/* PipeWire */ /* SPDX-FileCopyrightText: Copyright © 2021 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "module-jack-tunnel/weakjack.h" /** \page page_module_jack_tunnel JACK Tunnel * * The jack-tunnel module provides a source or sink that tunnels all audio to * a JACK server. * * This module is usually used together with \ref page_module_jackdbus_detect that will * automatically load the tunnel with the right parameters based on dbus * information. * * ## Module Name * * `libpipewire-module-jack-tunnel` * * ## Module Options * * - `jack.library`: the libjack to load, by default libjack.so.0 is searched in * JACK_PATH directories and then some standard library paths. * Can be an absolute path. * - `jack.server`: the name of the JACK server to tunnel to. * - `jack.client-name`: the name of the JACK client. * - `jack.connect`: if jack ports should be connected automatically. Can also be * placed per stream. * - `jack.connect-audio`: An array of audio ports to connect to. Can also be placed per * stream. An empty array will not connect anything, even when * jack.connect is true. * - `jack.connect-midi`: An array of midi ports to connect to. Can also be placed per * stream. An empty array will not connect anything, even when * jack.connect is true. * - `tunnel.mode`: the tunnel mode, sink|source|duplex, default duplex * - `midi.ports`: the number of midi ports. Can also be added to the stream props. * - `source.props`: Extra properties for the source filter. * - `sink.props`: Extra properties for the sink filter. * * ## General options * * Options with well-known behavior. * * - \ref PW_KEY_REMOTE_NAME * - \ref PW_KEY_AUDIO_CHANNELS * - \ref SPA_KEY_AUDIO_POSITION * - \ref PW_KEY_NODE_NAME * - \ref PW_KEY_NODE_DESCRIPTION * - \ref PW_KEY_NODE_GROUP * - \ref PW_KEY_NODE_VIRTUAL * - \ref PW_KEY_MEDIA_CLASS * - \ref PW_KEY_TARGET_OBJECT to specify the remote node.name or serial.id to link to * * ## Example configuration of a duplex sink/source * *\code{.unparsed} * # ~/.config/pipewire/pipewire.conf.d/my-jack-tunnel.conf * * context.modules = [ * { name = libpipewire-module-jack-tunnel * args = { * #jack.library = libjack.so.0 * #jack.server = null * #jack.client-name = PipeWire * #jack.connect = true * #jack.connect-audio = [ playback_1 playback_2 ] * #jack.connect-midi = [ midi_playback_1 ] * #tunnel.mode = duplex * #midi.ports = 0 * #audio.channels = 2 * #audio.position = [ FL FR ] * source.props = { * # extra sink properties * } * sink.props = { * # extra sink properties * } * } * } * ] *\endcode */ #define NAME "jack-tunnel" PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME); #define PW_LOG_TOPIC_DEFAULT mod_topic #define MAX_PORTS 128 #define DEFAULT_CLIENT_NAME "PipeWire" #define DEFAULT_POSITION "[ FL FR ]" #define DEFAULT_MIDI_PORTS 1 #define MODULE_USAGE "( remote.name= ] " \ "( jack.library= ) " \ "( jack.server= ) " \ "( jack.client-name= ] " \ "( jack.connect= ] " \ "( jack.connect-audio= ] "\ "( jack.connect-midi= ] " \ "( tunnel.mode= ] " \ "( midi.ports= ] " \ "( audio.channels= ] " \ "( audio.position= ] " \ "( source.props= ) " \ "( sink.props= ) " static const struct spa_dict_item module_props[] = { { PW_KEY_MODULE_AUTHOR, "Wim Taymans " }, { PW_KEY_MODULE_DESCRIPTION, "Create a JACK tunnel" }, { PW_KEY_MODULE_USAGE, MODULE_USAGE }, { PW_KEY_MODULE_VERSION, PACKAGE_VERSION }, }; static struct weakjack jack; struct port { jack_port_t *jack_port; enum spa_direction direction; struct spa_latency_info latency[2]; bool latency_changed[2]; unsigned int is_midi:1; }; struct volume { bool mute; uint32_t n_volumes; float volumes[SPA_AUDIO_MAX_CHANNELS]; }; struct stream { struct impl *impl; enum spa_direction direction; struct pw_properties *props; struct pw_filter *filter; struct spa_hook listener; struct spa_audio_info_raw info; uint32_t n_midi; uint32_t n_ports; struct port *ports[MAX_PORTS]; struct volume volume; unsigned int running:1; }; struct impl { struct pw_context *context; struct pw_loop *main_loop; struct spa_system *system; #define MODE_SINK (1<<0) #define MODE_SOURCE (1<<1) #define MODE_DUPLEX (MODE_SINK|MODE_SOURCE) uint32_t mode; struct pw_properties *props; struct pw_impl_module *module; struct spa_hook module_listener; struct pw_core *core; struct spa_hook core_proxy_listener; struct spa_hook core_listener; struct spa_ratelimit rate_limit; struct spa_io_position *position; struct stream source; struct stream sink; uint32_t samplerate; jack_client_t *client; jack_nframes_t current_frames; uint32_t pw_xrun; uint32_t jack_xrun; unsigned int do_disconnect:1; unsigned int triggered:1; unsigned int done:1; unsigned int new_xrun:1; unsigned int fix_midi:1; }; static void reset_volume(struct volume *vol, uint32_t n_volumes) { uint32_t i; vol->mute = false; vol->n_volumes = n_volumes; for (i = 0; i < n_volumes; i++) vol->volumes[i] = 1.0f; } static inline void do_volume(float *dst, const float *src, struct volume *vol, uint32_t ch, uint32_t n_samples) { float v = vol->mute ? 0.0f : vol->volumes[ch]; if (v == 0.0f || src == NULL) memset(dst, 0, n_samples * sizeof(float)); else if (v == 1.0f) memcpy(dst, src, n_samples * sizeof(float)); else { uint32_t i; for (i = 0; i < n_samples; i++) dst[i] = src[i] * v; } } static inline void fix_midi_event(uint8_t *data, size_t size) { /* fixup NoteOn with vel 0 */ if (size > 2 && (data[0] & 0xF0) == 0x90 && data[2] == 0x00) { data[0] = 0x80 + (data[0] & 0x0F); data[2] = 0x40; } } static void midi_to_jack(struct impl *impl, float *dst, float *src, uint32_t n_samples) { struct spa_pod_parser parser; struct spa_pod_frame frame; struct spa_pod_sequence seq; struct spa_pod_control c; const void *seq_body, *c_body; int res; bool in_sysex = false; uint8_t tmp[n_samples * 4]; size_t tmp_size = 0; jack.midi_clear_buffer(dst); if (src == NULL) return; spa_pod_parser_init_from_data(&parser, src, n_samples * sizeof(float), 0, n_samples * sizeof(float)); if (spa_pod_parser_push_sequence_body(&parser, &frame, &seq, &seq_body) < 0) return; while (spa_pod_parser_get_control_body(&parser, &c, &c_body) >= 0) { int size; if (c.type != SPA_CONTROL_UMP) continue; size = spa_ump_to_midi(c_body, c.value.size, &tmp[tmp_size], sizeof(tmp) - tmp_size); if (size <= 0) continue; if (impl->fix_midi) fix_midi_event(&tmp[tmp_size], size); if (!in_sysex && tmp[tmp_size] == 0xf0) in_sysex = true; tmp_size += size; if (in_sysex && tmp[tmp_size-1] == 0xf7) in_sysex = false; if (!in_sysex) { if ((res = jack.midi_event_write(dst, c.offset, tmp, tmp_size)) < 0) pw_log_warn("midi %p: can't write event: %s", dst, spa_strerror(res)); tmp_size = 0; } } } static void jack_to_midi(float *dst, float *src, uint32_t size) { struct spa_pod_builder b = { 0, }; uint32_t i, count; struct spa_pod_frame f; count = src ? jack.midi_get_event_count(src) : 0; spa_pod_builder_init(&b, dst, size); spa_pod_builder_push_sequence(&b, &f, 0); for (i = 0; i < count; i++) { jack_midi_event_t ev; uint64_t state = 0; jack.midi_event_get(&ev, src, i); while (ev.size > 0) { uint32_t ump[4]; int ump_size = spa_ump_from_midi(&ev.buffer, &ev.size, ump, sizeof(ump), 0, &state); if (ump_size <= 0) break; spa_pod_builder_control(&b, ev.time, SPA_CONTROL_UMP); spa_pod_builder_bytes(&b, ump, ump_size); } } spa_pod_builder_pop(&b, &f); } static void stream_destroy(void *d) { struct stream *s = d; spa_hook_remove(&s->listener); s->filter = NULL; } static void stream_state_changed(void *d, enum pw_filter_state old, enum pw_filter_state state, const char *error) { struct stream *s = d; struct impl *impl = s->impl; switch (state) { case PW_FILTER_STATE_UNCONNECTED: pw_impl_module_schedule_destroy(impl->module); break; case PW_FILTER_STATE_ERROR: pw_log_warn("stream %p: error: %s", s, error); break; case PW_FILTER_STATE_PAUSED: s->running = false; break; case PW_FILTER_STATE_STREAMING: s->running = true; break; default: break; } } static void sink_process(void *d, struct spa_io_position *position) { struct stream *s = d; struct impl *impl = s->impl; uint32_t i, n_samples = position->clock.duration; if (impl->mode & MODE_SINK && impl->triggered) { impl->triggered = false; return; } for (i = 0; i < s->n_ports; i++) { struct port *p = s->ports[i]; float *src, *dst; if (p == NULL) continue; src = pw_filter_get_dsp_buffer(p, n_samples); if (p->jack_port == NULL) continue; dst = jack.port_get_buffer(p->jack_port, n_samples); if (dst == NULL) continue; if (SPA_UNLIKELY(p->is_midi)) midi_to_jack(impl, dst, src, n_samples); else do_volume(dst, src, &s->volume, i, n_samples); } pw_log_trace_fp("done %u %u", impl->current_frames, n_samples); if (impl->mode & MODE_SINK) { impl->done = true; jack.cycle_signal(impl->client, 0); } } static void source_process(void *d, struct spa_io_position *position) { struct stream *s = d; struct impl *impl = s->impl; uint32_t i, n_samples = position->clock.duration; if (impl->mode == MODE_SOURCE && !impl->triggered) { pw_log_trace_fp("done %u", impl->current_frames); impl->done = true; jack.cycle_signal(impl->client, 0); return; } impl->triggered = false; for (i = 0; i < s->n_ports; i++) { struct port *p = s->ports[i]; float *src, *dst; if (p == NULL) continue; dst = pw_filter_get_dsp_buffer(p, n_samples); if (dst == NULL || p->jack_port == NULL) continue; src = jack.port_get_buffer (p->jack_port, n_samples); if (SPA_UNLIKELY(p->is_midi)) jack_to_midi(dst, src, n_samples); else do_volume(dst, src, &s->volume, i, n_samples); } } static void stream_io_changed(void *data, void *port_data, uint32_t id, void *area, uint32_t size) { struct stream *s = data; struct impl *impl = s->impl; if (port_data == NULL) { switch (id) { case SPA_IO_Position: impl->position = area; break; default: break; } } } static void param_latency_changed(struct stream *s, const struct spa_pod *param, struct port *port) { struct spa_latency_info latency; bool update = false; enum spa_direction direction = port->direction; if (param == NULL || spa_latency_parse(param, &latency) < 0) return; if (spa_latency_info_compare(&port->latency[direction], &latency)) { port->latency[direction] = latency; port->latency_changed[direction] = update = true; } if (update) jack.recompute_total_latencies(s->impl->client); } static void make_stream_ports(struct stream *s) { struct impl *impl = s->impl; uint32_t i; struct pw_properties *props; const char *str, *prefix, *type; char name[256]; char **audio_ports = NULL, **midi_ports = NULL; unsigned long jack_peer, jack_flags; bool do_connect, is_midi, strv_audio = false, strv_midi = false; int res, n_audio_ports = 0, n_midi_ports = 0; if (s->direction == PW_DIRECTION_INPUT) { /* sink */ jack_peer = JackPortIsInput; jack_flags = JackPortIsOutput; prefix = "playback"; } else { /* source */ jack_peer = JackPortIsOutput; jack_flags = JackPortIsInput; prefix = "capture"; } do_connect = pw_properties_get_bool(s->props, "jack.connect", true); str = pw_properties_get(s->props, "jack.connect-audio"); if (str != NULL) { audio_ports = pw_strv_parse(str, strlen(str), INT_MAX, NULL); strv_audio = true; } else if (do_connect) { audio_ports = (char**)jack.get_ports(impl->client, NULL, JACK_DEFAULT_AUDIO_TYPE, JackPortIsPhysical|jack_peer); } str = pw_properties_get(s->props, "jack.connect-midi"); if (str != NULL) { midi_ports = pw_strv_parse(str, strlen(str), INT_MAX, NULL); strv_midi = true; } else if (do_connect) { midi_ports = (char**)jack.get_ports(impl->client, NULL, JACK_DEFAULT_MIDI_TYPE, JackPortIsPhysical|jack_peer); } for (i = 0; i < s->n_ports; i++) { struct port *port = s->ports[i]; char *link_port = NULL; if (port != NULL) { s->ports[i] = NULL; if (port->jack_port) jack.port_unregister(impl->client, port->jack_port); pw_filter_remove_port(port); } if (i < s->info.channels) { str = spa_debug_type_find_short_name(spa_type_audio_channel, s->info.position[i]); if (str) snprintf(name, sizeof(name), "%s_%s", prefix, str); else snprintf(name, sizeof(name), "%s_%d", prefix, i+1); props = pw_properties_new( PW_KEY_FORMAT_DSP, "32 bit float mono audio", PW_KEY_AUDIO_CHANNEL, str ? str : "UNK", PW_KEY_PORT_PHYSICAL, "true", PW_KEY_PORT_NAME, name, NULL); type = JACK_DEFAULT_AUDIO_TYPE; if (audio_ports && audio_ports[n_audio_ports]) link_port = audio_ports[n_audio_ports++]; is_midi = false; } else { snprintf(name, sizeof(name), "midi_%s_%d", prefix, i - s->info.channels + 1); props = pw_properties_new( PW_KEY_FORMAT_DSP, "8 bit raw midi", PW_KEY_PORT_NAME, name, PW_KEY_PORT_PHYSICAL, "true", NULL); type = JACK_DEFAULT_MIDI_TYPE; if (midi_ports && midi_ports[n_midi_ports]) link_port = midi_ports[n_midi_ports++]; is_midi = true; } port = pw_filter_add_port(s->filter, s->direction, PW_FILTER_PORT_FLAG_MAP_BUFFERS, sizeof(struct port), props, NULL, 0); port->is_midi = is_midi; port->jack_port = jack.port_register (impl->client, name, type, jack_flags, 0); if (link_port != NULL) { if (jack_flags & JackPortIsOutput) { pw_log_info("connecting ports '%s' to '%s'", jack.port_name(port->jack_port), link_port); if ((res = jack.connect(impl->client, jack.port_name(port->jack_port), link_port))) pw_log_warn("cannot connect ports '%s' to '%s': %s", jack.port_name(port->jack_port), link_port, strerror(res)); } else { pw_log_info("connecting ports '%s' to '%s'", link_port, jack.port_name(port->jack_port)); if ((res = jack.connect(impl->client, link_port, jack.port_name(port->jack_port)))) pw_log_warn("cannot connect ports '%s' to '%s': %s", link_port, jack.port_name(port->jack_port), strerror(res)); } } s->ports[i] = port; } if (audio_ports) { if (strv_audio) pw_free_strv(audio_ports); else jack.free(audio_ports); } if (midi_ports) { if (strv_midi) pw_free_strv(midi_ports); else jack.free(midi_ports); } } static struct spa_pod *make_props_param(struct spa_pod_builder *b, struct volume *vol) { return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_Props, SPA_PARAM_Props, SPA_PROP_mute, SPA_POD_Bool(vol->mute), SPA_PROP_channelVolumes, SPA_POD_Array(sizeof(float), SPA_TYPE_Float, vol->n_volumes, vol->volumes)); } static void parse_props(struct stream *s, const struct spa_pod *param) { struct spa_pod_object *obj = (struct spa_pod_object *) param; struct spa_pod_prop *prop; uint8_t buffer[1024]; struct spa_pod_builder b; const struct spa_pod *params[1]; SPA_POD_OBJECT_FOREACH(obj, prop) { switch (prop->key) { case SPA_PROP_mute: { bool mute; if (spa_pod_get_bool(&prop->value, &mute) == 0) s->volume.mute = mute; break; } case SPA_PROP_channelVolumes: { uint32_t n; float vols[SPA_AUDIO_MAX_CHANNELS]; if ((n = spa_pod_copy_array(&prop->value, SPA_TYPE_Float, vols, SPA_AUDIO_MAX_CHANNELS)) > 0) { s->volume.n_volumes = n; for (n = 0; n < s->volume.n_volumes; n++) s->volume.volumes[n] = vols[n]; } break; } default: break; } } spa_pod_builder_init(&b, buffer, sizeof(buffer)); params[0] = make_props_param(&b, &s->volume); pw_filter_update_params(s->filter, NULL, params, 1); } static void stream_param_changed(void *data, void *port_data, uint32_t id, const struct spa_pod *param) { struct stream *s = data; if (port_data != NULL) { switch (id) { case SPA_PARAM_Latency: param_latency_changed(s, param, port_data); break; } } else { switch (id) { case SPA_PARAM_PortConfig: pw_log_debug("PortConfig"); make_stream_ports(s); break; case SPA_PARAM_Props: pw_log_debug("Props"); parse_props(s, param); break; } } } static const struct pw_filter_events sink_events = { PW_VERSION_FILTER_EVENTS, .destroy = stream_destroy, .state_changed = stream_state_changed, .param_changed = stream_param_changed, .io_changed = stream_io_changed, .process = sink_process }; static const struct pw_filter_events source_events = { PW_VERSION_FILTER_EVENTS, .destroy = stream_destroy, .state_changed = stream_state_changed, .param_changed = stream_param_changed, .io_changed = stream_io_changed, .process = source_process, }; static int make_stream(struct stream *s, const char *name) { struct impl *impl = s->impl; uint32_t n_params; const struct spa_pod *params[4]; uint8_t buffer[1024]; struct spa_pod_builder b; n_params = 0; spa_pod_builder_init(&b, buffer, sizeof(buffer)); s->filter = pw_filter_new(impl->core, name, pw_properties_copy(s->props)); if (s->filter == NULL) return -errno; if (s->direction == PW_DIRECTION_INPUT) { pw_filter_add_listener(s->filter, &s->listener, &sink_events, s); } else { pw_filter_add_listener(s->filter, &s->listener, &source_events, s); } reset_volume(&s->volume, s->info.channels); n_params = 0; params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &s->info); params[n_params++] = spa_format_audio_raw_build(&b, SPA_PARAM_Format, &s->info); params[n_params++] = make_props_param(&b, &s->volume); return pw_filter_connect(s->filter, PW_FILTER_FLAG_DRIVER | PW_FILTER_FLAG_RT_PROCESS | PW_FILTER_FLAG_CUSTOM_LATENCY, params, n_params); } static int create_filters(struct impl *impl) { int res = 0; if (impl->mode & MODE_SINK) res = make_stream(&impl->sink, "JACK Sink"); if (impl->mode & MODE_SOURCE) res = make_stream(&impl->source, "JACK Source"); return res; } static inline uint64_t get_time_nsec(struct impl *impl) { uint64_t nsec; if (impl->sink.filter) nsec = pw_filter_get_nsec(impl->sink.filter); else if (impl->source.filter) nsec = pw_filter_get_nsec(impl->source.filter); else nsec = 0; return nsec; } static void *jack_process_thread(void *arg) { struct impl *impl = arg; bool source_running, sink_running; jack_nframes_t nframes; while (true) { jack_nframes_t current_frames; jack_time_t current_usecs; jack_time_t next_usecs; float period_usecs; nframes = jack.cycle_wait (impl->client); jack.get_cycle_times(impl->client, ¤t_frames, ¤t_usecs, &next_usecs, &period_usecs); impl->current_frames = current_frames; source_running = impl->source.running; sink_running = impl->sink.running; pw_log_trace_fp("process %d %u %u %p %d", nframes, source_running, sink_running, impl->position, current_frames); if (impl->new_xrun) { int suppressed; if ((suppressed = spa_ratelimit_test(&impl->rate_limit, current_usecs)) >= 0) { pw_log_warn("Xrun: current_frames:%u JACK:%u PipeWire:%u (%d suppressed)", current_frames, impl->jack_xrun, impl->pw_xrun, suppressed); } impl->new_xrun = false; } if (impl->position) { struct spa_io_clock *c = &impl->position->clock; jack_position_t pos; uint64_t t1, t2, t3; int64_t d1; /* convert from JACK (likely MONOTONIC_RAW) to MONOTONIC */ t1 = get_time_nsec(impl) / 1000; t2 = jack.get_time(); t3 = get_time_nsec(impl) / 1000; d1 = t1 + (t3 - t1) / 2 - t2; current_usecs += d1; next_usecs += d1; c->nsec = current_usecs * SPA_NSEC_PER_USEC; c->rate = SPA_FRACTION(1, impl->samplerate); c->position = current_frames; c->duration = nframes; c->delay = 0; c->rate_diff = 1.0; c->next_nsec = next_usecs * SPA_NSEC_PER_USEC; c->target_rate = c->rate; c->target_duration = c->duration; jack.transport_query (impl->client, &pos); } if (impl->mode & MODE_SINK && sink_running) { impl->done = false; impl->triggered = true; pw_filter_trigger_process(impl->sink.filter); } else if (impl->mode == MODE_SOURCE && source_running) { impl->done = false; impl->triggered = true; pw_filter_trigger_process(impl->source.filter); } else { pw_log_trace_fp("done %d", nframes); jack.cycle_signal(impl->client, 0); } } return NULL; } static int jack_xrun(void *arg) { struct impl *impl = arg; if (impl->done) impl->jack_xrun++; else impl->pw_xrun++; impl->new_xrun = true; return 0; } static int do_schedule_destroy(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *impl = user_data; pw_impl_module_schedule_destroy(impl->module); return 0; } static void module_schedule_destroy(struct impl *impl) { pw_loop_invoke(impl->main_loop, do_schedule_destroy, 1, NULL, 0, false, impl); } static void jack_info_shutdown(jack_status_t code, const char* reason, void *arg) { struct impl *impl = arg; pw_log_warn("shutdown: %s (%08x)", reason, code); module_schedule_destroy(impl); } static void stream_update_latency(struct stream *s) { uint8_t buffer[1024]; struct spa_pod_builder b; const struct spa_pod *params[2]; uint32_t i, n_params = 0; for (i = 0; i < s->n_ports; i++) { struct port *port = s->ports[i]; if (port == NULL) continue; spa_pod_builder_init(&b, buffer, sizeof(buffer)); n_params = 0; if (port->latency_changed[s->direction]) { params[n_params++] = spa_latency_build(&b, SPA_PARAM_Latency, &port->latency[s->direction]); port->latency_changed[s->direction] = false; } if (s->filter) pw_filter_update_params(s->filter, port, params, n_params); } } static int do_update_latency(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *impl = user_data; if ((impl->mode & MODE_SINK)) stream_update_latency(&impl->sink); if ((impl->mode & MODE_SOURCE)) stream_update_latency(&impl->source); return 0; } static bool stream_handle_latency(struct stream *s, jack_latency_callback_mode_t mode) { uint32_t i; struct spa_latency_info latency; jack_latency_range_t range; bool update = false; enum spa_direction other = SPA_DIRECTION_REVERSE(s->direction); struct port *port; if (mode == JackPlaybackLatency) { for (i = 0; i < s->n_ports; i++) { port = s->ports[i]; if (port == NULL || port->jack_port == NULL) continue; jack.port_get_latency_range(port->jack_port, mode, &range); latency = SPA_LATENCY_INFO(s->direction, .min_rate = range.min, .max_rate = range.max); pw_log_debug("port latency %d %d %d", mode, range.min, range.max); if (spa_latency_info_compare(&latency, &port->latency[s->direction])) { port->latency[s->direction] = latency; port->latency_changed[s->direction] = update = true; } } } else if (mode == JackCaptureLatency) { for (i = 0; i < s->n_ports; i++) { port = s->ports[i]; if (port == NULL || port->jack_port == NULL) continue; if (port->latency_changed[other]) { range.min = port->latency[other].min_rate; range.max = port->latency[other].max_rate; jack.port_set_latency_range(port->jack_port, mode, &range); port->latency_changed[other] = false; } } } return update; } static void jack_latency(jack_latency_callback_mode_t mode, void *arg) { struct impl *impl = arg; bool update = false; if ((impl->mode & MODE_SINK)) update |= stream_handle_latency(&impl->sink, mode); if ((impl->mode & MODE_SOURCE)) update |= stream_handle_latency(&impl->source, mode); if (update) pw_loop_invoke(impl->main_loop, do_update_latency, 0, NULL, 0, false, impl); } static int create_jack_client(struct impl *impl) { const char *server_name, *client_name; jack_options_t options = JackNullOption; jack_status_t status; server_name = pw_properties_get(impl->props, "jack.server"); if (server_name != NULL) options |= JackServerName; client_name = pw_properties_get(impl->props, "jack.client-name"); if (client_name == NULL) client_name = DEFAULT_CLIENT_NAME; impl->client = jack.client_open(client_name, options, &status, server_name); if (impl->client == NULL) { pw_log_error ("jack_client_open() failed 0x%2.0x\n", status); return -EIO; } jack.on_info_shutdown(impl->client, jack_info_shutdown, impl); jack.set_process_thread(impl->client, jack_process_thread, impl); jack.set_xrun_callback(impl->client, jack_xrun, impl); jack.set_latency_callback(impl->client, jack_latency, impl); impl->samplerate = jack.get_sample_rate(impl->client); impl->source.info.rate = impl->samplerate; impl->sink.info.rate = impl->samplerate; jack.activate(impl->client); return 0; } static void core_error(void *data, uint32_t id, int seq, int res, const char *message) { struct impl *impl = data; pw_log_error("error id:%u seq:%d res:%d (%s): %s", id, seq, res, spa_strerror(res), message); if (id == PW_ID_CORE && res == -EPIPE) pw_impl_module_schedule_destroy(impl->module); } static const struct pw_core_events core_events = { PW_VERSION_CORE_EVENTS, .error = core_error, }; static void core_destroy(void *d) { struct impl *impl = d; spa_hook_remove(&impl->core_listener); impl->core = NULL; pw_impl_module_schedule_destroy(impl->module); } static const struct pw_proxy_events core_proxy_events = { .destroy = core_destroy, }; static void impl_destroy(struct impl *impl) { if (impl->client) { jack.deactivate(impl->client); jack.client_close(impl->client); } if (impl->source.filter) pw_filter_destroy(impl->source.filter); if (impl->sink.filter) pw_filter_destroy(impl->sink.filter); if (impl->core && impl->do_disconnect) pw_core_disconnect(impl->core); pw_properties_free(impl->sink.props); pw_properties_free(impl->source.props); pw_properties_free(impl->props); free(impl); } static void module_destroy(void *data) { struct impl *impl = data; spa_hook_remove(&impl->module_listener); impl_destroy(impl); } static const struct pw_impl_module_events module_events = { PW_VERSION_IMPL_MODULE_EVENTS, .destroy = module_destroy, }; static void parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info) { spa_audio_info_raw_init_dict_keys(info, &SPA_DICT_ITEMS( SPA_DICT_ITEM(SPA_KEY_AUDIO_FORMAT, "F32P"), SPA_DICT_ITEM(SPA_KEY_AUDIO_POSITION, DEFAULT_POSITION)), &props->dict, SPA_KEY_AUDIO_CHANNELS, SPA_KEY_AUDIO_POSITION, NULL); } static void copy_props(struct impl *impl, struct pw_properties *props, const char *key) { const char *str; if ((str = pw_properties_get(props, key)) != NULL) { if (pw_properties_get(impl->sink.props, key) == NULL) pw_properties_set(impl->sink.props, key, str); if (pw_properties_get(impl->source.props, key) == NULL) pw_properties_set(impl->source.props, key, str); } } SPA_EXPORT int pipewire__module_init(struct pw_impl_module *module, const char *args) { struct pw_context *context = pw_impl_module_get_context(module); struct pw_properties *props = NULL; struct impl *impl; const char *str; int res; PW_LOG_TOPIC_INIT(mod_topic); impl = calloc(1, sizeof(struct impl)); if (impl == NULL) return -errno; pw_log_debug("module %p: new %s", impl, args); if (args == NULL) args = ""; props = pw_properties_new_string(args); if (props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->props = props; if ((str = pw_properties_get(props, "jack.library")) == NULL) str = "libjack.so.0"; if ((res = weakjack_load(&jack, str)) < 0) { pw_log_error( "can't load '%s': %s", str, spa_strerror(res)); goto error; } impl->sink.props = pw_properties_new(NULL, NULL); impl->source.props = pw_properties_new(NULL, NULL); if (impl->source.props == NULL || impl->sink.props == NULL) { res = -errno; pw_log_error( "can't create properties: %m"); goto error; } impl->module = module; impl->context = context; impl->main_loop = pw_context_get_main_loop(context); impl->system = impl->main_loop->system; impl->rate_limit.interval = 2 * SPA_USEC_PER_SEC; impl->rate_limit.burst = 1; impl->source.impl = impl; impl->source.direction = PW_DIRECTION_OUTPUT; impl->sink.impl = impl; impl->sink.direction = PW_DIRECTION_INPUT; impl->mode = MODE_DUPLEX; if ((str = pw_properties_get(props, "tunnel.mode")) != NULL) { if (spa_streq(str, "source")) { impl->mode = MODE_SOURCE; } else if (spa_streq(str, "sink")) { impl->mode = MODE_SINK; } else if (spa_streq(str, "duplex")) { impl->mode = MODE_DUPLEX; } else { pw_log_error("invalid tunnel.mode '%s'", str); res = -EINVAL; goto error; } } if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL) pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true"); if (pw_properties_get(props, PW_KEY_NODE_GROUP) == NULL) pw_properties_set(props, PW_KEY_NODE_GROUP, "jack-group"); if (pw_properties_get(props, PW_KEY_NODE_ALWAYS_PROCESS) == NULL) pw_properties_set(props, PW_KEY_NODE_ALWAYS_PROCESS, "true"); pw_properties_set(impl->sink.props, PW_KEY_MEDIA_CLASS, "Audio/Sink"); pw_properties_set(impl->sink.props, PW_KEY_PRIORITY_DRIVER, "30001"); pw_properties_set(impl->sink.props, PW_KEY_NODE_NAME, "jack_sink"); pw_properties_set(impl->sink.props, PW_KEY_NODE_DESCRIPTION, "JACK Sink"); pw_properties_set(impl->source.props, PW_KEY_MEDIA_CLASS, "Audio/Source"); pw_properties_set(impl->source.props, PW_KEY_PRIORITY_DRIVER, "30000"); pw_properties_set(impl->source.props, PW_KEY_NODE_NAME, "jack_source"); pw_properties_set(impl->source.props, PW_KEY_NODE_DESCRIPTION, "JACK Source"); if ((str = pw_properties_get(props, "sink.props")) != NULL) pw_properties_update_string(impl->sink.props, str, strlen(str)); if ((str = pw_properties_get(props, "source.props")) != NULL) pw_properties_update_string(impl->source.props, str, strlen(str)); copy_props(impl, props, PW_KEY_AUDIO_CHANNELS); copy_props(impl, props, SPA_KEY_AUDIO_POSITION); copy_props(impl, props, PW_KEY_NODE_ALWAYS_PROCESS); copy_props(impl, props, PW_KEY_NODE_GROUP); copy_props(impl, props, PW_KEY_NODE_VIRTUAL); copy_props(impl, props, "jack.connect"); copy_props(impl, props, "jack.connect-audio"); copy_props(impl, props, "jack.connect-midi"); parse_audio_info(impl->source.props, &impl->source.info); parse_audio_info(impl->sink.props, &impl->sink.info); impl->source.n_midi = pw_properties_get_uint32(impl->source.props, "midi.ports", DEFAULT_MIDI_PORTS); impl->sink.n_midi = pw_properties_get_uint32(impl->sink.props, "midi.ports", DEFAULT_MIDI_PORTS); impl->source.n_ports = impl->source.n_midi + impl->source.info.channels; impl->sink.n_ports = impl->sink.n_midi + impl->sink.info.channels; if (impl->source.n_ports > MAX_PORTS || impl->sink.n_ports > MAX_PORTS) { pw_log_error("too many ports"); res = -EINVAL; goto error; } impl->core = pw_context_get_object(impl->context, PW_TYPE_INTERFACE_Core); if (impl->core == NULL) { str = pw_properties_get(props, PW_KEY_REMOTE_NAME); impl->core = pw_context_connect(impl->context, pw_properties_new( PW_KEY_REMOTE_NAME, str, NULL), 0); impl->do_disconnect = true; } if (impl->core == NULL) { res = -errno; pw_log_error("can't connect: %m"); goto error; } pw_proxy_add_listener((struct pw_proxy*)impl->core, &impl->core_proxy_listener, &core_proxy_events, impl); pw_core_add_listener(impl->core, &impl->core_listener, &core_events, impl); if ((res = create_jack_client(impl)) < 0) goto error; if ((res = create_filters(impl)) < 0) goto error; pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl); pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_props)); return 0; error: impl_destroy(impl); return res; }