/* Spa Media Sink */ /* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #include "rtp.h" #include "media-codecs.h" #include "rate-control.h" #include "iso-io.h" SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.bluez5.sink.media"); #undef SPA_LOG_TOPIC_DEFAULT #define SPA_LOG_TOPIC_DEFAULT &log_topic #include "bt-latency.h" #define DEFAULT_CLOCK_NAME "clock.system.monotonic" struct props { int64_t latency_offset; char clock_name[64]; }; #define FILL_FRAMES 4 #define MIN_BUFFERS 3 #define MAX_BUFFERS 32 #define BUFFER_SIZE (8192*8) #define RATE_CTL_DIFF_MAX 0.01 #define LATENCY_PERIOD (200 * SPA_NSEC_PER_MSEC) /* Wait for two cycles before trying to sync ISO. On start/driver reassign, * first cycle may have strange number of samples. */ #define RESYNC_CYCLES 2 struct buffer { uint32_t id; #define BUFFER_FLAG_OUT (1<<0) uint32_t flags; struct spa_buffer *buf; struct spa_meta_header *h; struct spa_list link; }; struct port { struct spa_audio_info current_format; uint32_t frame_size; unsigned int have_format:1; uint64_t info_all; struct spa_port_info info; struct spa_io_buffers *io; struct spa_io_rate_match *rate_match; struct spa_latency_info latency; #define IDX_EnumFormat 0 #define IDX_Meta 1 #define IDX_IO 2 #define IDX_Format 3 #define IDX_Buffers 4 #define IDX_Latency 5 #define N_PORT_PARAMS 6 struct spa_param_info params[N_PORT_PARAMS]; struct buffer buffers[MAX_BUFFERS]; uint32_t n_buffers; struct spa_list free; struct spa_list ready; size_t ready_offset; struct spa_bt_rate_control ratectl; }; #define ASHA_ENCODED_PKT_SZ 161 /* 160 bytes encoded + 1 byte sequence number */ #define ASHA_CONN_INTERVAL (20 * SPA_NSEC_PER_MSEC) struct spa_bt_asha { struct spa_source flush_source; struct spa_source timer_source; int timerfd; uint8_t buf[512]; uint64_t ref_t0; uint64_t next_time; unsigned int flush_pending:1; unsigned int set_timer:1; }; struct impl { struct spa_handle handle; struct spa_node node; struct spa_log *log; struct spa_loop *data_loop; struct spa_system *data_system; struct spa_loop_utils *loop_utils; struct spa_hook_list hooks; struct spa_callbacks callbacks; uint32_t quantum_limit; uint64_t info_all; struct spa_node_info info; #define IDX_PropInfo 0 #define IDX_Props 1 #define N_NODE_PARAMS 2 struct spa_param_info params[N_NODE_PARAMS]; struct props props; struct spa_bt_transport *transport; struct spa_hook transport_listener; struct port port; unsigned int started:1; unsigned int start_ready:1; unsigned int transport_started:1; unsigned int following:1; unsigned int is_output:1; unsigned int flush_pending:1; unsigned int iso_pending:1; unsigned int own_codec_data:1; unsigned int is_duplex:1; unsigned int is_internal:1; struct spa_source source; int timerfd; struct spa_source flush_source; struct spa_source flush_timer_source; int flush_timerfd; struct spa_io_clock *clock; struct spa_io_position *position; uint64_t current_time; uint64_t next_time; uint64_t last_error; uint64_t process_time; uint64_t process_duration; uint64_t process_rate; double process_rate_diff; uint64_t prev_flush_time; uint64_t next_flush_time; uint64_t packet_delay_ns; struct spa_source *update_delay_event; uint32_t encoder_delay; const struct media_codec *codec; bool codec_props_changed; void *codec_props; void *codec_data; struct spa_audio_info codec_format; int need_flush; bool fragment; uint32_t resync; uint32_t block_size; uint8_t buffer[BUFFER_SIZE]; uint32_t buffer_used; uint32_t header_size; uint32_t block_count; uint16_t seqnum; uint64_t last_seqnum; uint32_t timestamp; uint64_t sample_count; uint8_t tmp_buffer[BUFFER_SIZE]; uint32_t tmp_buffer_used; uint32_t fd_buffer_size; uint32_t silence_frames; struct spa_bt_asha *asha; struct spa_list asha_link; struct spa_bt_latency tx_latency; }; #define CHECK_PORT(this,d,p) ((d) == SPA_DIRECTION_INPUT && (p) == 0) static struct spa_list asha_sinks = SPA_LIST_INIT(&asha_sinks); static void drop_frames(struct impl *this, uint32_t req); static uint64_t get_reference_time(struct impl *this, uint64_t *duration_ns_ret); static struct impl *find_other_asha(struct impl *this) { struct impl *other; spa_list_for_each(other, &asha_sinks, asha_link) { if (this == other) continue; if (this->transport->hisyncid == other->transport->hisyncid) { return other; } } return NULL; } static void reset_props(struct impl *this, struct props *props) { props->latency_offset = 0; strncpy(props->clock_name, DEFAULT_CLOCK_NAME, sizeof(props->clock_name)); } static int impl_node_enum_params(void *object, int seq, uint32_t id, uint32_t start, uint32_t num, const struct spa_pod *filter) { struct impl *this = object; struct spa_pod *param; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; struct spa_result_node_params result; uint32_t count = 0, index_offset = 0; bool enum_codec = false; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(num != 0, -EINVAL); result.id = id; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (id) { case SPA_PARAM_PropInfo: { switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_PropInfo, id, SPA_PROP_INFO_id, SPA_POD_Id(SPA_PROP_latencyOffsetNsec), SPA_PROP_INFO_description, SPA_POD_String("Latency offset (ns)"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(0LL, INT64_MIN, INT64_MAX)); break; default: enum_codec = true; index_offset = 1; } break; } case SPA_PARAM_Props: { struct props *p = &this->props; switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, id, SPA_PROP_latencyOffsetNsec, SPA_POD_Long(p->latency_offset)); break; default: enum_codec = true; index_offset = 1; } break; } default: return -ENOENT; } if (enum_codec) { int res; if (this->codec->enum_props == NULL || this->codec_props == NULL || this->transport == NULL) return 0; else if ((res = this->codec->enum_props(this->codec_props, this->transport->device->settings, id, result.index - index_offset, &b, ¶m)) != 1) return res; } if (spa_pod_filter(&b, &result.param, param, filter) < 0) goto next; spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; return 0; } static int set_timeout(struct impl *this, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; return spa_system_timerfd_settime(this->data_system, this->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); } static int set_timers(struct impl *this) { struct timespec now; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now); this->next_time = SPA_TIMESPEC_TO_NSEC(&now); return set_timeout(this, this->following ? 0 : this->next_time); } static int set_asha_timeout(struct impl *this, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; return spa_system_timerfd_settime(this->data_system, this->asha->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); } static int set_asha_timer(struct impl *this, struct impl *other) { uint64_t time; if (other) { /* Try to line up our timer with the other side, and drop samples so we're sending * the same sample position on both sides */ uint64_t other_samples = (get_reference_time(other, NULL) - other->asha->ref_t0) * this->port.current_format.info.raw.rate / SPA_NSEC_PER_SEC; if (other->asha->next_time < this->process_time) { /* Other side has not yet been scheduled in this graph cycle, we expect * there might be one packet left from the previous cycle at most */ time = other->asha->next_time + ASHA_CONN_INTERVAL; other_samples += ASHA_CONN_INTERVAL * this->port.current_format.info.raw.rate / SPA_NSEC_PER_SEC; } else { /* Other side has set up its next cycle, catch up */ time = other->asha->next_time; } /* Since the quantum and packet size aren't correlated, drop any samples from this * cycle that might have been used to send a packet starting in the previous cycle */ drop_frames(this, other_samples % this->process_duration); } else { time = this->process_time; } this->asha->next_time = time; return set_asha_timeout(this, this->asha->next_time); } static inline bool is_following(struct impl *this) { return this->position && this->clock && this->position->clock.id != this->clock->id; } struct reassign_io_info { struct impl *this; struct spa_io_position *position; struct spa_io_clock *clock; }; static int do_reassign_io(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct reassign_io_info *info = user_data; struct impl *this = info->this; bool following; if (this->position != info->position || this->clock != info->clock) this->resync = RESYNC_CYCLES; this->position = info->position; this->clock = info->clock; following = is_following(this); if (following != this->following) { spa_log_debug(this->log, "%p: reassign follower %d->%d", this, this->following, following); this->following = following; set_timers(this); } return 0; } static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size) { struct impl *this = object; struct reassign_io_info info = { .this = this, .position = this->position, .clock = this->clock }; spa_return_val_if_fail(this != NULL, -EINVAL); switch (id) { case SPA_IO_Clock: info.clock = data; if (info.clock != NULL) { spa_scnprintf(info.clock->name, sizeof(info.clock->name), "%s", this->props.clock_name); } break; case SPA_IO_Position: info.position = data; break; default: return -ENOENT; } if (this->started) { spa_loop_locked(this->data_loop, do_reassign_io, 0, NULL, 0, &info); } else { this->clock = info.clock; this->position = info.position; } return 0; } static void emit_node_info(struct impl *this, bool full); static void emit_port_info(struct impl *this, struct port *port, bool full); static void set_latency(struct impl *this, bool emit_latency) { struct port *port = &this->port; int64_t delay; /* in main loop */ if (this->transport == NULL || !port->have_format) return; /* * We start flushing data immediately, so the delay is: * * (packet delay) + (codec internal delay) + (transport delay) + (latency offset) * * and doesn't depend on the quantum. Kernel knows the latency due to * socket/controller queue, but doesn't tell us, so not included but * hopefully in < 10 ms range. */ delay = __atomic_load_n(&this->packet_delay_ns, __ATOMIC_RELAXED); delay += (int64_t)this->encoder_delay * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate; delay += spa_bt_transport_get_delay_nsec(this->transport); delay += SPA_CLAMP(this->props.latency_offset, -delay, INT64_MAX / 2); delay = SPA_MAX(delay, 0); port->latency.min_ns = port->latency.max_ns = delay; port->latency.min_rate = port->latency.max_rate = 0; if (this->codec->kind == MEDIA_CODEC_BAP) { /* ISO has different delay */ port->latency.min_quantum = port->latency.max_quantum = 1.0f; } else { port->latency.min_quantum = port->latency.max_quantum = 0.0f; } spa_log_info(this->log, "%p: total latency:%d ms", this, (int)(delay / SPA_NSEC_PER_MSEC)); if (emit_latency) { port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS; port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL; emit_port_info(this, port, false); } } static void update_delay_event(void *data, uint64_t count) { struct impl *this = data; /* in main loop */ set_latency(this, true); } static void update_packet_delay(struct impl *this, uint64_t delay) { uint64_t old_delay = this->packet_delay_ns; /* in data thread */ delay = SPA_MAX(delay, old_delay); if (delay == old_delay) return; __atomic_store_n(&this->packet_delay_ns, delay, __ATOMIC_RELAXED); if (this->update_delay_event) spa_loop_utils_signal_event(this->loop_utils, this->update_delay_event); } static int apply_props(struct impl *this, const struct spa_pod *param) { struct props new_props = this->props; int changed = 0; if (param == NULL) { reset_props(this, &new_props); } else { spa_pod_parse_object(param, SPA_TYPE_OBJECT_Props, NULL, SPA_PROP_latencyOffsetNsec, SPA_POD_OPT_Long(&new_props.latency_offset)); } changed = (memcmp(&new_props, &this->props, sizeof(struct props)) != 0); this->props = new_props; if (changed) set_latency(this, true); return changed; } static int impl_node_set_param(void *object, uint32_t id, uint32_t flags, const struct spa_pod *param) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); switch (id) { case SPA_PARAM_Props: { int res, codec_res = 0; res = apply_props(this, param); if (this->codec_props && this->codec->set_props) { codec_res = this->codec->set_props(this->codec_props, param); if (codec_res > 0) this->codec_props_changed = true; } if (res > 0 || codec_res > 0) { this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS; this->params[IDX_Props].flags ^= SPA_PARAM_INFO_SERIAL; emit_node_info(this, false); } break; } default: return -ENOENT; } return 0; } static uint32_t get_queued_frames(struct impl *this) { struct port *port = &this->port; uint32_t bytes = 0; struct buffer *b; spa_list_for_each(b, &port->ready, link) { struct spa_data *d = b->buf->datas; bytes += d[0].chunk->size; } if (bytes > port->ready_offset) bytes -= port->ready_offset; else bytes = 0; bytes += this->silence_frames * this->block_size; /* Count (partially) encoded packet */ bytes += this->tmp_buffer_used; bytes += this->block_count * this->block_size; return bytes / port->frame_size; } static uint64_t get_reference_time(struct impl *this, uint64_t *duration_ns_ret) { struct port *port = &this->port; uint64_t duration_ns; int64_t t; bool resampling; if (!this->process_rate || !this->process_duration) { if (this->position) { this->process_duration = this->position->clock.duration; this->process_rate = this->position->clock.rate.denom; this->process_rate_diff = this->position->clock.rate_diff; } else { this->process_duration = 1024; this->process_rate = 48000; this->process_rate_diff = 1.0; } } duration_ns = ((uint64_t)this->process_duration * SPA_NSEC_PER_SEC / this->process_rate); if (duration_ns_ret) *duration_ns_ret = duration_ns; /* Time at the first sample in the current packet. */ t = duration_ns; t -= ((uint64_t)get_queued_frames(this) * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate); /* Account for resampling delay */ resampling = (port->current_format.info.raw.rate != this->process_rate) || this->following; if (port->rate_match && this->position && resampling) { t -= (port->rate_match->delay * SPA_NSEC_PER_SEC + port->rate_match->delay_frac) / port->current_format.info.raw.rate; } if (this->process_rate_diff > 0) t = (int64_t)(t / this->process_rate_diff); if (this->transport && this->transport->iso_io && this->transport->iso_io->size) t -= this->transport->iso_io->duration; return this->process_time + t; } static int reset_buffer(struct impl *this) { if (this->codec_props_changed && this->codec_props && this->codec->update_props) { this->codec->update_props(this->codec_data, this->codec_props); this->codec_props_changed = false; } this->need_flush = 0; this->block_count = 0; this->fragment = false; if (this->codec->kind == MEDIA_CODEC_BAP || this->codec->kind == MEDIA_CODEC_ASHA) this->timestamp = get_reference_time(this, NULL) / SPA_NSEC_PER_USEC; else this->timestamp = this->sample_count; this->buffer_used = this->codec->start_encode(this->codec_data, this->buffer, sizeof(this->buffer), ++this->seqnum, this->timestamp); this->header_size = this->buffer_used; return 0; } static int setup_matching(struct impl *this) { struct port *port = &this->port; if (!this->transport_started) port->ratectl.corr = 1.0; if (port->rate_match) { port->rate_match->rate = 1 / port->ratectl.corr; /* We rate match in the system clock domain. If driver ticks at a * different rate, we as follower must compensate. */ if (this->following && SPA_LIKELY(this->position && this->position->clock.rate_diff > 0)) port->rate_match->rate /= this->position->clock.rate_diff; SPA_FLAG_UPDATE(port->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, this->following); } return 0; } static int get_transport_unsent_size(struct impl *this) { int res, value; if (this->tx_latency.enabled) { res = 0; value = this->tx_latency.unsent; } else if (this->codec->kind == MEDIA_CODEC_HFP) { value = 0; } else { res = ioctl(this->flush_source.fd, TIOCOUTQ, &value); if (res < 0) { spa_log_error(this->log, "%p: ioctl fail: %m", this); return -errno; } if ((unsigned int)value > this->fd_buffer_size) return -EIO; value = this->fd_buffer_size - value; } spa_log_trace(this->log, "%p: fd unsent size:%d/%d", this, value, this->fd_buffer_size); return value; } static int send_buffer(struct impl *this) { int written, unsent; struct timespec ts_pre; if (this->codec->abr_process) { unsent = get_transport_unsent_size(this); if (unsent >= 0) this->codec->abr_process(this->codec_data, unsent); } spa_system_clock_gettime(this->data_system, CLOCK_REALTIME, &ts_pre); if (this->codec->kind == MEDIA_CODEC_HFP) { written = spa_bt_sco_io_write(this->transport->sco_io, this->buffer, this->buffer_used); } else { written = spa_bt_send(this->flush_source.fd, this->buffer, this->buffer_used, &this->tx_latency, SPA_TIMESPEC_TO_NSEC(&ts_pre)); } if (SPA_UNLIKELY(spa_log_level_topic_enabled(this->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_TRACE))) { struct timespec ts; uint64_t now; uint64_t dt; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts); now = SPA_TIMESPEC_TO_NSEC(&ts); dt = now - this->prev_flush_time; this->prev_flush_time = now; spa_log_trace(this->log, "%p: send blocks:%d block:%u seq:%u ts:%u size:%u " "wrote:%d dt:%"PRIu64, this, this->block_count, this->block_size, this->seqnum, this->timestamp, this->buffer_used, written, dt); } if (written < 0) { spa_log_debug(this->log, "%p: %m", this); return -errno; } return written; } static int encode_buffer(struct impl *this, const void *data, uint32_t size) { int processed; size_t out_encoded; struct port *port = &this->port; const void *from_data = data; int from_size = size; spa_log_trace(this->log, "%p: encode %d used %d, %d %d %d", this, size, this->buffer_used, port->frame_size, this->block_size, this->block_count); if (this->need_flush) return 0; if (this->buffer_used >= sizeof(this->buffer)) return -ENOSPC; if (size < this->block_size - this->tmp_buffer_used) { memcpy(this->tmp_buffer + this->tmp_buffer_used, data, size); this->tmp_buffer_used += size; return size; } else if (this->tmp_buffer_used > 0) { memcpy(this->tmp_buffer + this->tmp_buffer_used, data, this->block_size - this->tmp_buffer_used); from_data = this->tmp_buffer; from_size = this->block_size; this->tmp_buffer_used = this->block_size - this->tmp_buffer_used; } processed = this->codec->encode(this->codec_data, from_data, from_size, this->buffer + this->buffer_used, sizeof(this->buffer) - this->buffer_used, &out_encoded, &this->need_flush); if (processed < 0) return processed; this->sample_count += processed / port->frame_size; this->block_count += processed / this->block_size; this->buffer_used += out_encoded; spa_log_trace(this->log, "%p: processed %d %zd used %d", this, processed, out_encoded, this->buffer_used); if (this->tmp_buffer_used) { processed = this->tmp_buffer_used; this->tmp_buffer_used = 0; } return processed; } static int encode_fragment(struct impl *this) { int res; size_t out_encoded; struct port *port = &this->port; spa_log_trace(this->log, "%p: encode fragment used %d, %d %d %d", this, this->buffer_used, port->frame_size, this->block_size, this->block_count); if (this->need_flush) return 0; res = this->codec->encode(this->codec_data, NULL, 0, this->buffer + this->buffer_used, sizeof(this->buffer) - this->buffer_used, &out_encoded, &this->need_flush); if (res < 0) return res; if (res != 0) return -EINVAL; this->buffer_used += out_encoded; spa_log_trace(this->log, "%p: processed fragment %zd used %d", this, out_encoded, this->buffer_used); return 0; } static int flush_buffer(struct impl *this) { spa_log_trace(this->log, "%p: used:%d block_size:%d need_flush:%d", this, this->buffer_used, this->block_size, this->need_flush); if (this->need_flush) return send_buffer(this); return 0; } static int add_data(struct impl *this, const void *data, uint32_t size) { int processed, total = 0; while (size > 0) { processed = encode_buffer(this, data, size); if (processed <= 0) return total > 0 ? total : processed; data = SPA_PTROFF(data, processed, void); size -= processed; total += processed; } return total; } static void enable_flush_timer(struct impl *this, bool enabled) { struct itimerspec ts; if (!enabled) this->next_flush_time = 0; ts.it_value.tv_sec = this->next_flush_time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = this->next_flush_time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(this->data_system, this->flush_timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); this->flush_pending = enabled; } static int flush_data(struct impl *this, uint64_t now_time) { struct port *port = &this->port; bool is_asha = this->codec->kind == MEDIA_CODEC_ASHA; bool is_sco = this->codec->kind == MEDIA_CODEC_HFP; uint32_t total_frames; int written; int unsent_buffer; spa_assert(this->transport_started); /* I/O in error state? */ if (this->transport == NULL || (!this->flush_source.loop && !is_asha && !is_sco)) return -EIO; if (!this->flush_timer_source.loop && !this->transport->iso_io && !is_asha) return -EIO; if (!this->transport->sco_io && is_sco) return -EIO; if (this->transport->iso_io && !this->iso_pending) return 0; total_frames = 0; again: written = 0; if (this->fragment && !this->need_flush) { int res; this->fragment = false; if ((res = encode_fragment(this)) < 0) { /* Error */ reset_buffer(this); return res; } } while (this->silence_frames && !this->need_flush) { static const uint8_t empty[1024] = {}; uint32_t avail = SPA_MIN(this->silence_frames, sizeof(empty) / port->frame_size) * port->frame_size; written = add_data(this, empty, avail); if (written <= 0) break; this->silence_frames -= written / port->frame_size; spa_log_trace(this->log, "%p: written %d silence frames", this, written / port->frame_size); } while (!spa_list_is_empty(&port->ready) && !this->need_flush) { uint8_t *src; uint32_t n_bytes, n_frames; struct buffer *b; struct spa_data *d; uint32_t index, offs, avail, l0, l1; b = spa_list_first(&port->ready, struct buffer, link); d = b->buf->datas; src = d[0].data; index = d[0].chunk->offset + port->ready_offset; avail = d[0].chunk->size - port->ready_offset; avail /= port->frame_size; offs = index % d[0].maxsize; n_frames = avail; n_bytes = n_frames * port->frame_size; l0 = SPA_MIN(n_bytes, d[0].maxsize - offs); l1 = n_bytes - l0; written = add_data(this, src + offs, l0); if (written > 0 && l1 > 0) written += add_data(this, src, l1); if (written <= 0) { if (written < 0 && written != -ENOSPC) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); this->port.io->buffer_id = b->id; spa_log_warn(this->log, "%p: error %s, reuse buffer %u", this, spa_strerror(written), b->id); spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); port->ready_offset = 0; } break; } n_frames = written / port->frame_size; port->ready_offset += written; if (port->ready_offset >= d[0].chunk->size) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); spa_log_trace(this->log, "%p: reuse buffer %u", this, b->id); this->port.io->buffer_id = b->id; spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); port->ready_offset = 0; } total_frames += n_frames; spa_log_trace(this->log, "%p: written %u frames", this, total_frames); } if (this->transport->iso_io) { struct spa_bt_iso_io *iso_io = this->transport->iso_io; if (this->need_flush) { size_t avail = SPA_MIN(this->buffer_used, sizeof(iso_io->buf)); uint64_t delay = 0; spa_log_trace(this->log, "%p: ISO put fd:%d size:%u sn:%u ts:%u now:%"PRIu64, this, this->transport->fd, (unsigned)avail, (unsigned)this->seqnum, (unsigned)this->timestamp, iso_io->now); memcpy(iso_io->buf, this->buffer, avail); iso_io->size = avail; iso_io->timestamp = this->timestamp; this->iso_pending = false; reset_buffer(this); if (this->process_rate) { /* Match target delay in media_iso_pull() */ delay = this->process_duration * SPA_NSEC_PER_SEC / this->process_rate; if (delay < iso_io->duration*3/2) delay = iso_io->duration*3/2 - delay; else delay = 0; } update_packet_delay(this, delay); } return 0; } if (is_asha) { struct spa_bt_asha *asha = this->asha; if (this->need_flush && !asha->flush_pending) { /* * For ASHA, we cannot send more than one encoded * packet at a time and can only send them spaced * 20 ms apart which is the ASHA connection interval. * All encoded packets will be 160 bytes + 1 byte * sequence number. * * Unlike the A2DP flow below, we cannot delay the * output by 1 packet. While that might work for the * mono case, for stereo that make the two sides be * out of sync with each other and if the two sides * differ by more than 3 credits, we would have to * drop packets or the devices themselves might drop * the connection. */ memcpy(asha->buf, this->buffer, this->buffer_used); asha->flush_pending = true; reset_buffer(this); } return 0; } if (this->flush_pending) { spa_log_trace(this->log, "%p: wait for flush timer", this); return 0; } /* * Get packet queue size before writing to it. This should be zero to increase * bitpool. Bitpool shouldn't be increased when there is unsent data. */ unsent_buffer = get_transport_unsent_size(this); written = flush_buffer(this); if (written == -EAGAIN) { spa_log_trace(this->log, "%p: fail flush", this); if (now_time - this->last_error > SPA_NSEC_PER_SEC / 2) { int res = 0; if (this->codec->reduce_bitpool) res = this->codec->reduce_bitpool(this->codec_data); spa_log_debug(this->log, "%p: reduce bitpool: %i", this, res); this->last_error = now_time; } /* * The socket buffer is full, and the device is not processing data * fast enough, so should just skip this packet. There will be a sound * glitch in any case. */ written = this->buffer_used; } if (written < 0) { spa_log_trace(this->log, "%p: error flushing %s", this, spa_strerror(written)); reset_buffer(this); enable_flush_timer(this, false); return written; } else if (written > 0) { /* * We cannot write all data we have at once, since this can exceed device * buffers (esp. for the A2DP low-latency codecs) and socket buffers, so * flush needs to be delayed. */ uint32_t packet_samples = this->block_count * this->block_size / port->frame_size; uint64_t packet_time = (uint64_t)packet_samples * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate; if (SPA_LIKELY(this->position)) { uint64_t duration_ns; /* * Flush at the time position of the next buffered sample. */ this->next_flush_time = get_reference_time(this, &duration_ns) + packet_time; /* * We can delay the output by one packet to avoid waiting * for the next buffer and so make send intervals exactly regular. * However, this is not needed for A2DP or BAP. The controller * will do the scheduling for us, and there's also the socket buffer * in between. * * Although in principle this should not be needed, we * do it regardless in case it helps. */ #if 1 this->next_flush_time += SPA_MIN(packet_time, duration_ns * (SPA_MAX(port->n_buffers, 2u) - 2)); #endif } else { if (this->next_flush_time == 0) this->next_flush_time = this->process_time; this->next_flush_time += packet_time; } update_packet_delay(this, packet_time); if (this->need_flush == NEED_FLUSH_FRAGMENT) { reset_buffer(this); this->fragment = true; goto again; } if (now_time - this->last_error > SPA_NSEC_PER_SEC) { if (unsent_buffer == 0) { int res = 0; if (this->codec->increase_bitpool) res = this->codec->increase_bitpool(this->codec_data); spa_log_debug(this->log, "%p: increase bitpool: %i", this, res); } this->last_error = now_time; } spa_log_trace(this->log, "%p: flush at:%"PRIu64" process:%"PRIu64, this, this->next_flush_time, this->process_time); reset_buffer(this); enable_flush_timer(this, true); /* Encode next packet already now; it will be flushed later on timer */ goto again; } else { /* Don't want to flush yet, or failed to write anything */ spa_log_trace(this->log, "%p: skip flush", this); enable_flush_timer(this, false); } return 0; } static void drop_frames(struct impl *this, uint32_t req) { struct port *port = &this->port; if (this->silence_frames > req) { this->silence_frames -= req; req = 0; } else { req -= this->silence_frames; this->silence_frames = 0; } while (req > 0 && !spa_list_is_empty(&port->ready)) { struct buffer *b; struct spa_data *d; uint32_t avail; b = spa_list_first(&port->ready, struct buffer, link); d = b->buf->datas; avail = d[0].chunk->size - port->ready_offset; avail /= port->frame_size; avail = SPA_MIN(avail, req); port->ready_offset += avail * port->frame_size; req -= avail; if (port->ready_offset >= d[0].chunk->size) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); spa_log_trace(this->log, "%p: reuse buffer %u", this, b->id); this->port.io->buffer_id = b->id; spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); port->ready_offset = 0; } spa_log_trace(this->log, "%p: skipped %u frames", this, avail); } } static void media_iso_rate_match(struct impl *this) { struct spa_bt_iso_io *iso_io = this->transport ? this->transport->iso_io : NULL; struct port *port = &this->port; const double period = 0.05 * SPA_NSEC_PER_SEC; uint64_t ref_time; uint64_t duration_ns; double value, target, err, max_err; if (!iso_io || !this->transport_started) return; if (this->resync || !this->position) { spa_bt_rate_control_init(&port->ratectl, 0); setup_matching(this); return; } /* * Rate match sample position so that the graph is max(ISO interval*3/2, quantum) * ahead of the time instant we have to send data. * * Being 1 ISO interval ahead is unavoidable otherwise we underrun, and the * rest is safety margin for the graph to deliver data in time. * * This is then the part of the TX latency on PipeWire side. There is * another part of TX latency on kernel/controller side before the * controller starts processing the packet. */ ref_time = get_reference_time(this, &duration_ns); value = (int64_t)iso_io->now - (int64_t)ref_time; if (this->process_rate) target = this->process_duration * SPA_NSEC_PER_SEC / this->process_rate; else target = 0; target = SPA_MAX(target, iso_io->duration*3/2); err = value - target; max_err = SPA_MAX(40 * SPA_NSEC_PER_MSEC, target); if (iso_io->resync && err >= 0) { unsigned int req = (unsigned int)(err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC); if (req > 0) { spa_bt_rate_control_init(&port->ratectl, 0); drop_frames(this, req); } spa_log_debug(this->log, "%p: ISO sync skip frames:%u", this, req); } else if (iso_io->resync && -err >= 0) { unsigned int req = (unsigned int)(-err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC); if (req > 0) { spa_bt_rate_control_init(&port->ratectl, 0); this->silence_frames += req; } spa_log_debug(this->log, "%p: ISO sync pad frames:%u", this, req); } else if (err > max_err || -err > max_err) { iso_io->need_resync = true; spa_log_debug(this->log, "%p: ISO sync need resync err:%+.3f", this, err / SPA_NSEC_PER_MSEC); } else { spa_bt_rate_control_update(&port->ratectl, err, 0, duration_ns, period, RATE_CTL_DIFF_MAX); spa_log_trace(this->log, "%p: ISO sync err:%+.3g value:%.6f target:%.6f (ms) corr:%g", this, port->ratectl.avg / SPA_NSEC_PER_MSEC, value / SPA_NSEC_PER_MSEC, target / SPA_NSEC_PER_MSEC, port->ratectl.corr); } iso_io->resync = false; } static void media_iso_pull(struct spa_bt_iso_io *iso_io) { struct impl *this = iso_io->user_data; this->iso_pending = true; flush_data(this, this->current_time); } static void media_on_flush_error(struct spa_source *source) { struct impl *this = source->data; if (source->rmask & SPA_IO_ERR) { /* TX timestamp info? */ if (this->transport && this->transport->iso_io) { if (spa_bt_iso_io_recv_errqueue(this->transport->iso_io) == 0) return; } else { if (spa_bt_latency_recv_errqueue(&this->tx_latency, this->flush_source.fd, this->log) == 0) return; } /* Otherwise: actual error */ } spa_log_trace(this->log, "%p: flush event", this); if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) { spa_log_warn(this->log, "%p: connection (%s) terminated unexpectedly", this, this->transport ? this->transport->path : ""); if (this->flush_source.loop) { spa_bt_latency_flush(&this->tx_latency, this->flush_source.fd, this->log); spa_loop_remove_source(this->data_loop, &this->flush_source); } enable_flush_timer(this, false); if (this->flush_timer_source.loop) spa_loop_remove_source(this->data_loop, &this->flush_timer_source); if (this->transport && this->transport->iso_io) spa_bt_iso_io_set_cb(this->transport->iso_io, NULL, NULL); return; } } static void media_on_flush_timeout(struct spa_source *source) { struct impl *this = source->data; uint64_t exp; int res; spa_log_trace(this->log, "%p: flush on timeout", this); if ((res = spa_system_timerfd_read(this->data_system, this->flush_timerfd, &exp)) < 0) { if (res != -EAGAIN) spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res)); return; } if (this->transport == NULL) { enable_flush_timer(this, false); return; } while (exp-- > 0) { this->flush_pending = false; flush_data(this, this->current_time); } } static void media_on_timeout(struct spa_source *source) { struct impl *this = source->data; struct port *port = &this->port; uint64_t exp, duration; uint32_t rate; struct spa_io_buffers *io = port->io; uint64_t prev_time, now_time; int status, res; if (this->started) { if ((res = spa_system_timerfd_read(this->data_system, this->timerfd, &exp)) < 0) { if (res != -EAGAIN) spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res)); return; } } prev_time = this->current_time; now_time = this->current_time = this->next_time; spa_log_debug(this->log, "%p: timer %"PRIu64" %"PRIu64"", this, now_time, now_time - prev_time); if (SPA_LIKELY(this->position)) { duration = this->position->clock.target_duration; rate = this->position->clock.target_rate.denom; } else { duration = 1024; rate = 48000; } setup_matching(this); this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / rate * port->ratectl.corr); if (SPA_LIKELY(this->clock)) { this->clock->nsec = now_time; this->clock->rate = this->clock->target_rate; this->clock->position += this->clock->duration; this->clock->duration = duration; this->clock->rate_diff = 1 / port->ratectl.corr; this->clock->next_nsec = this->next_time; this->clock->delay = 0; } status = this->transport_started ? SPA_STATUS_NEED_DATA : SPA_STATUS_HAVE_DATA; spa_log_trace(this->log, "%p: %d -> %d", this, io->status, status); io->status = status; io->buffer_id = SPA_ID_INVALID; spa_node_call_ready(&this->callbacks, status); set_timeout(this, this->next_time); } static uint64_t asha_seqnum(struct impl *this) { uint64_t tn = get_reference_time(this, NULL); uint64_t dt = tn - this->asha->ref_t0; uint64_t num_packets = (dt + ASHA_CONN_INTERVAL / 2) / ASHA_CONN_INTERVAL; spa_log_trace(this->log, "%" PRIu64 " - %" PRIu64 " / 20ms = %"PRIu64, tn, this->asha->ref_t0, num_packets); if (this->asha->ref_t0 > tn) return 0; return num_packets % 256; } static void media_asha_flush_timeout(struct spa_source *source) { struct impl *this = source->data; struct port *port = &this->port; struct spa_bt_asha *asha = this->asha; const char *address = this->transport->device->address; struct timespec ts; int res, written; uint64_t exp, now; if (this->started) { if ((res = spa_system_timerfd_read(this->data_system, asha->timerfd, &exp)) < 0) { if (res != -EAGAIN) spa_log_warn(this->log, "error reading ASHA timerfd: %s", spa_strerror(res)); return; } } spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts); now = SPA_TIMESPEC_TO_NSEC(&ts); asha->next_time += (uint64_t)(ASHA_CONN_INTERVAL * port->ratectl.corr); if (asha->flush_pending) { asha->buf[0] = this->seqnum; written = send(asha->flush_source.fd, asha->buf, ASHA_ENCODED_PKT_SZ, MSG_DONTWAIT | MSG_NOSIGNAL); /* * For ASHA, when we are out of LE credits and cannot write to * the socket, return value of `send` will be -EAGAIN. */ if (written < 0) { asha->flush_pending = false; spa_log_warn(this->log, "%p: ASHA failed to flush %d seqnum on timer for %s, written:%d", this, this->seqnum, address, -errno); goto skip_flush; } if (written > 0) { asha->flush_pending = false; spa_log_trace(this->log, "%p: ASHA flush %d seqnum for %s, ts:%u", this, this->seqnum, address, this->timestamp); } } this->seqnum = asha_seqnum(this); flush_data(this, now); skip_flush: set_asha_timeout(this, asha->next_time); } static void media_asha_cb(struct spa_source *source) { struct impl *this = source->data; struct spa_bt_asha *asha = this->asha; const char *address = this->transport->device->address; if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) { spa_log_error(this->log, "%p: ASHA source error %d on %s", this, source->rmask, address); if (asha->flush_source.loop) spa_loop_remove_source(this->data_loop, &asha->flush_source); return; } } static int do_start_transport(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; this->transport_started = true; if (this->transport->iso_io) spa_bt_iso_io_set_cb(this->transport->iso_io, media_iso_pull, this); return 0; } static int transport_start(struct impl *this) { int val, size; struct port *port; socklen_t len; uint8_t *conf; uint32_t flags; bool is_asha; bool is_sco; if (this->transport_started) return 0; if (!this->start_ready) return -EIO; spa_return_val_if_fail(this->transport, -EIO); spa_log_debug(this->log, "%p: start transport", this); port = &this->port; conf = this->transport->configuration; size = this->transport->configuration_len; is_asha = this->codec->kind == MEDIA_CODEC_ASHA; is_sco = this->codec->kind == MEDIA_CODEC_HFP; spa_log_debug(this->log, "Transport configuration:"); spa_debug_log_mem(this->log, SPA_LOG_LEVEL_DEBUG, 2, conf, (size_t)size); flags = this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0; if (!this->transport->iso_io) { this->own_codec_data = true; this->codec_data = this->codec->init(this->codec, flags, this->transport->configuration, this->transport->configuration_len, &port->current_format, this->codec_props, this->transport->write_mtu); if (this->codec_data == NULL) { spa_log_error(this->log, "%p: codec %s initialization failed", this, this->codec->description); return -EIO; } } else { this->own_codec_data = false; this->codec_data = this->transport->iso_io->codec_data; this->codec_props_changed = true; } this->encoder_delay = 0; if (this->codec->get_delay) this->codec->get_delay(this->codec_data, &this->encoder_delay, NULL); const char *codec_profile = media_codec_kind_str(this->codec); spa_log_info(this->log, "%p: using %s codec %s, delay:%.2f ms, codec-delay:%.2f ms", this, codec_profile, this->codec->description, (double)spa_bt_transport_get_delay_nsec(this->transport) / SPA_NSEC_PER_MSEC, (double)this->encoder_delay * SPA_MSEC_PER_SEC / port->current_format.info.raw.rate); this->seqnum = UINT16_MAX; this->block_size = this->codec->get_block_size(this->codec_data); if (this->block_size > sizeof(this->tmp_buffer)) { spa_log_error(this->log, "block-size %d > %zu", this->block_size, sizeof(this->tmp_buffer)); goto fail; } spa_log_debug(this->log, "%p: block_size %d", this, this->block_size); val = this->codec->send_buf_size > 0 /* The kernel doubles the SO_SNDBUF option value set by setsockopt(). */ ? this->codec->send_buf_size / 2 + this->codec->send_buf_size % 2 : FILL_FRAMES * this->transport->write_mtu; if (setsockopt(this->transport->fd, SOL_SOCKET, SO_SNDBUF, &val, sizeof(val)) < 0) spa_log_warn(this->log, "%p: SO_SNDBUF %m", this); len = sizeof(val); if (getsockopt(this->transport->fd, SOL_SOCKET, SO_SNDBUF, &val, &len) < 0) { spa_log_warn(this->log, "%p: SO_SNDBUF %m", this); } else { spa_log_debug(this->log, "%p: SO_SNDBUF: %d", this, val); } this->fd_buffer_size = val; val = 6; if (setsockopt(this->transport->fd, SOL_SOCKET, SO_PRIORITY, &val, sizeof(val)) < 0) spa_log_warn(this->log, "SO_PRIORITY failed: %m"); reset_buffer(this); spa_bt_rate_control_init(&port->ratectl, 0); this->update_delay_event = spa_loop_utils_add_event(this->loop_utils, update_delay_event, this); spa_zero(this->tx_latency); if (is_sco) { int res; if ((res = spa_bt_transport_ensure_sco_io(this->transport, this->data_loop, this->data_system)) < 0) goto fail; spa_bt_sco_io_write_start(this->transport->sco_io); } if (!this->transport->iso_io && !is_asha) { this->flush_timer_source.data = this; this->flush_timer_source.fd = this->flush_timerfd; this->flush_timer_source.func = media_on_flush_timeout; this->flush_timer_source.mask = SPA_IO_IN; this->flush_timer_source.rmask = 0; spa_loop_add_source(this->data_loop, &this->flush_timer_source); if (!is_sco) spa_bt_latency_init(&this->tx_latency, this->transport, LATENCY_PERIOD, this->log); } if (!is_asha && !is_sco) { this->flush_source.data = this; this->flush_source.fd = this->transport->fd; this->flush_source.func = media_on_flush_error; this->flush_source.mask = SPA_IO_ERR | SPA_IO_HUP; this->flush_source.rmask = 0; spa_loop_add_source(this->data_loop, &this->flush_source); } this->resync = 0; this->flush_pending = false; this->iso_pending = false; spa_loop_locked(this->data_loop, do_start_transport, 0, NULL, 0, this); if (is_asha) { struct spa_bt_asha *asha = this->asha; asha->flush_pending = false; asha->set_timer = false; asha->timer_source.data = this; asha->timer_source.fd = this->asha->timerfd; asha->timer_source.func = media_asha_flush_timeout; asha->timer_source.mask = SPA_IO_IN; asha->timer_source.rmask = 0; spa_loop_add_source(this->data_loop, &asha->timer_source); asha->flush_source.data = this; asha->flush_source.fd = this->transport->fd; asha->flush_source.func = media_asha_cb; asha->flush_source.mask = SPA_IO_ERR | SPA_IO_HUP; asha->flush_source.rmask = 0; spa_loop_add_source(this->data_loop, &asha->flush_source); spa_list_append(&asha_sinks, &this->asha_link); } set_latency(this, true); return 0; fail: if (this->codec_data) { if (this->own_codec_data) this->codec->deinit(this->codec_data); this->own_codec_data = false; this->codec_data = NULL; } return -EIO; } static int do_start(struct impl *this) { struct port *port = &this->port; int res; if (this->started) return 0; spa_return_val_if_fail(this->transport, -EIO); this->following = is_following(this); spa_log_debug(this->log, "%p: start following:%d", this, this->following); this->start_ready = true; bool do_accept = this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY; if ((res = spa_bt_transport_acquire(this->transport, do_accept)) < 0) { this->start_ready = false; return res; } this->packet_delay_ns = 0; this->source.data = this; this->source.fd = this->timerfd; this->source.func = media_on_timeout; this->source.mask = SPA_IO_IN; this->source.rmask = 0; spa_loop_add_source(this->data_loop, &this->source); spa_bt_rate_control_init(&port->ratectl, 0); setup_matching(this); set_timers(this); this->started = true; return 0; } static int do_remove_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; if (this->source.loop) spa_loop_remove_source(this->data_loop, &this->source); set_timeout(this, 0); if (this->update_delay_event) { spa_loop_utils_destroy_source(this->loop_utils, this->update_delay_event); this->update_delay_event = NULL; } return 0; } static int do_remove_transport_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; this->transport_started = false; if (this->flush_source.loop) { spa_bt_latency_flush(&this->tx_latency, this->flush_source.fd, this->log); spa_loop_remove_source(this->data_loop, &this->flush_source); } if (this->flush_timer_source.loop) spa_loop_remove_source(this->data_loop, &this->flush_timer_source); if (this->codec->kind == MEDIA_CODEC_ASHA) { if (this->asha->timer_source.loop) spa_loop_remove_source(this->data_loop, &this->asha->timer_source); if (this->asha->flush_source.loop) spa_loop_remove_source(this->data_loop, &this->asha->flush_source); spa_list_remove(&this->asha_link); } enable_flush_timer(this, false); if (this->transport->iso_io) spa_bt_iso_io_set_cb(this->transport->iso_io, NULL, NULL); /* Drop queued data */ drop_frames(this, UINT32_MAX); return 0; } static void transport_stop(struct impl *this) { if (!this->transport_started) return; spa_log_trace(this->log, "%p: stop transport", this); spa_loop_locked(this->data_loop, do_remove_transport_source, 0, NULL, 0, this); if (this->codec_data && this->own_codec_data) this->codec->deinit(this->codec_data); this->codec_data = NULL; } static int do_stop(struct impl *this) { int res = 0; if (!this->started) return 0; spa_log_debug(this->log, "%p: stop", this); this->start_ready = false; spa_loop_locked(this->data_loop, do_remove_source, 0, NULL, 0, this); transport_stop(this); if (this->transport) res = spa_bt_transport_release(this->transport); this->started = false; return res; } static int impl_node_send_command(void *object, const struct spa_command *command) { struct impl *this = object; struct port *port; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(command != NULL, -EINVAL); port = &this->port; switch (SPA_NODE_COMMAND_ID(command)) { case SPA_NODE_COMMAND_Start: if (!port->have_format) return -EIO; if (port->n_buffers == 0) return -EIO; if ((res = do_start(this)) < 0) return res; break; case SPA_NODE_COMMAND_Suspend: case SPA_NODE_COMMAND_Pause: if ((res = do_stop(this)) < 0) return res; break; default: return -ENOTSUP; } return 0; } static void emit_node_info(struct impl *this, bool full) { char node_group_buf[256]; char *node_group = NULL; const char *media_role = NULL; const char *codec_profile = media_codec_kind_str(this->codec); if (this->transport && (this->transport->profile & SPA_BT_PROFILE_BAP_SINK)) { spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-iso-%s-cig-%d\"]", this->transport->device->adapter->address, this->transport->bap_cig); node_group = node_group_buf; } else if (this->transport && (this->transport->profile & SPA_BT_PROFILE_BAP_BROADCAST_SINK)) { spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-iso-%s-big-%d\"]", this->transport->device->adapter->address, this->transport->bap_big); node_group = node_group_buf; } else if (this->transport && (this->transport->profile & SPA_BT_PROFILE_ASHA_SINK)) { spa_scnprintf(node_group_buf, sizeof(node_group_buf), "[\"bluez-asha-%" PRIu64 "d\"]", this->transport->hisyncid); node_group = node_group_buf; } if (!this->is_output && this->transport && (this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY)) media_role = "Communication"; struct spa_dict_item node_info_items[] = { { SPA_KEY_DEVICE_API, "bluez5" }, { SPA_KEY_MEDIA_CLASS, this->is_internal ? "Audio/Sink/Internal" : this->is_output ? "Audio/Sink" : "Stream/Input/Audio" }, { "media.name", ((this->transport && this->transport->device->name) ? this->transport->device->name : codec_profile ) }, { SPA_KEY_NODE_DRIVER, this->is_output ? "true" : "false" }, { "node.group", node_group }, { SPA_KEY_MEDIA_ROLE, media_role }, }; uint64_t old = full ? this->info.change_mask : 0; if (full) this->info.change_mask = this->info_all; if (this->info.change_mask) { this->info.props = &SPA_DICT_INIT_ARRAY(node_info_items); spa_node_emit_info(&this->hooks, &this->info); this->info.change_mask = old; } } static void emit_port_info(struct impl *this, struct port *port, bool full) { uint64_t old = full ? port->info.change_mask : 0; if (full) port->info.change_mask = port->info_all; if (port->info.change_mask) { spa_node_emit_port_info(&this->hooks, SPA_DIRECTION_INPUT, 0, &port->info); port->info.change_mask = old; } } static int impl_node_add_listener(void *object, struct spa_hook *listener, const struct spa_node_events *events, void *data) { struct impl *this = object; struct spa_hook_list save; spa_return_val_if_fail(this != NULL, -EINVAL); spa_hook_list_isolate(&this->hooks, &save, listener, events, data); emit_node_info(this, true); emit_port_info(this, &this->port, true); spa_hook_list_join(&this->hooks, &save); return 0; } static int impl_node_set_callbacks(void *object, const struct spa_node_callbacks *callbacks, void *data) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); this->callbacks = SPA_CALLBACKS_INIT(callbacks, data); return 0; } static int impl_node_sync(void *object, int seq) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); spa_node_emit_result(&this->hooks, seq, 0, 0, NULL); return 0; } static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id, const struct spa_dict *props) { return -ENOTSUP; } static int impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id) { return -ENOTSUP; } static int impl_node_port_enum_params(void *object, int seq, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t start, uint32_t num, const struct spa_pod *filter) { struct impl *this = object; struct port *port; struct spa_pod *param; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; struct spa_result_node_params result; uint32_t count = 0; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(num != 0, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; result.id = id; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (id) { case SPA_PARAM_EnumFormat: if (this->codec == NULL) return -EIO; if (this->transport == NULL) return -EIO; if ((res = this->codec->enum_config(this->codec, this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0, this->transport->configuration, this->transport->configuration_len, id, result.index, &b, ¶m)) != 1) return res; break; case SPA_PARAM_Format: if (!port->have_format) return -EIO; if (result.index > 0) return 0; param = spa_format_audio_raw_build(&b, id, &port->current_format.info.raw); break; case SPA_PARAM_Buffers: if (!port->have_format) return -EIO; if (result.index > 0) return 0; param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamBuffers, id, SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int( MIN_BUFFERS, MIN_BUFFERS, MAX_BUFFERS), SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(1), SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int( this->quantum_limit * port->frame_size, 16 * port->frame_size, INT32_MAX), SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->frame_size)); break; case SPA_PARAM_Meta: switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamMeta, id, SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header), SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header))); break; default: return 0; } break; case SPA_PARAM_IO: switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamIO, id, SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers), SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers))); break; case 1: if (this->codec->kind != MEDIA_CODEC_BAP) return 0; param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamIO, id, SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_RateMatch), SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_rate_match))); break; default: return 0; } break; case SPA_PARAM_Latency: switch (result.index) { case 0: param = spa_latency_build(&b, id, &port->latency); break; default: return 0; } break; default: return -ENOENT; } if (spa_pod_filter(&b, &result.param, param, filter) < 0) goto next; spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; return 0; } static int clear_buffers(struct impl *this, struct port *port) { do_stop(this); if (port->n_buffers > 0) { spa_list_init(&port->ready); port->n_buffers = 0; } return 0; } static int port_set_format(struct impl *this, struct port *port, uint32_t flags, const struct spa_pod *format) { int err; if (format == NULL) { spa_log_debug(this->log, "clear format"); clear_buffers(this, port); port->have_format = false; } else { struct spa_audio_info info = { 0 }; if ((err = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0) return err; if (info.media_type != SPA_MEDIA_TYPE_audio || info.media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; if (spa_format_audio_raw_parse(format, &info.info.raw) < 0) return -EINVAL; if (info.info.raw.rate == 0 || info.info.raw.channels == 0 || info.info.raw.channels > MAX_CHANNELS) return -EINVAL; if (this->transport && this->transport->iso_io) { if (memcmp(&info.info.raw, &this->transport->iso_io->format.info.raw, sizeof(info.info.raw))) { spa_log_error(this->log, "unexpected incompatible " "BAP audio format"); return -EINVAL; } } port->frame_size = info.info.raw.channels; switch (info.info.raw.format) { case SPA_AUDIO_FORMAT_S16_LE: case SPA_AUDIO_FORMAT_S16_BE: port->frame_size *= 2; break; case SPA_AUDIO_FORMAT_S24: port->frame_size *= 3; break; case SPA_AUDIO_FORMAT_S24_32: case SPA_AUDIO_FORMAT_S32: case SPA_AUDIO_FORMAT_F32: port->frame_size *= 4; break; default: return -EINVAL; } port->current_format = info; port->have_format = true; } set_latency(this, false); port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS; if (port->have_format) { port->info.change_mask |= SPA_PORT_CHANGE_MASK_RATE; port->info.rate = SPA_FRACTION(1, port->current_format.info.raw.rate); port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ); port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL; } else { port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0); } emit_port_info(this, port, false); return 0; } static int impl_node_port_set_param(void *object, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t flags, const struct spa_pod *param) { struct impl *this = object; struct port *port; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(node, direction, port_id), -EINVAL); port = &this->port; switch (id) { case SPA_PARAM_Format: res = port_set_format(this, port, flags, param); break; case SPA_PARAM_Latency: res = 0; break; default: res = -ENOENT; break; } return res; } static int impl_node_port_use_buffers(void *object, enum spa_direction direction, uint32_t port_id, uint32_t flags, struct spa_buffer **buffers, uint32_t n_buffers) { struct impl *this = object; struct port *port; uint32_t i; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; spa_log_debug(this->log, "%p: use buffers %d", this, n_buffers); clear_buffers(this, port); if (n_buffers > 0 && !port->have_format) return -EIO; if (n_buffers > MAX_BUFFERS) return -ENOSPC; for (i = 0; i < n_buffers; i++) { struct buffer *b = &port->buffers[i]; b->buf = buffers[i]; b->id = i; SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); b->h = spa_buffer_find_meta_data(buffers[i], SPA_META_Header, sizeof(*b->h)); if (buffers[i]->datas[0].data == NULL) { spa_log_error(this->log, "%p: need mapped memory", this); return -EINVAL; } } port->n_buffers = n_buffers; return 0; } static int impl_node_port_set_io(void *object, enum spa_direction direction, uint32_t port_id, uint32_t id, void *data, size_t size) { struct impl *this = object; struct port *port; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; switch (id) { case SPA_IO_Buffers: port->io = data; break; case SPA_IO_RateMatch: if (this->codec->kind != MEDIA_CODEC_BAP) return -ENOENT; port->rate_match = data; break; default: return -ENOENT; } return 0; } static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id) { return -ENOTSUP; } static int impl_node_process(void *object) { struct impl *this = object; struct port *port; struct spa_io_buffers *io; int res; spa_return_val_if_fail(this != NULL, -EINVAL); port = &this->port; if ((io = port->io) == NULL) return -EIO; if (this->position && this->position->clock.flags & SPA_IO_CLOCK_FLAG_FREEWHEEL) { io->status = SPA_STATUS_NEED_DATA; return SPA_STATUS_HAVE_DATA; } if (!this->started || !this->transport_started) { if (io->status != SPA_STATUS_HAVE_DATA) { io->status = SPA_STATUS_HAVE_DATA; io->buffer_id = SPA_ID_INVALID; } return SPA_STATUS_HAVE_DATA; } if (io->status == SPA_STATUS_HAVE_DATA && io->buffer_id < port->n_buffers) { struct buffer *b = &port->buffers[io->buffer_id]; struct spa_data *d = b->buf->datas; unsigned int frames; if (!SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) { spa_log_warn(this->log, "%p: buffer %u in use", this, io->buffer_id); io->status = -EINVAL; return -EINVAL; } frames = d ? d[0].chunk->size / port->frame_size : 0; spa_log_trace(this->log, "%p: queue buffer %u frames:%u", this, io->buffer_id, frames); spa_list_append(&port->ready, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); io->buffer_id = SPA_ID_INVALID; io->status = SPA_STATUS_OK; } if (this->following) { if (this->position) { this->current_time = this->position->clock.nsec; } else { struct timespec now; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now); this->current_time = SPA_TIMESPEC_TO_NSEC(&now); } } /* Make copies of current position values, so that they can be used later at any * time without shared memory races */ if (this->position) { this->process_duration = this->position->clock.duration; this->process_rate = this->position->clock.rate.denom; this->process_rate_diff = this->position->clock.rate_diff; } else { this->process_duration = 1024; this->process_rate = 48000; this->process_rate_diff = 1.0; } this->process_time = this->current_time; if (this->resync) --this->resync; setup_matching(this); media_iso_rate_match(this); if (this->codec->kind == MEDIA_CODEC_ASHA && !this->asha->set_timer) { struct impl *other = find_other_asha(this); if (other && other->asha->ref_t0 != 0) { this->asha->ref_t0 = other->asha->ref_t0; this->seqnum = asha_seqnum(this); set_asha_timer(this, other); } else { this->asha->ref_t0 = get_reference_time(this, NULL); this->seqnum = 0; set_asha_timer(this, NULL); } this->asha->set_timer = true; } spa_log_trace(this->log, "%p: on process time:%"PRIu64, this, this->process_time); if ((res = flush_data(this, this->current_time)) < 0) { io->status = res; return SPA_STATUS_STOPPED; } return SPA_STATUS_HAVE_DATA; } static const struct spa_node_methods impl_node = { SPA_VERSION_NODE_METHODS, .add_listener = impl_node_add_listener, .set_callbacks = impl_node_set_callbacks, .sync = impl_node_sync, .enum_params = impl_node_enum_params, .set_param = impl_node_set_param, .set_io = impl_node_set_io, .send_command = impl_node_send_command, .add_port = impl_node_add_port, .remove_port = impl_node_remove_port, .port_enum_params = impl_node_port_enum_params, .port_set_param = impl_node_port_set_param, .port_use_buffers = impl_node_port_use_buffers, .port_set_io = impl_node_port_set_io, .port_reuse_buffer = impl_node_port_reuse_buffer, .process = impl_node_process, }; static void transport_delay_changed(void *data) { struct impl *this = data; spa_log_debug(this->log, "transport %p delay changed", this->transport); set_latency(this, true); } static int do_transport_destroy(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; this->transport = NULL; return 0; } static void transport_destroy(void *data) { struct impl *this = data; spa_log_debug(this->log, "transport %p destroy", this->transport); spa_loop_locked(this->data_loop, do_transport_destroy, 0, NULL, 0, this); } static void transport_state_changed(void *data, enum spa_bt_transport_state old, enum spa_bt_transport_state state) { struct impl *this = data; bool was_started = this->transport_started; spa_log_debug(this->log, "%p: transport %p state %d->%d", this, this->transport, old, state); if (state == SPA_BT_TRANSPORT_STATE_ACTIVE) transport_start(this); else transport_stop(this); if (state < SPA_BT_TRANSPORT_STATE_ACTIVE && was_started && !this->is_duplex && this->is_output) { /* * If establishing connection fails due to remote end not activating * the transport, we won't get a write error, but instead see a transport * state change. * * Treat this as a transport error, so that upper levels don't try to * retry too often. */ spa_log_debug(this->log, "%p: transport %p becomes inactive: stop and indicate error", this, this->transport); spa_bt_transport_set_state(this->transport, SPA_BT_TRANSPORT_STATE_ERROR); return; } if (state == SPA_BT_TRANSPORT_STATE_ERROR) { uint8_t buffer[1024]; struct spa_pod_builder b = { 0 }; spa_pod_builder_init(&b, buffer, sizeof(buffer)); spa_node_emit_event(&this->hooks, spa_pod_builder_add_object(&b, SPA_TYPE_EVENT_Node, SPA_NODE_EVENT_Error)); } } static const struct spa_bt_transport_events transport_events = { SPA_VERSION_BT_TRANSPORT_EVENTS, .delay_changed = transport_delay_changed, .state_changed = transport_state_changed, .destroy = transport_destroy, }; static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface) { struct impl *this; spa_return_val_if_fail(handle != NULL, -EINVAL); spa_return_val_if_fail(interface != NULL, -EINVAL); this = (struct impl *) handle; if (spa_streq(type, SPA_TYPE_INTERFACE_Node)) *interface = &this->node; else return -ENOENT; return 0; } static int impl_clear(struct spa_handle *handle) { struct impl *this = (struct impl *) handle; do_stop(this); if (this->codec_props && this->codec->clear_props) this->codec->clear_props(this->codec_props); if (this->transport) spa_hook_remove(&this->transport_listener); spa_system_close(this->data_system, this->timerfd); spa_system_close(this->data_system, this->flush_timerfd); if (this->codec->kind == MEDIA_CODEC_ASHA) { spa_system_close(this->data_system, this->asha->timerfd); free(this->asha); } return 0; } static size_t impl_get_size(const struct spa_handle_factory *factory, const struct spa_dict *params) { return sizeof(struct impl); } static int impl_init(const struct spa_handle_factory *factory, struct spa_handle *handle, const struct spa_dict *info, const struct spa_support *support, uint32_t n_support) { struct impl *this; struct port *port; const char *str; spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(handle != NULL, -EINVAL); handle->get_interface = impl_get_interface; handle->clear = impl_clear; this = (struct impl *) handle; this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log); this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop); this->data_system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataSystem); this->loop_utils = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_LoopUtils); spa_log_topic_init(this->log, &log_topic); if (this->data_loop == NULL) { spa_log_error(this->log, "a data loop is needed"); return -EINVAL; } if (this->data_system == NULL) { spa_log_error(this->log, "a data system is needed"); return -EINVAL; } if (this->loop_utils == NULL) { spa_log_error(this->log, "loop utils are needed"); return -EINVAL; } this->node.iface = SPA_INTERFACE_INIT( SPA_TYPE_INTERFACE_Node, SPA_VERSION_NODE, &impl_node, this); spa_hook_list_init(&this->hooks); this->info_all = SPA_NODE_CHANGE_MASK_FLAGS | SPA_NODE_CHANGE_MASK_PARAMS | SPA_NODE_CHANGE_MASK_PROPS; this->info = SPA_NODE_INFO_INIT(); this->info.max_input_ports = 1; this->info.max_output_ports = 0; this->info.flags = SPA_NODE_FLAG_RT; this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ); this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE); this->info.params = this->params; this->info.n_params = N_NODE_PARAMS; port = &this->port; port->info_all = SPA_PORT_CHANGE_MASK_FLAGS | SPA_PORT_CHANGE_MASK_PARAMS; port->info = SPA_PORT_INFO_INIT(); port->info.flags = SPA_PORT_FLAG_LIVE | SPA_PORT_FLAG_PHYSICAL | SPA_PORT_FLAG_TERMINAL; port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ); port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ); port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ); port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0); port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE); port->info.params = port->params; port->info.n_params = N_PORT_PARAMS; port->latency = SPA_LATENCY_INFO(SPA_DIRECTION_INPUT); spa_list_init(&port->ready); this->quantum_limit = 8192; if (info && (str = spa_dict_lookup(info, "clock.quantum-limit"))) spa_atou32(str, &this->quantum_limit, 0); if (info && (str = spa_dict_lookup(info, "api.bluez5.a2dp-duplex")) != NULL) this->is_duplex = spa_atob(str); if (info && (str = spa_dict_lookup(info, "api.bluez5.internal")) != NULL) this->is_internal = spa_atob(str); if (info && (str = spa_dict_lookup(info, SPA_KEY_API_BLUEZ5_TRANSPORT))) sscanf(str, "pointer:%p", &this->transport); if (this->transport == NULL) { spa_log_error(this->log, "a transport is needed"); return -EINVAL; } if (this->transport->media_codec == NULL) { spa_log_error(this->log, "a transport codec is needed"); return -EINVAL; } this->codec = this->transport->media_codec; if (this->is_duplex) { if (!this->codec->duplex_codec) { spa_log_error(this->log, "transport codec doesn't support duplex"); return -EINVAL; } this->codec = this->codec->duplex_codec; } if (this->codec->init_props != NULL) this->codec_props = this->codec->init_props(this->codec, this->is_duplex ? MEDIA_CODEC_FLAG_SINK : 0, this->transport->device->settings); if (this->codec->kind == MEDIA_CODEC_BAP) this->is_output = this->transport->bap_initiator; else if (this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY) this->is_output = false; else this->is_output = true; reset_props(this, &this->props); set_latency(this, false); spa_bt_transport_add_listener(this->transport, &this->transport_listener, &transport_events, this); this->timerfd = spa_system_timerfd_create(this->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); this->flush_timerfd = spa_system_timerfd_create(this->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); if (this->codec->kind == MEDIA_CODEC_ASHA) { this->asha = calloc(1, sizeof(struct spa_bt_asha)); if (this->asha == NULL) return -ENOMEM; this->asha->timerfd = spa_system_timerfd_create(this->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); } return 0; } static const struct spa_interface_info impl_interfaces[] = { {SPA_TYPE_INTERFACE_Node,}, }; static int impl_enum_interface_info(const struct spa_handle_factory *factory, const struct spa_interface_info **info, uint32_t *index) { spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(info != NULL, -EINVAL); spa_return_val_if_fail(index != NULL, -EINVAL); switch (*index) { case 0: *info = &impl_interfaces[*index]; break; default: return 0; } (*index)++; return 1; } static const struct spa_dict_item info_items[] = { { SPA_KEY_FACTORY_AUTHOR, "Wim Taymans " }, { SPA_KEY_FACTORY_DESCRIPTION, "Play audio with the media" }, { SPA_KEY_FACTORY_USAGE, SPA_KEY_API_BLUEZ5_TRANSPORT"=" }, }; static const struct spa_dict info = SPA_DICT_INIT_ARRAY(info_items); const struct spa_handle_factory spa_media_sink_factory = { SPA_VERSION_HANDLE_FACTORY, SPA_NAME_API_BLUEZ5_MEDIA_SINK, &info, impl_get_size, impl_init, impl_enum_interface_info, }; /* Retained for backward compatibility: */ const struct spa_handle_factory spa_a2dp_sink_factory = { SPA_VERSION_HANDLE_FACTORY, SPA_NAME_API_BLUEZ5_A2DP_SINK, &info, impl_get_size, impl_init, impl_enum_interface_info, }; /* Retained for backward compatibility: */ const struct spa_handle_factory spa_sco_sink_factory = { SPA_VERSION_HANDLE_FACTORY, SPA_NAME_API_BLUEZ5_SCO_SINK, &info, impl_get_size, impl_init, impl_enum_interface_info, };