUENCE_FOREACH(sequence, c) { void *ev; uint32_t size, delta, offset; if (c->type != SPA_CONTROL_Midi) continue; ev = SPA_POD_BODY(&c->value), size = SPA_POD_BODY_SIZE(&c->value); offset = c->offset * impl->rate / rate; if (len > 0 && (len + size > impl->mtu || offset - base > impl->psamples)) { /* flush packet when we have one and when it's either * too large or has too much data. */ if (len < 16) { midi_header.b = 0; midi_header.len = len; iov[1].iov_len = sizeof(midi_header) - 1; } else { midi_header.b = 1; midi_header.len = (len >> 8) & 0xf; midi_header.len_b = len & 0xff; iov[1].iov_len = sizeof(midi_header); } iov[2].iov_len = len; pw_log_debug("sending %d timestamp:%d %u %u", len, timestamp + base, offset, impl->psamples); rtp_stream_emit_send_packet(impl, iov, 3); impl->seq++; len = 0; } if (len == 0) { /* start new packet */ base = prev_offset = offset; header.sequence_number = htons(impl->seq); header.timestamp = htonl(impl->ts_offset + timestamp + base); memcpy(&impl->buffer[len], ev, size); len += size; } else { delta = offset - prev_offset; prev_offset = offset; len += write_event(&impl->buffer[len], delta, ev, size); } } if (len > 0) { /* flush last packet */ if (len < 16) { midi_header.b = 0; midi_header.len = len; iov[1].iov_len = sizeof(midi_header) - 1; } else { midi_header.b = 1; midi_header.len = (len >> 8) & 0xf; midi_header.len_b = len & 0xff; iov[1].iov_len = sizeof(midi_header); } iov[2].iov_len = len; pw_log_debug("sending %d timestamp:%d", len, base); rtp_stream_emit_send_packet(impl, iov, 3); impl->seq++; } } static void process_midi_capture(void *data) { struct impl *impl = data; struct pw_buffer *buf; struct spa_data *d; uint32_t offs, size, timestamp, rate; struct spa_pod *pod; void *ptr; if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) { pw_log_debug("Out of stream buffers: %m"); return; } d = buf->buffer->datas; offs = SPA_MIN(d[0].chunk->offset, d[0].maxsize); size = SPA_MIN(d[0].chunk->size, d[0].maxsize - offs); if (SPA_LIKELY(impl->io_position)) { rate = impl->io_position->clock.rate.denom; timestamp = impl->io_position->clock.position * impl->rate / rate; } else { rate = 10000; timestamp = 0; } ptr = SPA_PTROFF(d[0].data, offs, void); if ((pod = spa_pod_from_data(ptr, size, 0, size)) == NULL) goto done; if (!spa_pod_is_sequence(pod)) goto done; if (!impl->have_sync) { pw_log_info("sync to timestamp:%u seq:%u ts_offset:%u SSRC:%u", timestamp, impl->seq, impl->ts_offset, impl->ssrc); impl->have_sync = true; } flush_midi_packets(impl, (struct spa_pod_sequence*)pod, timestamp, rate); done: pw_stream_queue_buffer(impl->stream, buf); }