The IO_Buffers is used in the data thread to check if the port should be
scheduled or not. Make sure it is only set after we set buffers on the
port and cleared before the buffers are cleared.
Make sure we sync the port->io with the data thread.
See #4094
Can be used to group ports together. Mostly because they are all from
the same stream and split into multiple ports by audioconvert/adapter.
Also useful for the alsa sequence to group client ports together.
Also interesting when pw-filter would be able to handle streams in the
future to find out what ports belong to what streams.
We can remove most of the special async handling in adapter, filter and
stream because this is now handled in the core.
Add a node.data-loop property to assign the node to a named data-loop.
Assign the non-rt stream and filter to the main loop. This means that
the node fd will be added to the main-loop and will be woken up directly
without having to wake up the RT thread and invoke the process callback
in the main-loop first. Because non-RT implies async, we can do all of
this like we do our rt processing because the output will only be used
in the next cycle.
Add a monitor.passthrough option. This will pass all latency information
directly between the port and its monitor ports.
This is interesting when the adapter (and audioconvert) is used with a
null-audio-sink that simply forwards the data to a real sink/souce. In
that case, we want the sink/source latency to be passed unmodified.
Set the monitor.passthrough on the pulseaudio null-sink because
a passthrough virtual sink is the most likely use case for this.
Add some monitor.passthrough default config where it makes sense.
Fixes#3888
Keep track of the valid ports and don't emit port info for
invalid ports. When a listener is added while the ports are being
created, it is possible that the ports are still NULL or invalid.
The rate we get from dlls can have a subsample precision. However,
the check for using process_copy is in sample precision. This means
that an adaptive stream will oscillate rather then lock into the
exact rate.
When starting the converter, calculate the initial size needed by
the resampler to fill one quantum.
This makes it possible to get the requested amount of samples before
the first process call is made.
Update the started and ready state after we suspend/pause the node so
that we don't complain if scheduling happens between setting the fields
and actually stopping the follower.
Also only complain when the scheduling happens when the node is not
ready. It is possible that the node is scheduled before we manage to set
the started field.
Move the driver and warned bits after the int field in the struct so
that they are placed in separate memory.
Otherwise, a write from the data thread might race with a write from the
main thread and leave the bits in the wrong state.
Don't blindly clear the format when EnumFormat changes. This will
just stop the node without renegotiating.
We should probably find a new best format, check if it changed and
then Stop/configure/Resume the follower with the new format.
This fixes a stall when a node is running and you change the allowed
codecs.
Don't try to allocate each time port buffers are set but only once
before we start procesing.
Also allocate enough temp buffers are there are ports. This saves us
quite a bit of memory in the normal case.