// Created by inigo quilez - iq/2013 // License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. // This shader computes the distance to the Mandelbrot Set for everypixel, and colorizes // it accoringly. // // Z -> Z²+c, Z0 = 0. // therefore Z' -> 2·Z·Z' + 1 // // The Hubbard-Douady potential G(c) is G(c) = log Z/2^n // G'(c) = Z'/Z/2^n // // So the distance is |G(c)|/|G'(c)| = |Z|·log|Z|/|Z'| // // More info here: http://www.iquilezles.org/www/articles/distancefractals/distancefractals.htm void mainImage( out vec4 fragColor, in vec2 fragCoord ) { vec2 p = -1.0 + 2.0 * fragCoord.xy / iResolution.xy; p.x *= iResolution.x/iResolution.y; // animation float tz = 0.5 - 0.5*cos(0.225*iTime); float zoo = pow( 0.5, 13.0*tz ); vec2 c = vec2(-0.05,.6805) + p*zoo; // iterate float di = 1.0; vec2 z = vec2(0.0); float m2 = 0.0; vec2 dz = vec2(0.0); for( int i=0; i<300; i++ ) { if( m2>1024.0 ) { di=0.0; break; } // Z' -> 2·Z·Z' + 1 dz = 2.0*vec2(z.x*dz.x-z.y*dz.y, z.x*dz.y + z.y*dz.x) + vec2(1.0,0.0); // Z -> Z² + c z = vec2( z.x*z.x - z.y*z.y, 2.0*z.x*z.y ) + c; m2 = dot(z,z); } // distance // d(c) = |Z|·log|Z|/|Z'| float d = 0.5*sqrt(dot(z,z)/dot(dz,dz))*log(dot(z,z)); if( di>0.5 ) d=0.0; // do some soft coloring based on distance d = clamp( pow(4.0*d/zoo,0.2), 0.0, 1.0 ); vec3 col = vec3( d ); fragColor = vec4( col, 1.0 ); }