Use kernel-provided packet reception timestamps to get less jitter in
packet timings. Mostly matters for ISO/SCO which have regular schedule.
A2DP (L2CAP) doesn't currently do RX timestamps in kernel, but we can as
well use the same mechanism for it.
Use TX timestamps to get accurate reading of queue length and latency on
kernel + controller side.
This is new kernel BT feature, so requires kernel with the necessary
patches, available currently only in bluetooth-next/master branch.
Enabling Poll Errqueue kernel experimental Bluetooth feature is also
required for this.
Use the latency information to mitigate controller issues where ISO
streams are desynchronized due to tx problems or spontaneously when some
packets that should have been sent are left sitting in the queue, and
transmission is off by a multiple of the ISO interval. This state is
visible in the latency information, so if we see streams in a group have
persistently different latencies, drop packets to resynchronize them.
Also make corrections if the kernel/controller queues get too long, so
that we don't have too big latency there.
Since BlueZ watches the same socket for errors, and TX timestamps arrive
via the socket error queue, we need to set BT_POLL_ERRQUEUE in addition
to SO_TIMESTAMPING so that BlueZ doesn't think TX timestamps are errors.
Link: https://github.com/bluez/bluez/issues/515
Link: https://lore.kernel.org/linux-bluetooth/cover.1710440392.git.pav@iki.fi/
Link: https://lore.kernel.org/linux-bluetooth/f57e065bb571d633f811610d273711c7047af335.1712499936.git.pav@iki.fi/